STAT 7032 Probability Spring 2018

Wlodek Bryc

Created: Friday, Jan 2, 2014
Revised for Spring 2018
Printed: February 3, 2018 File: Grad-Prob-2018.TEX

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF CINCINNATI, CINCINNATI, OH 45221

E-mail address: bryczw@ucmail.uc.edu
Contents

Chapter 0. Review of math prerequisites 7
 1. Convergence 7
 2. Set theory 7
 3. Compact set 9
 4. Riemann integral 10
 5. Product spaces 10
 6. Taylor polynomials and series expansions 10
 7. Complex numbers 10
 8. Metric spaces 10
 Additional Exercises 12

Chapter 1. Events and Probabilities 13
 1. Elementary and semi-elementary probability theory 13
 2. Sigma-fields 16
 Required Exercises 18
 Additional Exercises 19

Chapter 2. Probability measures 21
 1. Existence 21
 2. Uniqueness 24
 3. Probability measures on \mathbb{R} 26
 4. Probability measures on \mathbb{R}^k 30
 Required Exercises 33
 Additional Exercises 34

Chapter 3. Independence 37
 1. Independent events and sigma-fields 37
 2. Zero-one law 38
 3. Borel-Cantelli Lemmas 39
 Required Exercises 40
 Additional Exercises 41
Chapter 4. Random variables
1. Measurable mappings
2. Random variables with prescribed distributions
3. Convergence of random variables
 Required Exercises
 Additional Exercises

Chapter 5. Simple random variables
1. Expected value
2. Inequalities
3. L_p-norms
4. The law of large numbers
 Required Exercises
 Additional Exercises

Chapter 6. Integration
1. Approximation by simple random variables
2. Expected values
3. Inequalities
4. Independent random variables
 Required Exercises
 Additional Exercises
 Moment generating functions

Chapter 7. Product measure and Fubini’s theorem
1. Product spaces
2. Product measure
3. Fubini’s Theorem
 Required Exercises
 Additional Exercises

Chapter 8. Sums of independent random variables
1. The strong law of large numbers
2. Kolmogorov’s zero-one law
3. Kolmogorov’s Maximal inequality and its applications
4. Etemadi’s inequality and its application
 Required Exercises

Chapter 9. Weak convergence
1. Convergence in distribution
2. Fundamental results
 Required Exercises

Chapter 10. Characteristic functions
1. Complex numbers, Taylor polynomials, etc
2. Characteristic functions
3. Uniqueness
4. The continuity theorem
Contents

Required Exercises .. 94
Additional Exercises ... 95

Chapter 11. The Central Limit Theorem 97
1. Lindeberg and Lyapunow theorems 98
2. Lyapunov’s theorem ... 100
3. Strategies for proving CLT without Lindeberg condition 101
 Required Exercises ... 101

Chapter 12. Limit Theorems in \mathbb{R}^k 103
1. The basic theorems ... 103
2. Multivariate characteristic function 104
3. Multivariate normal distribution 105
4. The CLT ... 107
 Required Exercises ... 109

Appendix A. Addenda .. 111
1. Modeling an infinite number of tosses of a coin 111

Appendix. Bibliography .. 113

Appendix. Index ... 115
Chapter 0

Review of math
prerequisites

1. Convergence

1.1. Convergence of numbers. Recall that for a sequence of numbers, \(\lim_{n \to \infty} a_n = L \) means that ...

\[\sum_{n=1}^{\infty} a_n = L \] means that ...

Theorem 0.1. If a sequence of real numbers \(\{a_n\} \) is bounded and increasing, then \(\lim_n a_n = \sup_{n \in \mathbb{N}} a_n \).

For unbounded increasing sequences we write \(\lim_n a_n = \infty \).

Recall that for a sequence of numbers \(a_n \),

\[\limsup_{n \to \infty} a_n = \lim_{n \to \infty} \sup_{k \geq n} a_k \quad \text{and} \quad \liminf_{n \to \infty} a_n = \lim_{n \to \infty} \inf_{k \geq n} a_k. \]

Remark 0.1. It is clear that \(\liminf_{n \to \infty} a_n \leq \limsup_{n \to \infty} a_n \). The equality holds iff the limit \(\lim_{n \to \infty} a_n \) exists as an extended number in \([-\infty, \infty]\).

Similarly, for a sequence of functions \(f_n : \Omega \to \mathbb{R} \), we define functions \(f_* : \Omega \to \overline{\mathbb{R}} \) by \(f_* = \liminf_{n \to \infty} f_n \) and \(f^* = \limsup_{n \to \infty} f_n \) pointwise.

We say that the sequence of functions \(\{f_n\} \) converges pointwise, if \(f_n(\omega) \) converges for all \(\omega \in \Omega \). We say that the sequence of functions \(\{f_n\} \) converges uniformly over \(\Omega \) to \(f \), if \(\sup_{\omega \in \Omega} |f_n(\omega) - f(\omega)| \to 0 \).

2. Set theory

(i) For a set \(\Omega \), by \(2^\Omega \) we denote the so called power set, i.e., the set of all subsets of \(\Omega \). We use upper case letters like \(A, B, C, \ldots \) for the subsets - some (but not all) will be interpreted as "events".
(ii) The empty set is \emptyset - in handwriting this needs to be carefully distinguished from the Greek letters φ or Φ.

(iii) We use $A \cup B$, for the union, $A \cap B$ for the intersection, A^c or A' for the complement. **We do not use $A + B$ and AB in this course!!**

(iv) We use $A \cup B$, for the union, $A \cap B$ for the intersection, A^c or A' for the complement.

We do not use $A + B$ and AB in this course!!!

(v) We use $A \subset B$ for what some other books denote by $A \subseteq B$. Sometimes it will be convenient to write this as $B \supset A$. Collections of sets will be denoted by scripted letters, like \mathcal{A} or \mathcal{F}. We will need to consider large collections of sets, as well as collections like $\mathcal{A} = \{A_1, A_2, \ldots\}$.

(vi) For a family $\mathcal{A} = \{A_t : t \in T\}$ of subsets of Ω indexed by a set T, the **union** of all sets in \mathcal{A} is the set of ω with the property that there exists a set $A_t \in \mathcal{A}$ such that $\omega \in A_t$. In symbols,

$$\bigcup_{t \in T} A_t = \{\omega \in \Omega : \omega \in A_t \text{ for some } t \in T\} = \{\omega \in \Omega : \exists t \in T \omega \in A_t\}$$

More concisely,

$$\bigcup_{A \in \mathcal{A}} A = \{\omega \in \Omega : \omega \in A \text{ for some } A \in \mathcal{A}\} = \{\omega \in \Omega : \exists A \in \mathcal{A} \omega \in A\}$$

Similarly, we define the **intersection**

$$\bigcap_{t \in T} A_t = \{\omega \in \Omega : \forall t \in T \omega \in A_t\}$$

In particular, for a countable collection of sets,

$$\bigcup_{n \in \mathbb{N}} A_n = \bigcup_{n=1}^{\infty} A_n = \{\omega : \omega \in A_n \text{ for some } n \in \mathbb{N}\}$$

$$\bigcap_{n \in \mathbb{N}} A_n = \bigcap_{n=1}^{\infty} A_n = \{\omega : \omega \in A_n \text{ for all } n \in \mathbb{N}\}$$

(vi) The notation for intervals is $(a,b) = \{x \in \mathbb{R} : a < x < b\}$, $[a,b) = \{x \in \mathbb{R} : a \leq x < b\}$ and similarly $(a,b]$ and $[a,b]$.

Theorem 0.2 (DeMorgan’s law).

(0.1) \[\left(\bigcup_{t \in T} A_t \right)^c = \bigcap_{t \in T} A_t^c \]

Since $(A^c)^c = A$, formula (0.1) is equivalent to

(0.2) \[\left(\bigcap_{t \in T} A_t \right)^c = \bigcup_{t \in T} A_t^c \]
2.1. Indicator functions and limits of sets. This has application to the so called indicator functions:

\[I_A(\omega) = \begin{cases}
1 & \text{if } \omega \in A \\
0 & \text{otherwise}
\end{cases} \]

Since

\[I_{A_n}(\omega) = \begin{cases}
0 & \\
1 &
\end{cases} , \]

it is clear that

\[\limsup_{n \to \infty} I_{A_n}(\omega) = \begin{cases}
0 & \\
1 &
\end{cases} . \]

This means that \(\limsup_{n \to \infty} I_{A_n}(\omega) = I_{A^*}(\omega) \) for some set \(A^* \subset \Omega \).

For the same reasons, \(\liminf_{n \to \infty} I_{A_n} = I_{A_*} \) for some set \(A_* \subset \Omega \).

Proposition 0.3.

\[A_* = \bigcup_{n \in \mathbb{N}} \bigcap_{k \geq n} A_k \] and \[A^* = \bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_k \]

Proof. This is Exercise 0.1. \(\square \)

The second set has probabilistic interpretation:

\[A^* = \{ A_n \text{ occur infinitely often } \} = \{ A_n \text{ i. o. } \} \]

It is clear that \(A_* \subset A^* \). We say that \(\lim_n A_n \) exists if \(A_* = A^* \). Exercises 0.3 and 0.4 give examples of such limits.

2.2. Cardinality. Sets \(A, B \) have the same cardinality if there exists a one-to-one and onto function \(f : A \to B \). We shall say that a set \(A \) is countable if either \(A \) is finite, or it has the same cardinality as the set \(\mathbb{N} \) of natural numbers.

It is known that the set of all rational numbers \(\mathbb{Q} \) is countable while the interval \([0,1] \subset \mathbb{R} \) is not countable.

3. Compact set

Recall that if \(K \) is compact if every sequence \(x_n \in K \) has a convergent subsequence (with respect to some metric \(d \)). Equivalently, from every open cover of \(K \) one can select a finite sub-cover. If \(K \) is compact and sets \(F_n \subset K \) are closed with non-empty intersections \(\bigcap_{k=1}^{n} F_k \neq \emptyset \) for all \(n \), then the infinite intersection \(\bigcap_{k=1}^{\infty} F_k \) is also non-empty.

Theorem 0.4. Closed bounded subsets of \(\mathbb{R}^k \) are compact.
4. Riemann integral

Function $f : [a, b] \to \mathbb{R}$ is Riemann-integrable, with integral $S = \int_a^b f(x)\,dx$, if for every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$\left| S - \sum_i f(x_j)|I_j| \right| < \varepsilon$$

for every partition of $[a, b]$ into sub-intervals I_j of length $|I_j| < \delta$ and every choice of $x_j \in I_j$. Every Riemann-integrable function is Lebesgue-integrable over $[a, b]$.

It is known that continuous functions are Riemann-integrable.

In calculus, the improper integral $\int_0^\infty f(x)\,dx$ is defined as the limit $\lim_{t \to \infty} \int_0^t f(x)\,dx$. This is not the same as the Lebesgue integral over $[0, \infty)$.

5. Product spaces

The set \mathbb{R}^∞ of all infinite sequences of real numbers is a metric space with the distance

$$(0.4) \quad d((a_n), (b_n)) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|a_n - b_n|}{1 + |a_n - b_n|}.$$

In particular, a sequence of points $a_n \in \mathbb{R}^\infty$ converges to b if every coordinate converges. This is the pointwise convergence of functions, with a sequence (a_n) identified with function $a : \mathbb{N} \to \mathbb{R}$.

6. Taylor polynomials and series expansions

See Chapter 12 Section 1 (page 103).

7. Complex numbers

See Chapter 12 Section 1 (page 103).

8. Metric spaces

Definition 0.1. A function $d : \mathbb{E} \times \mathbb{E} \to \mathbb{R}$ is called a metric if

(i) $d(x, y) \geq 0$ and if $d(x, y) = 0$ then $x = y$

(ii) $d(x, y) = d(y, x)$

(iii) $d(x, z) \leq d(x, y) + d(y, z)$

We then call the pair (\mathbb{E}, d) a metric space.

Here are some “elementary” examples of metric spaces.

(i) \mathbb{R} with $d(x, y) = |x - y|

(ii) \mathbb{R}^d with $d(x, y) = \|x - y\|.$

(iii) $C[0,1]$ with $d(f, g) = \sup\{|f(x) - g(x)| : 0 \leq x \leq 1\}.$

(iv) The set of all CDFs on \mathbb{R} with *Kolmogorov-Smirnov metric* $d(F, G) = \sup\{|F(x) - G(x)| : 0 < x < \infty\}.$
(v) The set of all probability measures on \((\mathbb{R}, \mathcal{B})\) with total variation metric

\[
\delta(P, Q) = \sup\{|P(A) - Q(A)| : A \in \mathcal{B}\}
\]

It is known that \(\delta(P, Q) = \inf\{P(X \neq Y) : \mathcal{L}(X) = P, \mathcal{L}(Y) = Q\}\)

(vi) The set of all CDFs on \(\mathbb{R}\) with Levy’s metric:

\[
L(F, G) = \inf\{\varepsilon : G(x) \in [F(x - \varepsilon) - \varepsilon, F(x + \varepsilon) + \varepsilon] \text{ for all } x\}
\]

This is a metric for weak convergence: \(F_n \to F\) iff \(L(F_n, F) \to 0\)

Here are some of the metric spaces encountered in probability:

(i) The set of all CDFs (see Definition 2.3) on \(\mathbb{R}\) with Kolmogorov-Smirnov metric

\[
d(F, G) = \sup\{|F(x) - G(x)| : 0 < x < \infty\}
\]

This distance is used in statistics.

(ii) The set of all probability measures on \((\mathbb{R}, \mathcal{B})\) with total variation metric

\[
\delta(P, Q) = \sup\{|P(A) - Q(A)| : A \in \mathcal{B}\}
\]

It is known that \(\delta(P, Q) = \inf\{P(X \neq Y) : \mathcal{L}(X) = P, \mathcal{L}(Y) = Q\}\)

(iii) The set of all CDFs on \(\mathbb{R}\) with Levy’s metric:

\[
L(F, G) = \inf\{\varepsilon : G(x) \in [F(x - \varepsilon) - \varepsilon, F(x + \varepsilon) + \varepsilon] \text{ for all } x\}
\]

This is a metric for weak convergence: \(F_n \to F\) iff \(L(F_n, F) \to 0\), see Exercise 9.10.

(iv) The set of (classes of equivalence of) all random variables on \((\Omega, \mathcal{F}, P)\) with the distance

\[
d(X, Y) = E\left(\frac{|X - Y|}{1 + |X - Y|}\right)
\]

This is a metric for convergence in probability: \(X_n \xrightarrow{P} X\) iff \(d(X_n, X) \to 0\).

There are numerous other distances of interest. The following are frequently encountered and useful.

(i) The set of all (classes of equivalence of) integrable random variables \(L_1(\Omega, \mathcal{F}, P)\) with the \(L_1\) metric \(\|X - Y\|_1 = E(|X - Y|)\)

(ii) The set of all (classes of equivalence of) square integrable random variables \(L_2(\Omega, \mathcal{F}, P)\) with the \(L_2\) metric \(\|X - Y\|_2 = \sqrt{E((X - Y)^2)}\).

(iii) The set of probability measures (CDFs) on \(\mathbb{R}\) with the Wassertein distance

\[
d(P, Q) = \inf\{E|X - Y| : \mathcal{L}(X) = P, \mathcal{L}(Y) = Q\}
\]

It is known that \(d(P, Q) = \sup \int f(x)dP - \int f(x)dQ : f\text{Lipschitz with constant 1}\)
Exercise 0.1. Prove Proposition 0.3.

Solution: Since $I_{A_n} \leq 1$, $\limsup I_{A_n}(\omega) = 1$ iff $\forall \varepsilon > 0 \forall n \exists k \geq n : I_{A_k}(\omega) \geq 1 - \varepsilon$. Noting that $I_{A_k}(\omega) \geq 1 - \varepsilon$ is the same as $\omega \in A_k$, the above is equivalent to $\forall n \exists k \geq n : \omega \in A_k$ which is the same as $\omega \in \bigcap_n \bigcup_{k \geq n} A_k$.

Exercise 0.2. Suppose B, C are subsets of Ω and

$A_n = \begin{cases} B & \text{if } n \text{ is even} \\ C & \text{if } n \text{ is odd} \end{cases}$

Identify the sets $A_* = \bigcup_{n \in \mathbb{N}} \bigcap_{k \geq n} A_k$ and $A^* = \bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_k$.

Solution: The answer is $A_* = B \cap C$, $A^* = B \cup C$.

Exercise 0.3. Suppose $A_1 \supset A_2 \supset A_n \supset \ldots$. Show that $\lim_n A_n$ exists (and describe the limit).

Solution: The answer is $\lim_n A_n = \bigcap_{n=1}^{\infty} A_n$.

Exercise 0.4. Suppose $A_1 \subset A_2 \subset A_n \subset \ldots$. Show that $\lim_n A_n$ exists (and describe the limit).

Solution: The answer is $\lim_n A_n = \bigcup_{n=1}^{\infty} A_n$.

Exercise 0.5.
Chapter 1

Events and Probabilities

1. Elementary and semi-elementary probability theory

The standard model of probability theory is the triplet (Ω, \mathcal{F}, P), where Ω is a set, $\mathcal{F} \subset 2^\Omega$, and P is a function $\mathcal{F} \to [0, 1]$. The set Ω is called sometimes a sample space or a probability space. Sets $A \in \mathcal{F}$ are called events, and the number $P(A)$ is called probability of event A. We say that event A occurred, if $\omega \in A$, and we interpret $P(A)$ as the “likelihood” that event A occurred.

1.1. Field of events. It is natural to expect that the events form a field.

Definition 1.1. A class \mathcal{F} of subsets of Ω is a field if:

(i) $\Omega \in \mathcal{F}$

(ii) if $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$

(iii) if $A, B \in \mathcal{F}$ then $A \cup B \in \mathcal{F}$

By induction, if $A_1, A_2, \ldots, A_n \in \mathcal{F}$ then $A_1 \cup \cdots \cup A_n = \bigcup_{1 \leq j \leq n} A_j \in \mathcal{F}$. By DeMorgan’s law (Theorem 0.2), a field is also closed under intersections, $\bigcap_{1 \leq j \leq n} A_j \in \mathcal{F}$. In particular, we can replace axiom (iii) by

(iii’) if $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$

Example 1.1. The class \mathcal{B}_0 of finite unions of disjoint left-open right-closed subintervals of $(0, 1]$, is a field.

Proof. $(0, 1] \in \mathcal{B}_0$. If $A = \bigcup_{j=1}^{K} (a_j, b_j]$ with $a_1 < b_1 \leq a_2 < b_2 \cdots \leq a_K < b_K$ then $A^c = (0, a_1] \cup (b_1, a_2] \cup \cdots \cup (b_{K-1}, a_K] \cup (b_K, 1]$, where some of the intervals might be empty.

If $A = \bigcup_j I_j$ and $B = \bigcup_k J_k$ then $A \cup B = \bigcup_{j,k} I_j \cap J_k$ and intersections $I_j \cap J_k$ are disjoint, possibly empty, intervals of the form (a, b).

Similarly, for $\Omega := (0, 1] \times (0, 1]$, the set of finite unions of rectangles $(a, b] \times (c, d] \subset$ is a field.
Remark 1.1. The field \mathcal{B}_0 in Example 1.1 is the smallest field of subsets of $(0,1]$ that contains intervals $(a,b]$.

Question 1.1. What is the smaller field of subsets of \mathbb{R} that contains all half-lines $(-\infty,b]$?

1.2. Finitely additive probabilities. We want to assign the number $P(A)$, as a “measure” of the likelihood that the event A occurred.

Definition 1.2. Let \mathcal{F} be a field. A function $P: \mathcal{F} \to \mathbb{R}$ is a finitely-additive probability measure if it satisfies the following conditions

(i) $0 \leq P(A) \leq 1$ for $A \in \mathcal{F}$
(ii) $P(\emptyset) = 0$, $P(\Omega) = 1$.
(iii) If $A, B \in \mathcal{F}$ are disjoint, then $P(A \cup B) = P(A) + P(B)$.

A function $P: \mathcal{F} \to \mathbb{R}$ is a probability measure on \mathcal{F} if it is finitely-additive and satisfies the following continuity condition

(iv) If $A_1 \supset A_2 \supset \ldots$ are sets in \mathcal{F} and $\bigcap_k A_k = \emptyset$, then $\lim_{n \to \infty} P(A_n) = 0$

Proposition 1.1 (Elementary properties). Suppose P is a finitely additive probability measure on the field \mathcal{F} of subsets of Ω. For $A, B \in \mathcal{F}$ we have

(i) $B \subset A$ implies $P(A) \leq P(B)$
(ii) $P(A^c) = 1 - P(A)$
(iii) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Proof. (1) follows from $A = B \cup (A \setminus B)$ by finite additivity. The proof gives $P(B \setminus A) = P(B) - P(A)$

(2) follows from $\Omega = A \cup A^c$

(3) is a special case of Exercise 1.1. For example, using formula from the proof of (1): $P((A \cup B) \setminus A) = P(A \cup B) - P(A)$. Since $(A \cup B) \setminus A = (A \cup B) \cap A^c = B \cap A^c = B \setminus (A \cap B)$ using the formula again, $P((A \cup B) \setminus A) = P(B) - P(A \cap B)$. So $P(A \cup B) - P(A) = P(B) - P(A \cap B)$ and the formula follows. (There are numerous other proofs!)

Remark 1.2 (Probability measures are countably additive). Axioms (iii) and (iv) are often combined together into countable additivity,

(iii+) If $A_1, A_2, \ldots \in \mathcal{F}$ are pairwise disjoint and $\bigcup_k A_k \in \mathcal{F}$, then $P(\bigcup_k A_k) = \sum_{k=1}^{\infty} P(A_k)$.

Other equivalent versions of continuity or countable additivity are:

(iv') If $A_1 \subset A_2 \subset \ldots$ are sets in \mathcal{F} and $\bigcup_k A_k \in \mathcal{F}$, then $P(\bigcup_k A_k) = \lim_{n \to \infty} P(A_n)$
(iv") If $A_1 \supset A_2 \supset \ldots$ are sets in \mathcal{F} and $\bigcap_k A_k \in \mathcal{F}$, then $P(\bigcap_k A_k) = \lim_{n \to \infty} P(A_n)$

(Recall Theorem 0.2.)

Example 1.2. Let $\Omega = \mathbb{N}$ and \mathcal{F} consist of all subsets $A \subset \mathbb{N}$ such that the limit $\lim_{n \to \infty} \#(A \cap \{1, \ldots, n\})/n$ exists. Then $P: \mathcal{F} \to [0,1]$ defined by $P(A) = \lim_{n \to \infty} \#(A \cap \{1, \ldots, n\})/n$ is a finitely additive probability measure. However, Exercise 1.8 says that P is not continuous.

Constructions of finitely additive continuous measures are somewhat more involved.
1.1. Example: Lebesgue measure on the unit interval. In this example we consider \(\Omega = (0,1] \) and the field \(B_0 \) from Example 1.1.

For \(A = \bigcup_{k=1}^n I_k \in B_0 \) with disjoint \(I_k \), define \(\lambda(A) = \sum_{k=1}^n |I_k| \).

Theorem 1.2. \(\lambda \) is a well defined (continuous) probability measure on the field \(B_0 \).

Proof. Since the representation \(A = \sum_{k=1}^n I_k \in B_0 \) is not unique, we need to make sure that \(\lambda \) is well defined. Write \(A = \bigcup_k I_k = \bigcup_j J_j \) as the finite sums of disjoint intervals. Then \(I_k = I_k \cap A = \bigcup J_i \cap I_j \) so by finite additivity \(\sum_k |I_k| = \sum_k \sum_j |I_k \cap I_j| \) and similarly \(\sum_j |J_j| = \sum_j \sum_k |I_k \cap I_j| \). This shows that \(\sum_j |J_j| = \sum_k |I_k| \), so \(\lambda(A) \) is indeed well defined.

To prove continuity, we proceed by contrapositive. Suppose that \(A_n \supset A_{n+1} \) are such that \(\lambda(A_n) > \delta > 0 \). Choose \(B_n \subseteq K_n \subseteq A_n \) such that \(\lambda(A_n) - \lambda(B_n) < \delta/2^n \) and \(K_n \) is compact. Then \(P(A_n) - P(B_1 \cap \cdots \cap B_n) = P(\bigcup_{k=1}^n A_n \setminus B_k) \leq P(\bigcup_{k=1}^n A_k \setminus B_k) \leq \sum_{k=1}^n \delta/2^k = \delta/2 \). So \(P(B_1 \cap \cdots \cap B_n) \geq \delta/2 > 0 \), and \(K_1 \cap \cdots \cap K_n \neq \emptyset \). Thus, \(\bigcap_{n=1}^\infty A_n \supset \bigcap_{n=1}^\infty K_n \neq \emptyset \).

Construction of Lebesgue measure has the following generalization. Suppose \(B_0 \subset 2^\mathbb{R} \) is a field consisting of finite unions of intervals \((-\infty,b], (a,b], (b,\infty) \).

Theorem 1.3 (Lebesgue). If \(P \) is a (continuous) probability measure on \(B_0 \) then the function \(F(x) := P((-\infty,x]) \) has the following properties:

(i) \(F \) is non-decreasing

(ii) \(\lim_{x \to -\infty} F(x) = 0 \)

(iii) \(\lim_{x \to \infty} F(x) = 1 \)

(iv) \(F \) is right-continuous, i.e., \(\lim_{y \uparrow x} F(y) = F(x) \)

Conversely, if \(F \) is a function with properties (i)-(iv) then there exists a (unique) continuous probability measure \(P \) on \(B_0 \) such that \(F(x) := P((-\infty,x]) \) for all \(x \in \mathbb{R} \).

Sketch of the proof. The proof of (iv) may require some care: For rational \(r \downarrow x \), we have \((0, x] = \bigcap_{r>x} (0, r] \). Any real \(y \) lies between two rational numbers.

The proof of converse has two parts. For \(A \in B_0 \) given by \(A = \bigcup_{j=1}^n (a_j, b_j] \), the definition \(P(A) = \sum_{j=1}^n (F(b_j) - F(a_j)) \) does not depend on the representation. (Here, we set \(F(-\infty) = 0 \) and \(F(\infty) = 1 \).) Uniqueness is an obvious consequence of finite additivity.

Then we need to verify continuity. This proof can proceed similarly to the proof of Theorem 1.2. (See hints for Exercise 1.13.)

A generalization of the above construction is based on the concept of a semi-algebra.

Definition 1.3. A collection \(S \) of subsets of \(\Omega \) is called semi-algebra, or a semi-ring, if

(i) \(\emptyset \in S \)

(ii) \(S \) is closed under intersections, i.e. if \(A, B \in S \) then \(A \cap B \in S \)

(iii) If \(A, B \in S \) then \(B \setminus A \) is a finite union of sets in \(S \).
The main (motivating) example of a semi-algebra is the family of rectangles in \(\mathbb{R}^2 \), and more generally, in \(\mathbb{R}^d \).

The following is a version of [Durrett, Theorem 1.1.4] adapted to probability measures.

Theorem 1.4. Let \(S \) be a semi-algebra. Suppose that \(P : S \rightarrow [0,1] \) is additive, countably subadditive, i.e., if \(A = \bigcup_{n=1}^{\infty} A_n \) is in \(S \) for pairwise disjoint sets \(A_n \in S \) then \(P(A) \leq \sum_{n=1}^{\infty} P(A_n) \). If \(P(\emptyset) = 0 \), then \(P \) has a unique extension onto the field \(F \) generated by \(S \), and this extension is continuous.

Proof. □

Question 1.2. Why not to require uncountable continuity of probability measures?

(Compare Exercise 1.4 and Exercise 1.4.)

2. Sigma-fields

Given an infinite sequence \(\{A_n\} \) of events, it is convenient to allow also more complicated events such as \(A^* = \bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_k \) that events \(A_k \) occur infinitely often. This motivates the following.

Definition 1.4. A class \(F \) of subsets of \(\Omega \) is a \(\sigma \)-field if it is field and if it is also closed under the formation of countable unions:

(iii+) If \(A_1, A_2, \ldots \in F \) then \(\bigcup_{n \in \mathbb{N}} A_n \in F \).

Note that (iii+) implies (iii) because we can take \(A_1 = A \) and \(A_n = B \) for other \(n \).

By an application of DeMorgan’s law (Theorem 0.2), (iii+) can be replaced by

If \(A_1, A_2, \ldots \in F \) then \(\bigcap_{n \in \mathbb{N}} A_n \in F \).

Clearly, the power set \(2^\Omega \) is the largest possible \(\sigma \)-field. We will often consider smallest \(\sigma \)-fields that contain some collections of sets of our interest.

Proposition 1.5. Suppose \(A \) is a collection of subsets of \(\Omega \). There exist a unique \(\sigma \)-field \(F \) with the following properties:

(i) \(A \in A \) implies \(A \in F \). That is, \(A \subset F \).

(ii) If \(\mathcal{G} \) is a \(\sigma \)-field such that \(A \subset \mathcal{G} \) then \(F \subset \mathcal{G} \).

We write \(F = \sigma(A) \), and call \(F \) the \(\sigma \)-field generated by \(A \).

Proof. Uniqueness is a consequence of (2)

To show that \(F \) exists, consider a set \(\mathcal{M} \) of all sigma-fields \(\mathcal{G} \) with the property that \(A \subset \mathcal{G} \). Since \(2^\Omega \in \mathcal{M} \), this is a nonempty family of sets. Define

\[F = \bigcap_{\mathcal{G} \in \mathcal{M}} \mathcal{G}. \]

Then \(F \) is a sigma-field with the required properties, because the intersection of sigma-fields is a sigma-field (can you verify this?). □

Definition 1.5. The Borel sigma-field is the sigma field generated by all open sets.
Proposition 1.6. For $\Omega = \mathbb{R}$, the Borel sigma-field \mathcal{B} is generated by the intervals $\{(a, b) : a < b\}$.

For $\Omega = \mathbb{R}^d$, the Borel sigma-field \mathcal{B}_d is generated by the rectangles $\prod_{k=1}^d (a_k, b_k)$.

Note that Borel-field $\mathcal{B}_0 \subset \mathcal{P}(\mathbb{R})$ generated by all intervals $(a, b]$ consist of finite unions of intervals $(-\infty, b], (a, b], (b, \infty)$.

2.1. Probability measures.

Definition 1.6. If \mathcal{F} is a σ-field of subsets of Ω and P is a probability measure on \mathcal{F}, then the triple (Ω, \mathcal{F}, P) is called a probability space. The sets $A \in \mathcal{F}$ are called events.

Example 1.3. Let $\mathcal{F} = \mathcal{P}(\Omega)$ and fix $\omega_0 \in \Omega$. Then $P(A) = I_A(\omega_0)$ is a probability measure, sometimes called the point mass, denoted by δ_{ω_0}.

Since a convex combination of probability measures is a probability measure, another example of a probability measure is $P = \frac{1}{2} \delta_{\omega_0} + \frac{1}{2} \delta_{\omega_1}$.

Example 1.4 (Discrete probability space). Let \mathcal{F} be the σ-field of all subsets of a countable $\Omega = \{\omega_1, \omega_2, \ldots\}$. Suppose p_1, p_2, \ldots is a sequence of nonnegative numbers such that $\sum_{k=1}^{\infty} p_k = 1$. Define

$$P(A) = \sum_{k: \omega_k \in A} p_k$$

Then P is a probability measure.

Proof. This is not entirely trivial. If $A = \bigcup_j A_j$ with disjoint sets then $P(A) = \sum_{i: \omega_i \in A_j} p_i$ does not depend on the order of summation, and equals to the iterated series $\sum_{k=1}^{\infty} \sum_{i: \omega_i \in A_j} p_i$. □

Example 1.5 (Discrete probability measure). Let \mathcal{F} be the σ-field of all subsets of an infinite set Ω. Suppose $\omega_1, \omega_2, \ldots \in \Omega$ are fixed, and p_1, p_2, \ldots is a sequence of nonnegative numbers such that $\sum_{k=1}^{\infty} p_k = 1$. Define

$$P(A) = \sum_{k: \omega_k \in A} p_k$$

Then P is a probability measure.

The numbers p_k are sometimes called the “probability mass function”, or the “probability density function” (as this is the density with respect to the counting measure on points $\{x_1, x_2, \ldots\}$).

More generally, if P_1, P_2, \ldots is a sequence of probability measures on the common field or σ-field \mathcal{F} and p_1, p_2, \ldots is a sequence of nonnegative numbers such that $\sum_{k=1}^{\infty} p_k = 1$, then $Q(A) = \sum_{k=1}^{\infty} p_k P_k(A)$ is also a probability measure on \mathcal{F}. The probabilistic interpretation is that we have a sequence of experiments described by probability measures P_k and we want to model a new experiment with additional randomization where the k-th experiment is performed with probability p_k.

2.1.1. Examples of discrete distributions on \mathbb{R}.

Example 1.6 (Binomial distribution). For fixed integer n and $0 < p < 1$, take $x_k = k$ and

$$p_k = \binom{n}{k} p^k (1 - p)^{n-k}, \quad k = 0, \ldots n.$$

The binomial formula shows that $\sum_{k=0}^{n} p_k = 1$. Notation: $\text{Bin}(n, p)$
Example 1.7 (Poisson distribution). For \(\lambda > 0 \) take \(x_k = k \) and
\[
p_k = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, \ldots
\]
Notation: \(\text{Poiss}(\lambda) \)

Example 1.8 (Polya’s distribution). For \(r > 0 \) and \(0 < p < 1 \) take \(x_k = k \) and
\[
p_k = \frac{\Gamma(r + k)}{k! \Gamma(r)} (1 - p)^r p^k, \quad k = 0, 1, \ldots
\]
Notation: \(\text{NB}(p, r) \)

Required Exercises

Exercise 1.1. Prove the inclusion-exclusion formula
\[
(1.1) \quad P\left(\bigcup_{j=1}^{n} A_j \right) = \sum_{j=1}^{n} P(A_j) - \sum_{1 \leq j_1 < j_2 \leq n} P(A_{j_1} \cap A_{j_2}) + \sum_{1 \leq j_1 < j_2 < j_3 \leq n} P(A_{j_1} \cap A_{j_2} \cap A_{j_3}) - \cdots + (-1)^{n-1} P(A_1 \cap A_2 \cap \cdots \cap A_n)
\]

Does the proof use countable additivity?

Solution: Proceed by induction. Countable additivity is not used in this proof.

Exercise 1.2 (statistics). Prove Boole’s inequality
\[
P\left(\bigcup_{j=1}^{n} A_j \right) \leq \sum_{j=1}^{n} P(A_j).
\]

Solution: Note that \(P(A \cup B) = P(A) + P(B) - P(A \cap B) \leq P(A) + P(B) \). Now proceed by induction, with \(A = \bigcup_{j=1}^{n} A_j \) and \(B = A_{n+1} \) for the induction step.

Exercise 1.3. For a probability space \((\Omega, \mathcal{F}, P)\), if \(B_1, B_2, \ldots \) is a sequence of events such that \(\sum_{k=1}^{n} P(B_k) > n - 1 \), show that \(P(\bigcap_{k=1}^{n} B_k) > 0 \).

Solution: Proceed by contrapositive. Suppose \(1 = P\left(\bigcup_{k=1}^{n} B_k^{c} \right) \leq \sum_{k=1}^{n} P(B_k^{c}) = n - \sum_{k=1}^{n} P(B_k) \). Thus \(\sum_{k=1}^{n} P(B_k) \leq n - 1 \).

Exercise 1.4. For a probability space \((\Omega, \mathcal{F}, P)\), suppose \(\{B_n : n \in \mathbb{N}\} \) are events with \(P(B_n) = 1 \). Show that
\[
P\left(\bigcap_{n=1}^{\infty} B_n \right) = 1
\]

1This can also be written as
\[
\text{Pr}\left(\bigcup_{k=1}^{n} A_k \right) = \sum_{M=1}^{n} (-1)^{M-1} \sum_{1 \leq j_1 < j_2 < \cdots < j_M \leq n} \text{Pr}(A_{j_1} \cap A_{j_2} \cap \cdots \cap A_{j_M})
\]

2Named for G. Boole (1815-1864). Used for Bonferroni’s correction in multiple hypothesis testing.
Additional Exercises

Exercise 1.5. Suppose that $\Omega = \mathbb{N}$ and for $n \in \mathbb{N}$ let F_n be the σ-field generated by the collection of one-point sets $A_n = \{\{1\}, \{2\}, \ldots, \{n\}\}$. Show that $F_n \subset F_{n+1}$ and that $F := \bigcup_n F_n$ is a field but not a σ-field.

Exercise 1.6. Show that measure P in Example 1.2 is additive but not continuous. (For the second statement, find $A_n \in F$ such that $A_n \supset A_{n+1}$ and $\bigcap_{n=1}^{\infty} A_n = \emptyset$, but $P(A_n) = 1$.)

Exercise 1.7. Without using Proposition 1.6, show that open intervals (a,b) and closed intervals $[a,b]$ are in the sigma-field generated by the intervals $(a,b]$ in \mathbb{R}. (Compare Example 1.1.)

Exercise 1.8. Without using Proposition 1.6, show that the open triangle $T = \{(x,y) : x > 0, y > 0, x + y < 1\}$ is in the sigma-field generated by the rectangles $(a,b] \times (c,d)$ in \mathbb{R}^2.

Exercise 1.9. Suppose that F_n are fields satisfying $F_n \subset F_{n+1}$. Show that $\bigcup_n F_n$ is a field.

Exercise 1.10. Suppose P is a finitely additive measure on a field F. Show that if A_1, \ldots, A_n, \ldots are disjoint then the series $\sum_{n=1}^{\infty} P(A_n)$ converges.

Solution: For additive measures, $\sum_{j=1}^{n} P(A_j) = P(\bigcup_{j=1}^{n} A_j) \leq 1$. Thus the sequence of partial sums is increasing and bounded, so it converges to a number in $[0,1]$.

Exercise 1.11. Prove that continuous finitely-additive probability measure on a field is countably additive. That is, show that property (iii+) of Remark 1.2 follows from the axioms (i)-(iv) of Definition 1.2.

Exercise 1.12. If P_1, P_2, \ldots, is a sequence of continuous probability measures on the field F and p_1, p_2, \ldots is a sequence of nonnegative numbers such that $\sum_{k=1}^{\infty} p_k = 1$, show that $Q(A) = \sum_{k=1}^{\infty} p_k P_k(A)$ is also continuous.

Exercise 1.13. Suppose Ω is a metric space and F is a field of subsets of Ω. Suppose that P is a finitely additive probability measure on F.

Let's say that P is a tight probability measure if for every $A \in F$ with $P(A) > 0$ and $\varepsilon > 0$ there exist $B \in F$ and a compact set K such that $B \subset K \subset A$ and $P(A) < P(B) + \varepsilon$.

(i) In the setting of Theorem 1.2, show that the Lebesgue measure on B_0 is tight.

(ii) Show that a tight finitely additive probability measure is countably additive.

Hint: Proceed by contrapositive!

Plan of proof: Suppose $A_1 \supset A_2 \supset \ldots$ are sets in F such that there exists $\delta > 0$ with $P(A_n) > \delta$ for all n. Using tightness, we can find compact sets K_1, K_2, \ldots and sets $B_j \in F$ such that $B_j \subset K_j$ and $B_1 \cap B_2 \cap \cdots \cap B_n$ has positive probability. In fact, we can find such B_j with $P(B_1 \cap B_2 \cap \cdots \cap B_n)$ of at least $\delta(1 - \sum_{j=1}^{\infty} 1/2^j) > 0$.

Since every finite intersection $K_1 \cap K_2 \cap \cdots \cap K_n$ contains $B_1 \cap B_2 \cap \cdots \cap B_n$, we see that $\bigcap_n K_n$ is nonempty. So $\bigcap_n A_n$ cannot be empty.
Exercise 1.14 (Compare Exercise 1.5). Let Ω be an infinite set. Consider the following classes of subsets of Ω:

$$F_n = \{ A \subset \Omega : A \text{ has at most } n \text{ elements or } A^c \text{ has at most } n \text{ elements} \}$$

Then we have the following facts:

- $F_n \subset F_{n+1}$
- F_0 is a σ-field
- For $n \geq 1$, class F_n is not a field
- $\bigcup_n F_n$ is a field but it is not a σ-field.

Exercise 1.15 (Compare Exercise 1.4). Suppose $\{B_t : t \in T\}$ are events with $P(B_t) = 1$. Give an example where $\bigcap_{t \in T} B_t = \emptyset$ so $P(\bigcap_{t \in T} B_t) = 0$. Hint: Lebesgue measure on Borel $(0,1]$

Exercise 1.16. Let Ω be a nonempty set and \mathcal{C} be the class of one-element sets. Show that if $A \in \sigma(\mathcal{C})$ then either A is countable or A^c is countable.

Exercise 1.17. Suppose \mathcal{A} and \mathcal{B} are σ-fields of subsets of Ω. Let $\mathcal{F} = \mathcal{A} \wedge \mathcal{B}$ be the smallest σ-field containing both \mathcal{A} and \mathcal{B}. Show that \mathcal{F} is generated by sets of the form $A \cap B$ where $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

Exercise 1.18. The field $\mathcal{F}(\mathcal{A})$ generated by a class \mathcal{A} of subsets of Ω is defined as the intersection of all fields in Ω containing all of the sets in \mathcal{A}.

- Show that $\mathcal{F}(\mathcal{A})$ is indeed a field, that $A \subset \mathcal{F}(\mathcal{A})$ and that $\mathcal{F}(\mathcal{A})$ is minimal in the sense that if \mathcal{G} is a field and $A \subset \mathcal{G}$ then $\mathcal{F}(\mathcal{A}) \subset \mathcal{G}$.
- Show that if \mathcal{A} is nonempty then $\mathcal{F}(\mathcal{A})$ is the class of sets of the form $\bigcup_{j=1}^m B_j$ where sets B_j are disjoint and are of the form $B = \bigcap_{i=1}^n A_i$ where either $A_i \in \mathcal{A}$ or $A_i^c \in \mathcal{A}$.

Exercise 1.19. For $\Omega = (0,1]$ and any $A \subset \Omega$ define $$P^* = \inf \left\{ \sum_k |B_k| : B_k \in \mathcal{B}_0, \bigcup_{k=1}^\infty B_k \supset A \right\}$$ where $|B|$ is the sum of lengths of intervals forming B.

(i) Show that $0 \leq P^*(A) \leq 1$

(ii) Show that $P^*(A \cup B) \leq P^*(A) + P^*(B)$

(iii) Show that $P^*|_{\mathcal{B}_\lambda} = \lambda$, the Lebesgue measure from Theorem 1.2.

(iv) Show that $P^*(\{x\}) = 0$.

(Solution: The solution is on page 27.)
Probability measures

Abstract. Outer measure.
Construction of a measure. λ-systems, π-systems. Dynkin’s theorem.
Probability measures on \mathbb{R} and \mathbb{R}^n.

The main result

1. Existence

Theorem 2.1 (Caratheodory). A (countably additive) probability measure on a field has an extension to the generated σ-field

Proof of Theorem 2.1. Let \mathcal{F}_0 be a field of subsets of Ω and let P_0 be a probability measure on \mathcal{F}_0. Put $\mathcal{F} = \sigma(\mathcal{F}_0)$.

For each subset A of Ω, define the outer measure

\[P^*(A) = \inf \left\{ \sum_{n=1}^{\infty} P_0(A_n) : A_n \in \mathcal{F}_0, \bigcup_{n=1}^{\infty} A_n \supset A \right\} \]

Question 2.1. Can $P^*(A) = \infty$?

Let’s first check that P^* is a genuine extension of P_0 to a set function defines on all subsets of Ω.

Proposition 2.2. P^* and P agree on \mathcal{F}_0.

Proof. (Omitted in 2018)
Suppose $A \in \mathcal{F}_0$. Clearly, $P^*(A) \leq P(A)$ as an infimum. Given $\varepsilon > 0$ choose $A_n \in \mathcal{F}_0$ such that $A \subset \bigcup_n A_n$ and $P^*(A) + \varepsilon > \sum_n P(A_n)$. Then $A = \bigcup_n (A_n \cap A)$ and $A_n \cap A \in \mathcal{F}_0$, so by countable subadditivity $P(A) \leq \sum_n P(A \cap A_n) \leq \sum_n P(A_n) < P^*(A) + \varepsilon$. Since $\varepsilon > 0$ is arbitrary, this shows that indeed $P(A) = P^*(A)$.

In general, P^* is not additive, at least not on 2^Ω, but it still has a number of nice properties.

Proposition 2.3. The outer probability has the following properties:
(i) $P^*(\emptyset) = 0$;
(ii) $P^*(A) \geq 0$
(iii) $A \subset B$ implies $P^*(A) \leq P^*(B)$
(iv) $P^*(\bigcup_n A_n) \leq \sum_n P^*(A_n)$

Proof. (Omitted in 2018)

Without loss of generality we may assume $\sum_n P^*(A_n) < \infty$. To prove (4), choose sets $B_{nk} \in F_0$ such that $A_n \subset \bigcup_k B_{nk}$ and $P^*(A_n) \leq \varepsilon / 2^n + \sum_k P_0(B_{nk})$. Then $\bigcup_n A_n \subset \bigcup_{n,k} B_{nk}$ and $P^*(\bigcup_n A_n) \leq \sum_{n,k} P_0(B_{nk}) = \sum_n \sum_k P_0(B_{nk}) \leq \varepsilon + \sum_n P^*(A_n)$.

□

Next, consider the class \mathcal{M} of subsets A of Ω with the property that

$$P^*(A \cap E) + P^*(A^c \cap E) = P^*(E) \text{ for all } E \subset \Omega \tag{2.2}$$

Note that by subadditivity of P^*, identity (2.2) is equivalent to inequality

$$P^*(A \cap E) + P^*(A^c \cap E) \leq P^*(E) \text{ for all } E \subset \Omega \tag{2.3}$$

Lemma 2.4. \mathcal{M} is a field.

Proof. Clearly, $\Omega \in \mathcal{M}$ and if $A \in \mathcal{M}$ then $A^c \in \mathcal{M}$. It remains to show that if $A, B \in \mathcal{M}$ then $A \cap B \in \mathcal{M}$. Choose arbitrary $E \subset \Omega$.

$$P^*(E) = P^*(A \cap E) + P^*(A^c \cap E)$$

$$= P^*(B \cap A \cap E) + P^*(B^c \cap A \cap E) + P^*(B \cap A^c \cap E) + P^*(B^c \cap A^c \cap E)$$

$$\geq P^*(B \cap A \cap E) + P^*(((B^c \cap A) \cup (B \cap A^c) \cup (B^c \cap A^c)) \cap E)$$

Now notice that

$$(B^c \cap A) \cup (B \cap A^c) \cup (B^c \cap A^c) = ((B^c \cap A) \cup (B^c \cap A^c)) \cup ((B^c \cap A^c) \cup (B \cap A^c))$$

$$= B^c \cup A^c = (B \cap A)^c \square$$
Lemma 2.5. If the sets $A_n \in \mathcal{M}$ are disjoint then

\begin{equation}
P^*(E \cap \bigcup_n A_n) = \sum_n P^*(E \cap A_n)
\end{equation}

Note that we do not yet know whether $\bigcup A_n \in \mathcal{M}$, but the formula makes sense as P^* is a function on 2Ω.

Proof. Consider first the case of a finite number of sets A_1, \ldots, A_n. WLOG, $n \geq 2$. Given disjoint A_1, A_2, write $E \cap (A_1 \cup A_2) = (E \cap (A_1 \cup A_2) \cap A_1) \cup (E \cap (A_1 \cup A_2) \cap A_1^c)$ and use definition (2.2) with E replaced by $E \cap (A_1 \cup A_2)$. This gives

\begin{equation}
P^*(E \cap (A_1 \cup A_2)) = P^*(E \cap (A_1 \cup A_2) \cap A_1) + P^*(E \cap (A_1 \cup A_2) \cap A_1^c)
\end{equation}

Noting that A_1, A_2 are disjoint, we have $E \cap (A_1 \cup A_2) \cap A_1 = E \cap A_1$ and $E \cap (A_1 \cup A_2) \cap A_1^c = E \cap A_2$, so (2.4) hold for $n = 2$ sets.

Since \mathcal{M} is a field, induction now shows that (2.4) hold for n sets: $P^*(E \cap \bigcup_{k=1}^n A_k) = P^*(E \cap \left(\bigcup_{k=1}^{n-1} A_n\right))$

Now we use monotonicity:

\begin{equation}
P^* \left(A \cap \bigcup_{k=1}^{\infty} A_k \right) \geq P^* \left(A \cap \bigcup_{k=1}^n A_k \right) = \sum_{k=1}^n P^*(E \cap E_k)
\end{equation}

and we let $n \to \infty$. The reverse inequality follows by subadditivity Proposition 2.3.

Lemma 2.6. \mathcal{M} is a σ-field. Set function $P : \mathcal{M} \to \mathbb{R}$ defined by $P(A) = P^*(A)$ is a probability measure.

Proof. By (2.4) used with $E = \Omega$, P^* restricted to \mathcal{M} is countably additive. However, we do not apriori know whether $\bigcup_n A_n \in \mathcal{M}$

Suppose A_1, A_2, \ldots are disjoint with $A = \bigcup_n A_n$. Then $F_n = \bigcup_{k=1}^n A_n \in \mathcal{M}$ (field), so $P^*(E) = P^*(E \cap F_n) + P^*(E \cap F_n^c)$. Applying (2.4) to the first term and monotonicity to the second term we get $P^*(E) \geq \sum_{k=1}^n P^*(E \cap A_k) + P^*(E \cap A^c)$. Now let $n \to \infty$ and use (2.4) to see that $P^*(E) \geq P^*(E \cap A) + P^*(E \cap A)$. Using again subadditivity, this shows that $A \in \mathcal{M}$.

Thus \mathcal{M} is closed under the countable unions of disjoint sets. It remains to prove the following lemma.
Lemma 2.7. If \mathcal{M} is a field and is closed under countable unions of disjoint sets then it is a σ-field.

Proof. Given a collection of sets $\{A_n\}$ in \mathcal{M} construct sets $B_n = A_n \setminus (A_1 \cup \cdots \cup A_{n-1})$. It is clear that $B_n \in \mathcal{M}$ are disjoint and $\bigcup_n A_n = \bigcup_n B_n$.

To conclude the proof, we need to show that $\mathcal{F}_0 \subset \mathcal{M}$ so that $\mathcal{F} = \sigma(\mathcal{F}_0) \subset \mathcal{M}$.

Lemma 2.8. $\mathcal{F}_0 \subset \mathcal{M}$

Proof. Let $A \in \mathcal{F}_0$. In view of subadditivity, we only need to verify that (2.3) holds for every $E \subset \Omega$.

Fix $\varepsilon > 0$ and let $A_n \in \mathcal{F}_0$ be such that $E \subset \bigcup A_n$ and $\varepsilon + P^*(E) > \sum_n P(A_n)$.

Since $A \cap E \subset \bigcup_n (A \cap A_n)$ and $A^c \cap E \subset \bigcup_n (A^c \cap A_n)$, we have $P^*(A \cap E) + P^*(A^c \cap E) \leq \sum_n P(A \cap A_n) + \sum_n P(A^c \cap A_n)$. By finite additivity, $P^*(A \cap E) + P^*(A^c \cap E) \leq \sum_n P(A_n) < P(E) + \varepsilon$.

We can now complete the proof of Theorem. Since P and P^* coincide on \mathcal{M} and P^* and P_0 coincide on \mathcal{F}_0, we already know that P and P_0 coincide on \mathcal{F}_0. Since $\mathcal{F}_0 \subset \mathcal{M}$, therefore it is also countably additive on a smaller σ-field \mathcal{F} generated by the field \mathcal{F}_0.

Remark 2.1. $P_*(A) = 1 - P^*(A)$ is called the inner measure. [Billingsley] gives other expressions for the outer and inner measures which are of importance in the theory of stochastic processes.

[Do we want anything about approximations?]

Remark 2.2. For every $A \in \mathcal{F}$ and every $\varepsilon > 0$, there exists $B \in \mathcal{F}_0$ such that $P((A \setminus B) \cup (B \setminus A)) < \varepsilon$.

Proof. Fix $A \in \mathcal{F}$. We use here that by the proof of Caratheodory’s theorem, $P(A) = P^*(A)$. In view of (2.1), for every $\varepsilon > 0$ there exists a countable collection of disjoint sets $B_j \in \mathcal{F}_0$ such that $A \subset \bigcup_{n=1}^\infty B_n$ and $P(A) \leq P(\bigcup_{n=1}^\infty B_n) < P(A) + \varepsilon/2$. And then there exists n such that $P(\bigcup_{k=1}^n B_k) < P(\bigcup_{n=1}^\infty B_n) + \varepsilon/2$. So with $B = \bigcup_{k=1}^n B_k$ we have

$$P((A \setminus B) \cup (B \setminus A)) \leq P(A \setminus B) + P(B \setminus A) \leq P(\bigcup_{n=1}^\infty B_n \setminus B) + P(\bigcup_{n=1}^\infty B_n \setminus A) < \varepsilon/2 + \varepsilon/2$$

2. Uniqueness

This section is based on [Billingsley, Section 3].
Theorem 2.9. A (countably additive) probability measure on a field has a **unique** extension to the generated σ-field.

In view of Theorem 2.1, we only need to prove uniqueness. This is accomplished using some more theory, which extracts appropriate property of the field, and combines it with “natural property” of the sets that two measures coincide. This theory yields the proof on page 26.

2.1. Dynkin’s π-λ Theorem.

Definition 2.1. A class \mathcal{P} of subsets of Ω is a π-system if

- (π_1) $A, B \in \mathcal{P}$ implies $A \cap B \in \mathcal{P}$.

Examples of π-systems are

(i) $\{\emptyset\}$, which generates sigma-field ...

(ii) Family of intervals $(-\infty, a]$ with $a \in \mathbb{R}$, which generates Borel sigma-field $\mathcal{B}_{\mathbb{R}}$

(iii) Family $(-\infty, a] \times (-\infty, b]$, which generates Borel sigma field $\mathcal{B}_{\mathbb{R}^2}$

(iv) Family of sets $B_1 \times B_2 \times \cdots \times B_d \times \mathbb{R}^\infty$ with $B_j \in \mathcal{B}_{\mathbb{R}}$ which generates the Borel sigma field $\mathcal{B}_{\mathbb{R}^\infty}$.

Definition 2.2. A class \mathcal{L} of subsets of Ω is a λ-system if

- (λ_1) $\Omega \in \mathcal{L}$.

- (λ_2) $A \in \mathcal{L}$ implies $A^c \in \mathcal{L}$.

- (λ_3) If $A_1, A_2, \ldots, A_n, \cdots \in \mathcal{L}$ are (pairwise) disjoint then $\bigcup_n A_n \in \mathcal{L}$.

Remark 2.3. From (λ_1) and (λ_2) we see that $\emptyset \in \mathcal{L}$. So if $A, B \in \mathcal{L}$ are disjoint then by (λ_3) we get $A \cup B = A \cup B \cup \emptyset \cup \emptyset \cup \cdots \in \mathcal{L}$.

Of course, every field is a π-system, and every σ-field is a λ-system.

Lemma 2.10. A class of sets that is both a π-system and a λ-system is a σ-field.

Proof. Clearly, if \mathcal{F} is a λ-system and a π system then it is a field. Suppose $A_n \in \mathcal{F}$. Then $B_n = A_n \setminus (A_1 \cup \cdots \cup A_{n-1}) = A_n \cap A_1^c \cap \cdots \cap A_{n-1}^c \in \mathcal{F}$, too. We note that $\bigcup_n A_n = \bigcup_n B_n \in \mathcal{F}$ as a disjoint sum. □
Lemma 2.11. Suppose \mathcal{P} is a π-system and \mathcal{L}_0 is the λ-system generated by \mathcal{P}. Then \mathcal{L}_0 is a σ-field.

Sketch of proof. Because of Lemma 2.10, to show that \mathcal{L}_0 is a σ-field it is enough to show that it is a π-system. That is, we need to show that $A, B \in \mathcal{L}_0$ implies $A \cap B \in \mathcal{L}_0$.

This is done in two steps: first fix $A \in \mathcal{P}$ and look at the collection \mathcal{C}_A of all sets B such that $A \cap B \in \mathcal{L}_0$. This collection turns out to be a λ-system. Since $\mathcal{P} \subset \mathcal{C}_A$, we have $\mathcal{L}_0 \subset \mathcal{C}_A$. And this holds for any $A \in \mathcal{P}$. This shows that if $A \in \mathcal{P}$ and $B \in \mathcal{L}_0$ then $A \cap B \in \mathcal{L}_0$.

Now fix $B \in \mathcal{L}_0$ and look at the collection \mathcal{C}_B of all sets A such that $A \cap B \in \mathcal{L}_0$. By the previous part, $\mathcal{P} \subset \mathcal{C}_B$. Again, \mathcal{C}_B turns out to be a λ-system, so $\mathcal{L}_0 \subset \mathcal{C}_B$. This proves the lemma: for every $B \in \mathcal{L}_0$ and every $A \in \mathcal{L}_0$ we have $A \cap B \in \mathcal{L}_0$.

It remains to prove that the collections of sets \mathcal{C}_A and \mathcal{C}_B are λ-systems. This proof is omitted. □

Theorem 2.12 (Dynkin’s π-λ Theorem). Suppose a λ-system \mathcal{L} includes a π-system \mathcal{P}. Then $\sigma(\mathcal{P}) \subset \mathcal{L}$.

Proof. Let \mathcal{L}_0 be a λ-system generated by \mathcal{P}. Then $\mathcal{P} \subset \mathcal{L}_0 \subset \mathcal{L}$. From Lemma 2.11 we know that \mathcal{L}_0 is a σ-field and it contains \mathcal{P}. So $\sigma(\mathcal{P}) \subset \mathcal{L}_0 \subset \mathcal{L}$. □

Proposition 2.13. Let \mathcal{P} be a π-system and denote $\mathcal{F} = \sigma(\mathcal{P})$. Suppose P_1, P_2 are two probability measures on \mathcal{F} that agree on \mathcal{P}. Then $P_1 = P_2$ (on \mathcal{F}).

Proof. Let \mathcal{L} be the family of all sets in \mathcal{F} on which P_1 and P_2 agree. Then \mathcal{L} is a λ-system. By Theorem 2.12 $\mathcal{F} \subset \mathcal{L}$. □

Proof of Theorem 2.9. A field \mathcal{F}_0 is a π-system. So if $P_1(A) = P_2(A)$ for all $A \in \mathcal{F}_0$, then by Proposition 2.13 the same holds for all $A \in \mathcal{F} = \sigma(\mathcal{F}_0)$. □

3. Probability measures on \mathbb{R}

This is based on [Billingsley, Section 12] and [Durrett, Section 1.2].

Definition 2.3. $F : \mathbb{R} \to \mathbb{R}$ is a cumulative distribution function, if

(i) F is non-decreasing: $x < y$ implies $F(x) \leq F(y)$

(ii) $\lim_{x \to \infty} F(x) = 0$ and $\lim_{x \to -\infty} F(x) = 1$.

(Omitted in 2018)
(iii) \(F \) is right-continuous, \(\lim_{x \to x_0^+} F(x) = F(x_0) \)

Suppose that \(P \) is a probability measure on the Borel subsets of \(\mathbb{R} \). Consider a function \(F : \mathbb{R} \to \mathbb{R} \) defined by \(F(x) = P((-\infty, x]) \). Then \(F \) is a cumulative distribution function. (You should be able to supply the proof!)

The following is a combination of Lebesgue's Theorem 1.3, with Caratheodory’s Theorem 2.1 and uniqueness Theorem 2.9.

Proposition 2.14. Every cumulative distribution function \(F \) corresponds to a unique probability measure \(P \) on the Borel sigma-field set of \(\mathbb{R} \), such that \(F(x) = P((-\infty, x]) \).

Proof. Intervals of the form \((-\infty, a] \) form a \(\pi \)-system, and generate the Borel \(\sigma \)-field. So uniqueness follows from Theorem 2.9.

Consider the field \(B_0 \) of finite disjoint unions of intervals \((a, b] \) where \(-\infty \leq a < b \leq \infty \).

For finite \(a < b \), define \(P((a, b]) = F(b) - F(a) \). Also define \(P(-\infty, a]) = F(a) \) and \(P((a, \infty)) = 1 - F(a) \).

Extend \(P \) by additivity to \(B_0 \). As in Week 1, Theorem 1.2, one needs to show that this definition is consistent, that \(P \) is finitely-additive, and that \(P \) is countably-additive on \(B_0 \). Once we prove this, we invoke Theorem 2.1.

(Omitted in 2018)

Right-continuity of \(F \) is used as follows: for \(a < b \) are finite, given \(0 < \varepsilon < P((a, b]) \) there exists \(0 < \delta < b - a \) such that \(P((a + \delta, b]) < \varepsilon \). Therefore for every \(A \in B \) there exist a compact \(K \) and \(B \in B_0 \) such that \(B \subset K \subset A \) and \(P(B \setminus A) < \varepsilon \). (For \(a = -\infty \) or \(b = \infty \) the above argument needs modification, but one can still find \(B \in B_0 \) and compact \(K \) as claimed.)

This is “tightness”, so the proof is then concluded by Exercise 1.13.

(Omitted in 2018)

Solution of Exercise 1.13. We prove the contrapositive to the implication in Remark 1.2(3).

Suppose \(A_1 \supset A_2 \supset \ldots \) are sets in \(\mathcal{F} \) such that there exists \(\delta > 0 \) with \(P(A_n) > \delta \) for all \(n \).

We want to show that \(\bigcap_n A_n = \emptyset \) is not possible.

Using tightness, we can find compact sets \(K_1, K_2, \ldots \) and sets \(B_j \in \mathcal{F} \) such that \(B_j \subset K_j \) and \(P(B_j) > P(A_j) - \delta/2^j \). Then \(P(A_n) - P(B_1 \cap B_2 \cap \cdots \cap B_n) = P(A_n \setminus B_1 \cap B_2 \cap \cdots \cap B_n) = P(\bigcup_{j=1}^n (A_j \setminus B_j)) \leq \sum_{j=1}^n P(A_j \setminus B_j) = \sum_{j=1}^n (P(A_j) - P(B_j)) < \delta/2 \) Since \(P(A_n) > \delta \) this shows that \(P(B_1 \cap B_2 \cap \cdots \cap B_n) > \delta/2 > 0 \). In particular, \(K_1 \cap \cdots \cap K_n \supset B_1 \cap B_2 \cap \cdots \cap B_n \neq \emptyset \).

We now use the property of compact sets: \(K_1 \cap \cdots \cap K_n \neq \emptyset \) implies that \(\bigcap_{n=1}^\infty K_n \neq \emptyset \). Therefore \(\bigcap_{n=1}^\infty A_n \supset \bigcap_{n=1}^\infty K_n \neq \emptyset \). \(\square \)
3.1. Examples.

3.1.1. Uniform distributions.

Example 2.1 (Uniform I). Uniform distribution on the set of real numbers \(\{ x_1 < x_2 < \cdots < x_n \} \) is (see Examples 1.4 and 1.5) \(P = \frac{1}{n} \sum_{j=1}^{n} \delta_{x_j} \) and corresponds to \(F(x) = \# \{ j : x_j \leq x \} / n \).

Example 2.2 (Uniform II). Uniform distribution on the interval \((0, 1)\) is the probability measure \(P \) which corresponds to

\[
F(x) = \begin{cases}
0 & x < 0 \\
 1 & x > 1
\end{cases}
\]

for \(0 \leq x \leq 1 \).

Notation: \(U(0, 1) \). More generally, \(U(a, b) \) corresponds to \(F(x) = (x - a)/(b - a)1_{(a,b)} + 1_{[b,\infty)} \).

Recall the construction of the Cantor set: split \([0, 1]\) into \([0,1/3]\) \(\cup\) \([1/3,2/3]\) \(\cup\) \([2/3,1]\) and remove the middle part. Continue recursively the same procedure with each of the closed intervals retained.

Example 2.3 (Uniform III). Uniform distribution on the Cantor set corresponds to \(F \) that is constant on all deleted intervals,

\[
F(x) = \begin{cases}
0 & x < 0 \\
1/4 & 1/9 \leq x < 2/9 \\
1/2 & 1/3 \leq x < 2/3 \\
3/4 & 7/9 \leq x < 8/9 \\
1 & x \leq 1
\end{cases}
\]

The interval removed in \(d \)-th step is \((\sum_{k=1}^{d} x_k/3^k, \sum_{k=1}^{d} x_k/3^k + 1/3^d)\) with \(x_d = 1 \) and \(x_1, \ldots, x_{k-1} \in \{0, 2\} \). For example, for \(d = 1 \) it is \((1/3, 1/3 + 1/3)\). For \(d = 2 \) the intervals are \((1/3^2, 1/3^2 + 1/3^2)\) and \((2/3 + 1/3^2, 2/3 + 1/3^2 + 1/3^2)\). On each removed interval, \(F(x) = \sum_{k=1}^{d-1} x_k/2^{k+1} + 1/2^d \) is constant.
3. Probability measures on \(\mathbb{R} \)

3.1.2. Important (absolutely) continuous distributions. Continuous distributions arise from \(F(x) = \int_{-\infty}^{x} f(y) \, dy \), where the so called density function \(f \geq 0 \) and \(\int_{-\infty}^{\infty} f(y) \, dy = 1 \). Example 2.2 is absolutely continuous with \(f(y) = 1_{[a,b]} \).

Example 2.4 (Exponential distribution). Take \(f(x) = \lambda e^{-\lambda x} I(0,\infty)(x) \), where \(\lambda > 0 \). This gives

\[
F(x) = \begin{cases}
0 & x < 0 \\
1 - e^{-\lambda x} & x \geq 0.
\end{cases}
\]

Example 2.5 (Standard normal distribution). Take \(f(x) = \exp(-x^2/2)/\sqrt{2\pi} \). Notation: \(N(0,1) \).

3.1.3. Other examples.

Example 2.6 (mixed type). It is clear that

\[
F(x) = \begin{cases}
0 & x < 0 \\
x/9 & 0 \leq x < 1 \\
x/3 & 1 \leq x < 2 \\
1 & x \geq 2
\end{cases}
\]

is a cumulative distribution function which cannot be written as an integral of a density\(^2\).

\(^2\)Probability measures of mixed type arise in actuarial models, where the loss of an insured person might have a density but the insurance payoff may be capped, or be a fraction of the of loss that changes when the loss exceeds some predefined thresholds.
4. Probability measures on \mathbb{R}^k

For simplicity consider only $k = 2, 3$.

4.1. Probability measures on \mathbb{R}^2. The π system that generates Borel sets of \mathbb{R}^2 consists of sets $(-\infty, x] \times (-\infty, y]$. Thus every probability measure P on Borel sets of \mathbb{R}^2 is determined uniquely by its values on such sets, $F(x, y) = P((-\infty, x] \times (-\infty, y])$. Function $F(x, y)$ is called a joint cumulative distribution function.

The probability measure must assign nonnegative numbers to all rectangles $A = (a_1, b_1] \times (a_2, b_2]$. It is clear (draw a picture) that

$$(-\infty, b_1] \times (-\infty, b_2] = (-\infty, a_1] \times (-\infty, b_2] \cup (-\infty, b_1] \times (-\infty, a_2] \cup A$$

Thus

$$(2.5) \quad F(b_1, b_2) = P(A) + P((-\infty, a_1] \times (-\infty, b_2] \cup (-\infty, b_1])$$

$$= P(A) + F(a_1, b_2) + F(a_2, b_1) - P((-\infty, a_1] \times (-\infty, b_2) \cap (-\infty, b_1])$$

Thus

$$(2.6) \quad P(A) = \Delta_A(F) := F(b_1, b_2) + F(a_1, a_2) - F(a_1, b_2) - F(a_2, b_1)$$

This shows that we must have $\Delta_A F \geq 0$.

It is also clear that we have the following properties:

- F is ”right-continuous“: if $a_n, b_n > 0$ converge to 0 then $F(x + a_n, y + b_n) \to F(x, y)$.
- $\lim_{x,y \to \infty} F(x, y) = 1$
- $\lim_{y \to -\infty} F(x, y) = \lim_{x \to -\infty} F(x, y) = 0$
- $G(x) = \lim_{y \to \infty} F(x, y)$ and $H(y) = \lim_{x \to \infty} F(x, y)$ exist and define non-decreasing functions, called the marginal cumulative distribution functions.

This motivates the following definition:

Definition 2.4. $F(x, y)$ is a bivariate cumulative distribution function, if the following conditions hold:
4. Probability measures on \(\mathbb{R}^k \)

(i) \(\Delta_A F \geq 0 \) for all \(A = (a_1, a_2] \times (b_1, b_2] \)

(ii) \(\lim_{x,y \to -\infty} F(x,y) = 1 \)

(iii) \(\lim_{y \to -\infty} F(x, y) = \lim_{x \to -\infty} F(x, y) = 0 \)

(iv) \(F \) is right-continuous,

The following is an analog of Proposition 2.14.

Proposition 2.15. Every cumulative distribution function \(F(x, y) \) corresponds to a unique probability measure.

Sketch of proof. The field \(\mathcal{B}_0 \) generated by the sets \((-\infty, b_1] \times (-\infty, b_2] \) consists of finite unions of disjoint sets that arise as intersections of such sets or their complements, see Exercise 1.18.

This gives sets \((-\infty, b_1] \times (-\infty, b_2] \), their complements, finite rectangles \(A \), sets of the form \((-\infty, b_1] \times (a_2, b_2] \) and \((a_1, b_1] \times (-\infty, b_2] \).

We define \(P((a_1, \infty) \times (a_2, \infty)) = 1 - F(a_1, a_2) \), \(P(A) = \Delta_A F \), \(P((-\infty, b_1] \times (-\infty, b_2]) = F(b_1, b_2) \) and \(P((-\infty, b_1] \times (a_2, b_2]) = \lim_{a_1 \to -\infty} \Delta_A F \). We extend the definition by additivity to \(\mathcal{B}_0 \).

Next we check that the assumptions of Exercise 1.13 are again satisfied, so we can conclude that \(P \) has a unique countably additive extension to the Borel \(\sigma \)-field.

It suffices to find a suitable compact set for each of the four types of the "generalized" rectangles. If \(A = (a_1, \infty) \times (a_2, \infty) \) we take \(K = [a_1 + \delta, B_1] \times [a_2 + \delta, B_2] \) and \(B = (a_1 + \delta, B_1] \times (a_2 + \delta, B_2] \).

Given \(\varepsilon > 0 \) choose \(\delta \) such that \(F(a_1 + \delta, a_2 + \delta) < F(a_1, a_2) + \varepsilon B_1, B_2 \) such that \(F(B_1, B_2) > 1 - \varepsilon \).

\[P(B) = F(B_1, B_2) + F(a_1 + \delta, a_2 + \delta) - F(a_1 + \delta, B_2) - F(a_2 + \delta, B_1) \]

Example 2.7. Uniform distribution on the unit square is defined by

\[
F(x, y) = \begin{cases}
xy & 0 \leq x \leq 1, 0 \leq y \leq 1 \\
x & 0 \leq x \leq y, y > 1 \\
y & x > 1, 0 \leq y \leq 1 \\
1 & x > 1, y > 1 \\
0 & \text{otherwise}
\end{cases}
\]

4.2. Probability measures on \(\mathbb{R}^3 \). The \(\pi \) system that generates Borel sets of \(\mathbb{R}^3 \) consists of sets \((-\infty, x] \times (-\infty, y] \times (-\infty, z] \). Thus every probability measure is determined uniquely by its values on such sets, \(F(x, y, z) \).

We need to assign values of the measure to all rectangles \(A = (a_1, b_1] \times (a_2, b_2] \times (a_3, b_3] \).

It is clear that

\[
(2.7) \quad (-\infty, b_1] \times (-\infty, b_2] \times (-\infty, b_3]
\]

\[= A \cup (-\infty, a_1] \times (-\infty, b_2] \times (-\infty, b_3] \cup (-\infty, b_1] \times (-\infty, a_2] \times (-\infty, b_3] \cup (-\infty, b_1] \times (-\infty, b_2] \times (-\infty, a_3]
\]

Noting that \(A \) is disjoint with the remaining set, by the inclusion-exclusion formula (1.1), we get

\[
(2.8) \quad F(b_1, b_2, b_3) = P(A) + F(a_1, b_2, b_3) + F(b_1, a_2, b_3) + F(b_1, b_2, a_3)
\]

\[-F(a_1, a_2, b_3) - F(a_1, b_2, a_3) - F(b_1, a_2, a_3) + F(a_1, a_2, a_3)
\]

\]

So

\[(2.9) \quad P(A) = \Delta_A(F) := F(b_1, b_2, b_3) + F(a_1, b_2, b_3) + F(a_1, a_2, a_3) + F(b_1, a_2, a_3) - F(a_1, b_2, b_3) - F(b_1, a_2, b_3) - F(b_1, b_2, a_3) - F(a_1, a_2, a_3)\]

An analog of Definition 2.4 uses \(\Delta_A(F)\) as defined in (2.9). Proposition 2.15 has an \(\mathbb{R}^3\) version. Similar approach works in \(k\) dimensions, compare [Durrett, Theorem 1.1.6] or [Billingsley, Theorem 12.5], who consider general measures. (In general, \(\Delta_A(F)\) is defined using the inclusion-exclusion principle (1.1). Note that for unbounded measures \(F\) can take negative values!)

4.3. Probability measures on \(\mathbb{R}^\infty\). Recall that \(\mathbb{R}^\infty\) is the set of all infinite real sequences, with metric (0.4). Probability measures on \(\mathbb{R}^\infty\) are determined uniquely by the families of joint finite-dimensional distributions that arise from a special \(\pi\)-system of cylindrical sets, i.e. sets of the form

\[(-\infty, a_1] \times (-\infty, a_2] \times \cdots \times (-\infty, a_n] \times \mathbb{R} \times \mathbb{R} \times \ldots\]

A special case of such a measure is constructed in Theorem 4.7. This is one place where probability theory “outperforms” the general measure theory - while there is a Lebesgue measure on \(\mathbb{R}^d\), there is no Lebesgue measure on \(\mathbb{R}^\infty\).

(Omitted in 2018)

4.4. Probability measures on \(\Omega = C[0,1]\). Constructions of probability measures on function spaces such as \(C[0,1]\) usually rely on the \(\pi\) system of sets of the form \(\{f : f(t_1) \leq x_2, \ldots, f(t_n) \leq x_n\}\) which are indexed by \(t_1, \ldots, t_n \in [0,1]\) and \(x_1, \ldots, x_n \in \mathbb{R}\). These are sometimes referred to as cylindrical sets.

The functions

\[F_{t_1, \ldots, t_n}(x_1, \ldots, x_n) = \Pr(f : f(t_1) \leq x_2, \ldots, f(t_n) \leq x_n)\]

are called the finite dimensional distributions. For fixed \(t_1, \ldots, t_n\), \(F_{t_1, \ldots, t_n}(x_1, \ldots, x_n)\) is a cumulative distribution functions which determines a family of probability measures \(P_{t_1, t_2, \ldots, t_n}\) on Borel subsets of \(\mathbb{R}^n\). These measures determine a probability measure \(\Pr\) on \(C[0,1]\) uniquely, but it is easy to see that to do so they must be “consistent”. An example of a consistency condition is \(P_{t_i}(A) = P_{t_1, t_2}(A \times \mathbb{R})\).

Constructions of such measures requires good understanding of compact subsets of \(C[0,1]\).
4.5. **Probability measures on** $\Omega = \mathbb{R}^{[0,1]}$. Since compact sets are easy to find in product spaces, the simplest example of a probability measure on an infinite dimensional space is the case of $\Omega = \mathbb{R}^{[0,1]}$.

Theorem 2.16 (Kolmogorov). Suppose probability measures P_{t_1,\ldots,t_n} are consistent. Then there exists a unique probability measure Pr on $\mathbb{R}^{[0,1]}$ with Borel σ-field that generates P_{t_1,\ldots,t_n} as finite dimensional distributions.

Remark 2.4. A good description of Borel σ-field in $\mathbb{R}^{[0,1]}$ appears in [Billingsley, Section 36]. In particular, the subset $C[0,1] \subset \mathbb{R}^{[0,1]}$ is not a Borel set! However, for a given Pr one can ask what is Pr^* and Pr^* of $C[0,1]$.

Good probability measures are those for which $Pr^*(C[0,1]) = 1$ and $Pr^*((C[0,1])^c) = 0$.

Proof. The steps in the proof are:

- Introduce the field \mathcal{F}_0 of *cylindrical sets*, indexed by t_1,\ldots,t_n and Borel subsets of \mathbb{R}^n.
- Define a probability measure Pr on \mathcal{F}_0 by using the finite-dimensional distributions P_{t_1,\ldots,t_n}.
- One then uses a variant of the compactness argument similar to Exercise 1.13 to verify that if A_n is a decreasing family of sets in \mathcal{F}_0 with $\bigcap_n A_n = \emptyset$ then $Pr(A_n) \to 0$. □

Required Exercises

Exercise 2.1 (Different representations of the same measure on \mathcal{F}). Let λ be the Lebesgue measure on the Borel σ-field of subsets of $\Omega = [0,1]$. Consider π-system $\mathcal{P} = \{[0,1/n) : n \in \mathbb{N}\}$ and let $\mathcal{F} = \sigma(\mathcal{P})$. Show that there exists a discrete probability measure $P = \sum_{n=1}^\infty p_n \delta_{\omega_n}$ on 2^Ω (see Example 1.5) such that λ restricted to \mathcal{F} coincides with P restricted to \mathcal{F}. (In formal notation, $\lambda|_{\mathcal{F}} = P|_{\mathcal{F}}$.) Is P unique?

Solution: Measure $P = \sum_{n=2}^\infty \frac{1}{n(n-1)} \delta_{1/n}$ is a discrete probability measure with the property that $P((0,1/n)) = \sum_{k=n+1}^\infty \frac{1}{k(k-1)} = \sum_{k=n+1}^\infty (\frac{1}{k-1} - \frac{1}{k}) = 1/n$. Since both P and λ agree on a π-system, they must agree on the sigma field generated by this π-system. So indeed $\lambda|_{\mathcal{F}} = P|_{\mathcal{F}}$. One cook up similar discrete measures, so this P is not unique.

Exercise 2.2 (Statistics). It is illustrative to produce empirical histograms at various sample sizes for the uniform distribution on the Cantor set from Example 2.3. Somewhat surprisingly, this is easy to simulate: take $2\sum_{k=1}^\infty \varepsilon_k/3^k$ where ε_k represents a “toss of a fair coin” with values 0 or 1. This exercise asks you to reproduce histograms from [Proschan-Shaw].
Exercise 2.3 (measure-preserving maps). Let \(f : [0, 1] \to [0, 1] \) be the fractional part of \(2x\). That is,

\[
f(x) = \begin{cases}
2x & \text{if } x \leq 1/2 \\
2x - 1 & \text{if } x > 1/2
\end{cases}
\]

Show that for every Borel subset \(A \) of \([0, 1]\) the Lebesgue measure of \(f^{-1}(A) \) equals to the Lebesgue measure of \(A \). (Compare Exercise 2.11.)

Solution: Consider a \(\pi \)-system of diadic intervals \(I = [0, k/2^n] \) with \(k, n \in \mathbb{N} \). Then \(f^{-1}(I) = \{x \leq 1/2 : 2x \in [0, k/2^n]\} \cup \{x > 1/2 : 2x - 1 \in [0, k/2^n]\} = [0, k/2^{n+1}] \cup (1/2, 1/2 + k/2^{n+1}] \) is the union of two disjoint intervals of length \(k/2^{n+1}\). Therefore, the length of \(I \) is preserved. Now introduce an appropriate \(\lambda \)-system, and use the \(\pi - \lambda \) theorem.

Exercise 2.4. What should be the CDF \(F(x, y) \) for the distribution “uniform on the triangle” \(x \geq 0, y \geq 0, x + y \leq 1\)?

(Solution: This solution was discussed in class.)

Additional Exercises

Exercise 2.5. Let \(\Omega = (0, 1] \times (0, 1] \) and let \(\mathcal{F} \) be the class of sets of the form \(A_1 \times (0, 1] \) with \(A_1 \in \mathcal{B} \) the Borel \(\sigma \)-field in \((0, 1]\) and \((P(A_1 \times (0, 1]) = \lambda(A_1) \) (the Lebesgue measure). Then \((\Omega, \mathcal{F}, P)\) is a probability space. For the diagonal \(D = \{(x, x) : 0 < x \leq 1\} \), find \(P^*(D) \) and \(P^*(D^c) \).

Solution: \(P^*(D) = \inf \sum \lambda(A_j) : \bigcup A_j \times (0, 1] \supset D \). This means that \(\bigcup A_j = (0, 1] \), so the smallest possible value of \(\sum \lambda(A_j) \) occurs when \(A - j \) are disjoint and cover \((0, 1]\). So the answer is \(P^*(D) = 1 \). Clearly \(D^c \) also cannot be covered by sets \(A_j \times (0, 1] \) unless \(A_j \) alone cover \((0, 1]\). So \(P^*(D^c) = 1 \), too.

Exercise 2.6. Inspect the proofs of Theorems 2.1 and 2.9. Find all places where additivity or countable additivity is used.

(Solution: The proofs of these theorems were omitted in 2018!)

Exercise 2.7 (Compare Exercise 1.19). For \(\Omega = (0, 1] \) with the field \(\mathcal{B}_0 \) generated by intervals \(I = (a, b] \), consider \(\lambda_0(I) = |I| \), extended by additivity to \(\mathcal{B}_0 \). Let \(Q \) be the set of all rational numbers in \((0, 1]\) Use the definition of \(\lambda^* \) (not subadditivity) to show that \(\lambda^*(Q) = 0 \).

Solution: By definition, \(\lambda^*(Q) = \inf \sum \lambda(I_k) : \bigcup I_k \supset Q \}. \) Choose \(\varepsilon > 0 \) and let \(q_1, q_2, \ldots \) be the sequence of all rational numbers in \(Q = \mathbb{Q} \cap (0, 1] \). Take \(I_k = (q_k - \varepsilon / 2^k, q_k + \varepsilon / 2^k] \supset (0, 1] \). Then \(\lambda(I_k) \leq 2 \varepsilon / 2^k \) so \(\lambda^*(Q) \leq \sum_{k=1}^\infty 2 \varepsilon / 2^k = 2 \varepsilon \). Since \(\varepsilon > 0 \) was arbitrary, this shows that \(\lambda^*(Q) = 0 \).
Exercise 2.8. The family \mathcal{P} of open intervals $(-1/n, 1/n)$ with $n \in \mathbb{N}$ is a π-system in $\Omega = (-1, 1)$. Describe what sets are in the σ-field $\sigma(\mathcal{P})$. In particular, is set $\{0\}$ in $\sigma(\mathcal{P})$?

Solution: Trivially, \emptyset and $(-1, 1)$ are also in \mathcal{F}. Also $\{0\} = \bigcap_n (-1/n, 1/n)$ must be in \mathcal{F}.

So sets $(-1/n, 0) \cup (0, 1/n)$ must be in \mathcal{F}, too. The only other sets in \mathcal{F} are the finite unions of symmetric intervals $(-1/n, 1/m] \cup [1/m, 1/n)$ with $m, n \in \mathbb{N}$. (The only nontrivial countable union of such sets is $\bigcup_{m=1}^\infty (-1/n, 1/m] \cup [1/m, 1/n) = (-1/n, 1/n) \setminus \{0\}$.)

Exercise 2.9. Let \mathcal{A} be the smallest field generated by a π-system \mathcal{P} (see Exercise 1.18). Use the inclusion-exclusion formula from Exercise 1.1 to show that finitely additive probability measures that agree on \mathcal{P} must also agree on \mathcal{A}.

Exercise 2.10. Suppose \mathcal{L} is a λ-system. Show that $A, B \in \mathcal{L}$ and $A \subset B$ implies that $B \setminus A \in \mathcal{L}$. Hint: Show that $(B \setminus A)^c \in \mathcal{L}$.

Exercise 2.11. Consider $\Omega = (0, 1)$ with Lebesgue measure. Use the Dynkin’s π-λ Theorem to prove that for all Borel sub-sets B of $(0, 1/2)$ and all $x \in (0, 1/2)$, the Lebesgue measure of $B + x$ is the same as the Lebesgue measure of B.

Solution: Fix $0 < x < 1/2$. Consider the π-system \mathcal{P} of sets $(0, a)$ with $a < 1/2$. Clearly $\lambda(x + (0, a)) = \lambda(x, a + x) = a = \lambda(0, a)$.

Next, introduce the set \mathcal{L} of Borel subsets B of $(0, 1/2)$ with the property that $\lambda(B + x) = \lambda(B)$. This collection is a λ-system: if $B \in \mathcal{L}$ then $(0, 1/2) \setminus B \in \mathcal{L}$ because $\lambda((0, 1/2) \setminus B) = 1/2 - \lambda(B)$ and $\lambda((0, 1/2) \setminus B) = \lambda((x, 1/2 + x) \setminus (x + B)) = 1/2 - \lambda(x + B) = 1/2 - \lambda(B)$. Similarly, for disjoint sets B_n sets $x + B_n$ are disjoint, so $\lambda(x + \bigcup_n B_n) = \lambda(\bigcup_n (x + B_n)) = \sum \lambda(x + B_n) = \sum \lambda(B_n) = \lambda(\bigcup B_n)$.

Since $\mathcal{P} \subset \mathcal{L}$, therefore Dynkin’s π-λ Theorem we have $\mathcal{B}_{(0, 1/2)} = \sigma(\mathcal{P}) \subset \mathcal{L}$.
Chapter 3

Independence

1. Independent events and sigma-fields

This section follows [Billingsley, Section 4].

Definition 3.1. Events A, B are independent if $P(A \cap B) = P(A)P(B)$.

Events A_1, \ldots, A_n are independent, if for every $r \leq n$ and every choice of distinct k_1, \ldots, k_r
(3.1)
$$P(A_{k_1} \cap A_{k_2} \cap \cdots \cap A_{k_r}) = P(A_{k_1})P(A_{k_2}) \cdots P(A_{k_r})$$

An infinite sequence of events A_1, A_2, \ldots is independent if the events A_1, \ldots, A_n are independent for every n.

Example 3.1. Consider $\Omega = [0, 1]^3$ with Lebesgue measure. Then events $A = \{(x, y, z) \in \Omega : x < 1/2\}$, $B = \{(x, y, z) \in \Omega : y < 1/2\}$, $C = \{(x, y, z) \in \Omega : z < 1/2\}$ are independent.

Remark 3.1. Events A_1, \ldots, A_n are independent iff
(3.2)
$$P(B_1 \cap B_2 \cap \cdots \cap B_n) = P(B_1)P(B_2) \cdots P(B_n)$$
for all choices of $B_j = A_j$ or $B_j = \Omega$.

Definition 3.2. Classes of sets A_1, A_2, \ldots, A_n are independent, if for each choice of A_j from A_j
the events A_1, \ldots, A_n are independent.

In particular, sigma-fields A_1, A_2, \ldots, A_n are independent, if for every choice of B_j from A_j, equation (3.2) holds.

Theorem 3.1. If A_1, \ldots, A_n are independent pi-systems then $\sigma(A_1), \ldots, \sigma(A_n)$ are independent.

Proof. Without loss of generality we may assume $\Omega \in A_j$ so the definition to use is (3.2).

Fix B_2, \ldots, B_n and consider
$$\mathcal{L} = \{B_1 \in \sigma(A_1) \text{ such that (3.2) holds}\}$$
It is easy to see that \mathcal{L} is a lambda-system and A_1 is a pi-system contained in \mathcal{L}. So by Theorem 2.12 we see that $\sigma(A_1) \subset \mathcal{L}$. This proves that
$$\sigma(A_1), A_2, \ldots, A_n$$
are independent pi-systems.

We now repeat the same argument for A_2, then A_3, etc. \hfill \square
Corollary 3.2. If A_1, \ldots, A_n, \ldots is an infinite set of independent π-systems, then $\sigma(A_1), \ldots, \sigma(A_n), \ldots$ are independent.

Corollary 3.3. If $A_{i,j}$ is an (possibly infinite) array of independent events then the σ-fields generated by each row are independent.

Proof. We introduce π-systems A_i as the collection of all finite intersections of the events in the i-th row, including Ω. If $C_i \in A_i$ then $C_i = \bigcap_{k=1}^{m_i} A_{ik}$ where $A_{ik} \in A_i$

$$P(\bigcap_{i=1}^{n} C_i) = P(\bigcap_{i=1}^{n} \bigcap_{k} A_{ik}) = \prod_{i=1}^{n} \prod_{k=1}^{m_i} P(A_{ik}) = \prod_{i=1}^{n} P(C_i)$$

\[\square\]

Example 3.2. Suppose events A_1, A_2, A_3, A_4 are independent. Then the events $A = A_1 \cup A_2$ and $B = A_3 \cup A_4$ are also independent. This can be verified by elementary calculation, but we deduce this from Corollary 3.3:

Consider $A = \sigma(A_1, A_2)$ and $B = \sigma(A_3, A_4)$. By Corollary 3.3 these σ-fields are independent. Clearly, $A \in \sigma(A)$ and $B \in \sigma(B)$.

2. Zero-one law

Definition 3.3. The tail σ-field for a sequence of events A_1, A_2, \ldots is

$$T = \bigcap_{n=1}^{\infty} \sigma(A_n, A_{n+1}, \ldots)$$

Example 3.3. $\{A_n \ i.o\} = \bigcap_n \bigcup_{k \geq n} A_k$ and $\{\text{all but a finite number of events } A_n \text{ holds}\} = \bigcup_n \bigcap_{k \geq n} A_k$ are tail events.

Theorem 3.4 (Kolmogorov’s zero-one law). If A_1, A_2, \ldots is an independent sequence of events, then the tail σ-field is trivial: if $A \in T$ then $P(A)$ is either 0 or 1.

Proof. By Corollary 3.3, applied to the array of independent events

$$A_1
A_2
\vdots
A_{n-1}
A_n$$

the σ-fields $\sigma(A_1), \sigma(A_2), \ldots, \sigma(A_{n-1}), \sigma(A_n, A_{n+1}, \ldots)$ are independent.

Since $A \in T \subset \sigma(A_n, A_{n+1}, \ldots)$, we see that A is independent of $A_1, A_2, \ldots, A_{n-1}$ for every n.

Corollary 3.3, applied to the array of independent events

$$A
A_1
A_2$$

shows that $\sigma(A)$ and $\sigma(A_1, A_2, \ldots)$ are independent. But $A \in T \subset \sigma(A_1, A_2, \ldots)$, so $P(A) = P(A \cap A) = P(A)P(A)$.

\[\square\]
Example 3.4. If \(A_n \) are independent events then \(P(\bigcap_{n} \bigcup_{k \geq n} A_k) \) is either 0 or 1. It is of interest to determine when each of the cases occurs.

Proof. \((\bigcap_{n} \bigcup_{k \geq n} A_k) = \{A_n \ i.o.\} \) is a tail event: to determine if the infinite number of events occurred, we do not need to know anything about \(A_1 \) or \(A_2 \) etc. \(\square \)

Corollary 3.5. If \(A_n \) are independent events and \(A = \{\omega : \frac{1}{n} \sum_{n} I_{A_n}(\omega) \) converges\} then \(P(A) \) is either 0 or 1. It is of interest to determine when each of the cases occurs.

3. Borel-Cantelli Lemmas

Theorem 3.6 (First Borel-Cantelli Lemma). If \(\sum_{n=1}^{\infty} P(A_n) < \infty \) then \(P(A_n \ i.o.) = 0 \).

Example 3.5. Suppose intervals \(A_n \subset (0,1] \) have lengths \(\lambda(A_n) = 1/n^2 \). Then the set of \(\omega \in \Omega \) for which \(\sum_{n} I_{A_n}(\omega) < \infty \) has Lebesgue measure 1, because with probability one only the finite number of \(I_{A_n}(\omega) \) is one, i.e. for almost every \(\omega \), this is a finite sum.

Proof. \(0 \leq P(A_n \ i.o.) = \lim_{n \to \infty} P(\bigcup_{k=n}^{\infty} A_k) \leq \lim_{n \to \infty} \sum_{k=n}^{\infty} P(A_k) = 0 \). To prove the inequality used, recall that by continuity of \(P \) and Exercise 1.2,

\[
P(\bigcup_{k=n}^{\infty} A_k) = \lim_{m \to \infty} P\left(\bigcup_{k=n}^{m} A_k\right) \leq \lim_{m \to \infty} \sum_{k=n}^{m} P(A_k) = \sum_{k=n}^{\infty} P(A_k).
\]

\(\square \)

Theorem 3.7 (Second Borel-Cantelli Lemma). If \(\sum_{n=1}^{\infty} P(A_n) = \infty \) and \(A_n \) are independent events then \(P(A_n \ i.o.) = 1 \).

Proof. \(P(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k) = 1 - P(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k) \) and \(P(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k) = \lim_{n \to \infty} P(\bigcap_{k=n}^{\infty} A_k) \)

Now it turns out that \(P(\bigcap_{k=n}^{\infty} A_k^c) = 0 \), since it is given as

\[
\lim_{m \to \infty} P\left(\bigcap_{k=n}^{m} A_k^c\right) = \lim_{m \to \infty} \prod_{k=1}^{m} (1 - P(A_k)) \leq \lim_{m \to \infty} \exp\left(-\sum_{k=n}^{m} P(A_k)\right) = 0.
\]

Here, we used the inequality \(1 - x \leq e^{-x} \). Picture “proof”:

\(\square \)
3. Independence

Required Exercises

Exercise 3.1. Suppose A, B, C are independent events. Prove directly from the definition that $(A \cup B), C$ is a pair of independent events. Similarly, show that events $(A \setminus B), C$ are independent.

Solution: Using exclusion-inclusion principle

\[P((A \cup B) \cap C) = P((A \cap C) \cup (B \cap C)) = \]
\[P(A \cap C) + P(B \cap C) - P(A \cap B \cap C) = \]
\[P(A)P(C) + P(B)P(C) - P(A)P(B)P(C) = \]
\[(P(A) + P(B) - P(A)P(B))P(C) = \]
\[(P(A) + P(B) - P(A \cap B))P(C) = \]
\[P(A \cup B)P(C) \]

For the second proof, notice that $A \setminus B = A \cap B'$ is a longer version of Exercise 3.1.

Exercise 3.2. Suppose A, B, C are independent events. Prove directly from the definition that their complements A^c, B^c, C^c are also independent events.

Solution: One way to prove this result is to apply a lemma below three times: first to $A_1 = A, A_2 = B, A_3 = C$, then to $A_1 = A, A_2 = C', A_3 = B$ and finally to $A_1 = C', A_2 = B', A_3 = A$.

Lemma If A_1, A_2, A_3 are mutually independent then A_1, A_2, A_3' are also independent

Sketch of proof. We only need to verify three identities: $P(A_1 \cap A_3') = P(A_1) - P(A_1 \cap A_3) = P(A_1) - P(A_1)P(A_3) = P(A_1)(1 - P(A_3))$ Then repeat the same with A_2 and with $A_1 \cap A_2$ in place of A_1.

Exercise 3.3 (Statistics\(^1\)). Consider $\Omega = [0, 1]$ with Lebesgue measure. Exhibit explicitly three independent events $A, B, C \subset [0, 1]$ with $\lambda(A) = \lambda(B) = \lambda(C) = 1/2$.

Solution: There are numerous answers, for example

\[A = [0, 1/2], B = [0, 1/4] \cup [1/2, 3/4], C = [0, 1/8] \cup [1/4, 3/8] \cup [1/2, 5/8] \cup [3/4, 7/8] \]

It is clear that $\lambda(A) = \lambda(B) = \lambda(C) = 1/2$, and that $\lambda(A \cap B) = \lambda([0, 1/4]) = 1/4$. Similarly $\lambda(A \cap C) = \lambda([0, 1/8] \cup [1/4, 3/8]) = 1/4$ and $\lambda(B \cap C) = \lambda([0, 1/8] \cup [1/2, 5/8]) = 1/4$. Finally that $\lambda(A \cap B \cap C) = \lambda([0, 1/8]) = 1/8$

Exercise 3.4. If $P(A_n) \geq \varepsilon > 0$ for all n, then $P(A_n \ i.o.) > 0$

\(^1\)This allows you to simulate tosses of three coins using a single value from the random number generator that chooses uniformly numbers between 0 and 1.
Solution: Let's try proof by contradiction: Suppose $P(A_n \ i.o.) = 0$, i.e. $P(\bigcap_n \bigcup_{k \geq n} A_k) = 0$. Then $P(\bigcup_n \bigcap_{k \geq n} A_k^c) = 1$ so $\lim_{n \to \infty} P(A_n) \geq \lim_{n \to \infty} P(\bigcap_{k \geq n} A_k^c) = P(\bigcup_n \bigcap_{k \geq n} A_k^c) = 1$. So $P(A_n) = 1 - P(A_n^c) \to 0$, contradicting the assumption that $P(A_n) \geq \varepsilon > 0$ for all n.

Exercise 3.5. Suppose A_k are independent events such that $P(A_k) = 1/2$. Show that

$$\Pr \left(\bigcup_{n=1}^\infty A_n \right) = 1.$$

Solution: This can be handled using Borel-Cantelli Lemma, or directly by looking at the complement: $\Pr (\bigcap_{n=1}^\infty A_n^c) = \lim_{n \to \infty} \frac{1}{2^n} = 0$.

Exercise 3.6. Suppose $A_1, A_2, \ldots, A_n, \ldots$ are independent events with probability $P(A_n) = n^{-\theta}$. Determine all $\theta \in \mathbb{R}$ such that $P(A_n \ i.o.) = 1$.

Solution: By the zero-one law, $P(A_n \ i.o.)$ is either zero or one. Using Borel-Cantelli lemmas, if $\sum_n P(A_n) = \infty$ then $P(A_n \ i.o.) = 1$. On the other hand, if $\sum_n P(A_n) < \infty$ then $P(A_n \ i.o.) = 0$.

Since $\sum_n n^{-\theta} = \infty$ iff $\theta \leq 1$, the answer is $P(A_n \ i.o.) = 1$ iff $\theta \leq 1$ and $P(A_n \ i.o.) = 0$ iff $\theta > 1$.

Additional Exercises

Exercise 3.7. Suppose P is a probability measure on \mathbb{R}^2 with the cumulative distribution function $F(x, y)$ that factors into a product of $A(x)B(y)$. Prove that the σ-fields $\mathcal{F} = \{U \times \mathbb{R} : U \in \mathcal{B}(\mathbb{R})\}$ and $\mathcal{G} = \{\mathbb{R} \times U : U \in \mathcal{B}(\mathbb{R})\}$ are independent.

Exercise 3.8. Suppose $\{A_n\}$ are independent events satisfying $P(A_n) < 1$. Show that

$$P(\bigcup_{n=1}^\infty A_n) = 1 \text{ if } P(A_n \ i.o.) = 1.$$

Solution: $P(A_n \ i.o.) = 1$ means $P(\bigcap_n \bigcup_{k \geq n} A_k) = 1$. This implies that $P(\bigcup_{k=1}^\infty A_k) \geq P(\bigcap_n \bigcup_{k \geq n} A_k) = 1$.

Conversely, suppose that $P(\bigcup_{n=1}^\infty A_n) = 1$ and that $P(A_n) < 1$ for all n. We first prove by induction that $P(\bigcup_{k=n}^\infty A_k) = 1$ for all n.

Proof. Indeed, $n = 1$ is true. Suppose $P(\bigcup_{k=n}^\infty A_k) = 1$ for some $n \geq 1$. Then by inclusion-exclusion formula we have $1 = P(\bigcup_{k=n}^\infty A_k) = P(A_n) + P(\bigcup_{k=n+1}^\infty A_n) - P(A_n)P(\bigcup_{k=n+1}^\infty A_k)$. Since $P(A_n) < 1$, this shows that $P(\bigcup_{k=n+1}^\infty A_n) = 1$. □

Once we know that $P(\bigcup_{k=n}^\infty A_k) = 1$ for all n, we see that $P(A_n \ i.o.) = P(\bigcap_n \bigcup_{k \geq n} A_k) = \lim_{n \to \infty} P(\bigcup_{k=n}^\infty A_k) = 1$.

Exercise 3.9. Use the definitions to prove the claims from Example 3.3.

Solution: This was done in class!!! \(\{A_n \ i.o\} = \bigcap_n \bigcup_{k \geq n} A_k \) is a tail event because \(\bigcap_{n=1}^{\infty} \bigcup_{k \geq n} A_k = \bigcap_{n=2}^{\infty} \bigcup_{k \geq n} A_k = \bigcap_{n=3}^{\infty} \bigcup_{k \geq n} A_k \cdots = \bigcap_{n=m}^{\infty} \bigcup_{k \geq n} A_k \in \sigma(A_m, A_{m+1}, \ldots) \) for every \(m \).

Similarly \(\{ \text{all but a finite number of events } A_n \text{ holds} \} = \bigcup_n \bigcap_{k \geq n} A_k \) is a tail event because \(\bigcup_n \bigcap_{k \geq n} A_k = (\bigcap_{k \geq 1} A_k) \cup (\bigcap_{k \geq 2} A_k) \cup (\bigcap_{k \geq 3} A_k) \cup \cdots = \bigcap_{k=m+1}^{\infty} A_k \) for every \(m \).

(Or because this is a complement of a tail event!)

Exercise 3.10. Consider probability space \((\Omega, F, P) = ((0,1), B, \lambda)\) (the Lebesgue measure). Let \(A_n \) be "consecutive intervals" of length \(p_n \), "wrapped around" if needed. Thus \(A_1 = (0, p_1), A_2 = (p_1, p_1 + p_2), \) and so on. (The best way to imagine this is to think of \(\Omega \) as a circle, with one point removed, and \(A_n \) being "rotated" into the adjacent position next to \(A_{n-1} \).)

Borel-Cantelli Lemma gives a sufficient condition for \(P(A_n \ i.o.) = 0 \). Prove that

\[
P(A_n \ i.o.) = 1 \text{ iff } \sum_n p_n = \infty.
\]

So \(P(A_n \ i.o.) \) is either 0 or 1 for "consecutively placed intervals", just like for independent events.

Solution: This is quite similar to Example 4.5.

Exercise 3.11. Let \(A_k \in F \). Show that if \(P(\bigcap_{n=1}^{\infty} A_k) = 1 \), then for every \(A \in F \) of positive probability the series \(\sum_n P(A \cap A_n) \) diverges.

Solution: Let's proceed by contrapositive. Suppose there exists \(A \) with \(P(A) > 0 \), i.e. \(P(A^c) < 1 \) such that \(\sum_n P(A \cap A_n) < \infty \). Then by Borel Cantelli lemma, \(P(A \cap \bigcup_n \bigcap_{k=n}^{\infty} A_k) = 0 \). Therefore, \(P(\bigcap_{n=1}^{\infty} A_k) = P(\bigcap_n \bigcup_{k=n}^{\infty} A_k) + P(A^c \cap \bigcap_n \bigcup_{k=n}^{\infty} A_k) \leq 0 + P(A^c) < 1 \).

Exercise 3.12. Let \(A_k \in F \). Show that if for every \(A \in F \) of positive probability the series \(\sum_n P(A \cap A_n) \) diverges, then \(P(\bigcap_{n=1}^{\infty} A_k) = 1 \).

Solution: Let's proceed by contrapositive. Suppose \(P(\bigcap_{n=1}^{\infty} A_k) < 1 \). Then \(A = (\bigcap_n \bigcup_{k=n}^{\infty} A_k)^c = \bigcup_n \bigcap_{k \geq n} A_k \) has positive probability. Now \(A \cap A_n = A_n \cap A = A_n \cap (A_n \cap A_n \cap \cdots \cap A_n)^c = A_n \cap (A_n \cap A_n \cap \cdots \cap A_n)^c = A_n \cap (A_n \cap A_n \cap \cdots \cap A_n)^c = A_n \cap (A_n \cap A_n \cap \cdots \cap A_n)^c = A_n \cap (A_n \cap A_n \cap \cdots \cap A_n)^c \) are disjoint, so \(\sum_n P(B_n) \leq 1 \). So \(\sum_n P(A_n \cap A_n) \leq 1 < \infty \).

Exercise 3.13. Suppose \(A_1, A_2, \ldots \) are independent events. Consider

\[
C = \left\{ \omega : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} I_{A_k}(\omega) \text{ exists} \right\}.
\]

Show that either \(P(C) = 0 \) or \(P(C) = 1 \).

Solution: Hint: use zero-one law

Exercise 3.14. Suppose \(A_n \) is a sequence of events such that \(\lim_{n \to \infty} P(A_n) = 0 \) and \(\sum_{n=1}^{\infty} P(A_n \cap A_n^c) < \infty \). Prove that

\[
P(A_n \ i.o.) = 0
\]
Hints: [Resnik] gives the following hint: decompose $\bigcup_{j=n}^{m} A_j$. See also [Gut, Chapter 2, Theorem 18.7].

Correct hint: decompose $\bigcup_{j=n}^{m} A_j$

Solution: This is a theorem of Bandorff-Nielsen, who sketched the following argument in his paper.

Let $G = \bigcap_n \bigcup_{k\geq n} (A_k \cap A_{k+1}^c) = \{A_k \cap A_{k+1}^c \text{i.o.}\}$. By Borel Catnelli Lemma $P(G) = 0$.

Next consider $F = \{A_n^c \text{i.o.}\} = \bigcap_n \bigcup_{k\geq n} A_k^c$. Then $P(F^c) = \lim_{n\to\infty} P(\bigcap_{k\geq n} A_k) \leq \lim_{n\to\infty} P(A_n) = 0$. So $P(F) = 1$.

Next, we look at $E = \{A_n \text{i.o.}\} = \bigcap_n \bigcup_{k\geq n} A_k$. Then $P(E) \leq P(F^c) + P(E \cap F)$.

To end the proof, Since $P(F^c) = 0$ and $P(G) = 0$ it is enough to show that $E \cap F \subset G$.

If $\omega \in E \cap F$ then, with fixed n, one can find $m \geq n$ such that $\omega \in A_m$. But $\omega \in F$, so from the definition of F, there exists some $k \geq m$ such that $\omega \in A_k^c$. Lets take first such k, which necessarily satisfies $k \geq m + 1$. This means $\omega \in A_{k-1} \cap A_k^c$. As n was arbitrary, $\omega \in G$.

Exercise 3.15. Suppose $\sum_{n=1}^{\infty} P(A_n) < \infty$. Let $B = \{\omega : \sum_{n=1}^{\infty} I_{A_n}(\omega) < \infty\}$. Show that $P(B) = 1$.

Solution: $\sum_{n=1}^{\infty} I_{A_n}(\omega) = \infty$ iff $\{A_n \text{i. o.}\}$. By Borel-Cantelli Lemma, both events have probability zero.
Random variables

1. Measurable mappings

Suppose Ω and E are two sets. Often $E = \mathbb{R}$ or $E = \mathbb{R}^d$.

Suppose $X : \Omega \to E$ i.e. X is a function with domain Ω and target set E. Then X induces a mapping

$$X^{-1} : 2^E \to 2^\Omega$$

defined by $X^{-1}(U) = \{ \omega \in \Omega : X(\omega) \in U \}$, where $U \subset E$.

Proposition 4.1. Properties of induced mapping:

(i) $X^{-1}(\emptyset) = \emptyset$, $X^{-1}(E) = \Omega$

(ii) $X^{-1}(U^c) = (X^{-1}(U))^c$

(iii) $X^{-1}\left(\bigcup_{t \in T} U_t\right) = \bigcup_{t \in T} X^{-1}(U_t)$

Proof. For (iii), $\omega \in X^{-1}\left(\bigcup_{t \in T} U_t\right)$ iff $\exists t \in T X(\omega) \in U_t$. \qed

Corollary 4.2. If B is a σ-field of subsets of E then $X^{-1}(B)$ is a σ-field of subsets of Ω.

Proof. This is based on the identities for inverse images under functions, see Proposition 4.1. \qed

Definition 4.1. A σ-field generated by X is $\sigma(X) = X^{-1}(B)$.

Exercise 4.16 says that this is the smallest σ-field of subsets of Ω which makes X measurable.

1.1. Random elements and random variables. Suppose (Ω, \mathcal{F}, P) is a probability space and E is a set with distinguished σ-field \mathcal{B}. In most applications, E is a separable complete metric space and \mathcal{B} is the Borel σ-field which is generated by the countable collection of open balls.

Definition 4.2. In analysis, X is called a measurable function if $X^{-1}(B) \subset \mathcal{F}$. In probability, X is then called a random element of E.

If we want to indicate the σ-fields, we will write $X : (\Omega, \mathcal{F}) \to (E, \mathcal{B})$.

The most important special cases are $E = \mathbb{R}$ and $E = \mathbb{R}^d$. When $E = \mathbb{R}$, we say that X is a random variable. When $E = \mathbb{R}^d$, we say that X is a random vector or that (X_1, \ldots, X_d) is a multivariate random variable. In such cases, measurability can be verified somewhat easier.
verify whether \(X : \Omega \rightarrow \mathbb{R} \) is a random variable we only need to verify that the sets \(A_x = \{ \omega : X(\omega) \leq x \} \) are in \(\mathcal{F} \) for every real \(x \).

Similarly, to verify whether \((X,Y) : \Omega \rightarrow \mathbb{R}^2 \) is measurable, we only need to verify whether for all \(x,y \in \mathbb{R} \) we have \(\{ \omega : X(\omega) \leq x, Y(\omega) \leq y \} \) is in \(\mathcal{F} \).

Somewhat more generally, we have the following.

Proposition 4.3. If \(\sigma(A) = \mathcal{B}_E \) and \(X^{-1}(A) \subset \mathcal{F} \) then \(X : (\Omega, \mathcal{F}) \rightarrow (E, \mathcal{B}) \) is measurable with respect to \((\mathcal{F}, \mathcal{B}_E) \).

Proof. Consider the set \(\mathcal{U} \) of all sets \(U \subset \mathbb{R} \) such that \(X^{-1}(U) \in \mathcal{F} \). In view of Proposition 4.1, this is a sigma-field.

For \(A \in \mathcal{A} \), the inverse image of the set \(A \) is in \(\mathcal{F} \), so \(A \in \mathcal{U} \). Thus \(\mathcal{A} \subset \mathcal{U} \), and the generated sigma field \(\sigma(\mathcal{A}) = \mathcal{B}_E \) is in \(\mathcal{U} \).

\(\square \)

Remark 4.1. The collection \(X_1, \ldots, X_d \) of random variables (on the same probability space) defines random vector \((X_1, \ldots, X_d)\). (For \(d = 2 \), this is Exercise 4.15.)

We also remark that random elements of spaces of functions, such as \(E = C[0,1] \), the space of all continuous functions on \([0,1] \), or \(E = D[0,\infty) \), the space of right-continuous functions with left limits, are called *stochastic processes* rather than random functions. So we say "Wiener process" or "Poisson process", rather than random continuous function, or random piecewise-linear function.

The following properties are often useful.

Proposition 4.4. Consider \(\mathbb{R} \) or \(\mathbb{R}^d \) with Borel sigma field.

- If \(A \in \mathcal{F} \) then \(I_A : \Omega \rightarrow \mathbb{R} \) is measurable.
- A continuous function \(\mathbb{R} \rightarrow \mathbb{R} \) is measurable.
- A continuous function \(\mathbb{R}^m \rightarrow \mathbb{R}^n \) is measurable.
- Composition of measurable transformations is measurable.
- Sum of two measurable functions is measurable.
- Product of two measurable functions is measurable.
- A pointwise limit of a sequence of measurable functions \(\mathbb{R} \rightarrow \mathbb{R} \) is a measurable function.

For example, as a product of two measurable function \(x \mapsto e^x I_{(a,b)}(x) \) is a measurable function \((\mathbb{R}, \mathcal{B}) \rightarrow (\mathbb{R}, \mathcal{B}) \).

1.2. Induced probability measures.

Definition 4.3. The distribution of a random variable \(X : (\Omega, \mathcal{F}) \rightarrow (E, \mathcal{B}) \) is a probability measure \(\mu \) on \((E, \mathcal{B})\) defined by

\[
\mu(U) = P(X^{-1}(U))
\]

Sometimes \(\mu \) is called an *induced measure* and some authors use notation \(Q = P \circ X^{-1} \). We will sometimes write \(\mathcal{L}(X) = \mu \) and say that \(\mu \) is the *law* of \(X \).
If X is a random variable, then its distribution is uniquely determined by the corresponding cumulative distribution function

$$F(x) = \mu((-\infty, x]) = P(\{\omega : X(\omega) \leq x\})$$

(4.1)

In probability and statistics the latter is usually abbreviated to $F(x) = P(X \leq x)$ but this abbreviated notation is just the shorthand for the right hand side of (4.1).

Definition 4.4. We say that random variables X, Y, defined perhaps on different probability spaces, are equal in distribution, if they induce the same probability measure on $(\mathbb{R}, \mathcal{B})$.

In view of Proposition 2.14, this is equivalent to X, Y having the same cumulative distribution function.

If X, Y are two random variables on the same probability space (Ω, \mathcal{F}, P) then the pair (X, Y) is a measurable mapping $\Omega \to \mathbb{R}^2$. The joint distribution of random variables is just the induced measure on \mathbb{R}^2 and is uniquely determined by the joint cumulative distribution function

$$F(x, y) = P(X \leq x, Y \leq y)$$

(Note the abbreviated notation for $P(\{\omega : X(\omega) \leq x, Y(\omega) \leq y\}$ If $E = C[0, 1]$ then a measurable mapping $X : \Omega \to C[0, 1]$ is called a stochastic process with continuous trajectories. The standard notation is $X = (X_t)_{t \in [0, 1]}$. The distribution of X is uniquely determined by the family of finite dimensional distributions

$$F_{t_1, t_2, \ldots, t_k}(x_1, x_2, \ldots, x_k) = P(X_{t_1} \leq x_1, \ldots, X_{t_k} \leq k)$$

that satisfy natural consistency conditions. The converse is not as simple here: consistent families of finite-dimensional distributions

$$\{F_{t_1, t_2, \ldots, t_k}(x_1, x_2, \ldots, x_k) : 0 \leq t_1 \leq t_2 \leq \cdots \leq t_k \leq 1\}$$

define a probability measure on Borel sets of the product space $\mathbb{R}^{[0,1]}$ of all (including nonmeasurable) functions $[0, 1] \to \mathbb{R}$ with pointwise convergence, see [Billingsley, Theorem 36.1] but not necessarily on Borel subsets of $C[0, 1]$. (In fact, $C[0, 1] \subset \mathbb{R}^{[0,1]}$ is not a Borel subset, see the discussion that follows [Billingsley, Theorem 36.3].) One way to ensure properties of trajectories that we need, is to construct the Wiener process and the Poisson process directly on some probability space (Ω, \mathcal{F}, P).

2. Random variables with prescribed distributions

This section is based on [Billingsley, Section 14] or [Durrett, Theorem 1.2.2].

Theorem 4.5. If F is a cumulative distribution function\(^1\), then there exists on some probability space a random variable X for which $P(X \leq x) = F(x)$.

First proof. Proposition 2.14 gives a probability measure P on $(\mathbb{R}, \mathcal{B})$ such that $F(x) = P((-\infty, x])$. Take $(\mathbb{R}, \mathcal{B}, P)$ for the probability space (Ω, \mathcal{F}, P). Define $X(\omega) = \omega$ (the identity mapping). Then X has distribution P.

\(^1\)See Definition 2.3
Second proof. ([This is independent of Proposition 2.14 (and can be used to prove it).])

Let $\Omega = (0, 1)$ with Lebesgue measure λ on Borel sigma-field. Since F is non-decreasing right-continuous with limits 0, 1, for $0 < u < 1$, the set $\{x : u \leq F(x)\}$ is a closed and its complement is $\{x : u > F(x)\} = (-\infty, \varphi(u))$. This shows that for every real x, we have $\varphi(u) \leq x$ iff $F(x) \geq u$. This also defines the quantile function

\[\varphi(u) = \inf\{x : u \leq F(x)\} = \sup\{x : F(x) < u\} \]

Define $X(\omega) = \varphi(\omega)$. Then $\lambda(\{\omega : X(\omega) \leq x\}) = \lambda(\{\omega : \omega \leq F(x)\}) = \lambda((0, F(x)]) = F(x)$. □

Corollary 4.6 (Proposition 2.14). *If F is a CDF then there exists a unique probability measure P on the Borel sets of \mathbb{R} such that $P((-\infty, a]) = F(a)$.***

Proof. Existence: Take Lebesgue measure on Borel sigma-field of $(0, 1)$, and X as in the second proof above. Then P is the induced probability measure. (Uniqueness follows from Theorem 2.9, see Proof of Proposition 2.14). from $\pi - \lambda$ theorem, see □

Example 4.1. Write $X = X_+ - X_-$, i.e.

$$X_+(\omega) = \begin{cases} X(\omega) & \text{if } X(\omega) \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

$$X_-(\omega) = (-X)_+ = \begin{cases} -X(\omega) & \text{if } X(\omega) \leq 0 \\ 0 & \text{otherwise} \end{cases}$$

If X has CDF $F(x)$, what are the CDFs of X_+ and X_-?

Solution.

$$P(X_+ \leq x) = \begin{cases} P(X \leq x) & x \geq 0 \\ 0 & x < 0 \end{cases}$$

So $F_+(x) = F(x)I_{[0,\infty)}(x)$. □

2.1. Independent random variables. The second proof of Theorem 4.5 lets us construct a finite or an infinite sequence $X_1 = \varphi_1(\omega), X_2 = \varphi_2(\omega), \ldots$ of random variables with prescribed distributions. However, this gives only very special measures on \mathbb{R}^∞, see Exercise 4.17. We now consider another special construction that gives joint distributions that are of more interest.

Definition 4.5. Random variables X_1, X_2, \ldots are independent if σ-fields $\sigma(X_1), \sigma(X_2), \ldots$ are independent.

In other words, X_1, X_2, \ldots are independent if the events $X_1 \in U_2, X_2 \in U_2, \ldots$ are independent for any Borel sets U_1, U_2, \ldots.

\(^2\)Can you see why isn’t it \mathbb{R} or \emptyset?
\(^3\)Why?
\(^4\)Why?
Example 4.2. Consider discrete random variables \(X = \sum_{j=1}^{\infty} x_I A_j \), \(Y = \sum_{k=1}^{\infty} y_k B_k \). Then \(X, Y \) are independent iff \(A = \{ \emptyset, A_1, A_2, \ldots \} \) and \(B = \{ \emptyset, B_1, B_2, \ldots \} \) are independent \(\pi \)-systems. Thus \(X, Y \) are independent iff
\[
P(X = x, Y = y) = P(X = x) P(Y = y) \quad \text{for all } x, y \in \mathbb{R}
\]
Similarly, discrete random variables \(X, Y, Z \) are independent iff
\[
P(X = x, Y = y, Z = z) = P(X = x) P(Y = y) P(Z = z) \quad \text{for all } x, y, z \in \mathbb{R}
\]

Remark 4.2. An important special case of discrete random variables are the simple random variables, which take only a finite number of values.

Example 4.3. Suppose \(X_1, X_2, \ldots \) take only values 0, 1 and \(p_k = P(X_k = 1) \), \(q_k = 1 - p_k \). Then \(X_1, X_2, \ldots \) are independent iff
\[
P(X_1 = \varepsilon_1, X_2 = \varepsilon_2, \ldots, X_n = \varepsilon_n) = \prod_{k=1}^{n} p_{\varepsilon_k} q_{1-\varepsilon_k}
\]
for all choices of \(\varepsilon_1, \ldots, \varepsilon_n \in \{0, 1\} \).

Independence is often assumed in the theorems. So it is of some interest to make sure that such random variables exist.

Theorem 4.7. If \(F_1, F_2, \ldots \) are cumulative distribution functions then there exists a probability space \((\Omega, F, P) \) and a sequence \(X_1, X_2, \ldots \) of independent random variables such that \(X_n \) has cumulative distribution function \(F_n \).

Sketch of First Proof. In this proof we take \(\Omega = \mathbb{R}^\infty \) with (infinite!) product measure\(^5\) \(P = P_1 \otimes P_2 \otimes \ldots \) where \(P_k \) is the probability measure on \(\mathbb{R} \) with cumulative distribution function \(F_k \). For \(\omega = (\omega_1, \omega_2, \ldots) \in \mathbb{R}^\infty \) we define \(X_k(\omega) = \omega_k \).

Sketch of Second Proof. \(^6\) The second proof is based on the idea that digits of \(\omega \in (0, 1) \) under Lebesgue measure are independent and can be arranged into infinite number of sequences of (still independent) digits. This can be done in many ways, for example if \(\omega = .d_1d_2\ldots \) then we can rearrange its digits into
\[
d_1 \quad d_2 \quad d_6 \quad d_7 \quad \ldots
\]
\[
d_3 \quad d_5 \quad d_8
\]
\[
d_4 \quad d_9
\]
\[
d_{10}
\]
\[\vdots\]
splits \(\omega \in (0, 1) \) into the infinite sequence of numbers \(\omega_1 = .d_1d_2d_6d_7\ldots \), \(\omega_2 = .d_3d_5d_8\ldots \), \(\omega_3 = .d_4d_9\ldots \), and so on.

We use \(\Omega = (0, 1] \) with Lebesgue measure \(\lambda \) and with binary digits function \(d_n : (0, 1] \to \{0, 1\} \).

We first note that random variables \(d_1, d_2, \ldots \) are independent. Indeed, as noted in the proof of Proposition A.1 we have \(\lambda(d_1 = \varepsilon_1, \ldots, d_m = \varepsilon_m) = 1/2^m \). By Example 4.3 this proves independence.

\(^5\) We did not show how to construct infinite product measure!
\(^6\) For more details see [Billingsley, Theorem 20.4]. (This proof also answers Exercise 3.3.)
Next, we arrange all of these random variables into an infinite array \(d_{i,j} \). Then by Corollary 3.3 random variables \(U_i(\omega) = \sum_{j=1}^{\infty} d_{i,j}(\omega)/2^j \) are independent. On the other hand, \(\lambda(\omega : U_i(\omega) \leq x) = x \); this is easiest to see for diadic rational numbers\(^7\) of the form \(x = k/2^n \).

Now take \(X_k = \varphi_k(U_k) \), where \(\varphi_k(u) \) is the quantile transform (4.3) of \(F_k \).

Definition 4.6. We say that \(X_1, X_2, \ldots \) are independent identically distributed (i. i. d.) random variables, if they are independent and have the same CDF.

Data collected from repeated runs of an experiment in statistics are modeled by i. i. d. random variables.

2.2. Elementary examples.

The following is a repeat of one of the points in Proposition 4.4.

Proposition 4.8. If \(f : \mathbb{R}^d \to \mathbb{R} \) is measurable (say, continuous) and \(X_1, \ldots, X_d : \Omega \to \mathbb{R} \) are random variables on \(\Omega, \mathcal{F}, P \), then \(Y = f(X_1, \ldots, X_d) \) is a random variable.

Proof. If \(B \) is a Borel subset of \(\mathbb{R} \) then \(U = f^{-1}(B) \subset \mathbb{R}^d \) is a Borel subset of \(\mathbb{R}^d \). So \(Y^{-1}(B) = (X_1, \ldots, X_d)^{-1}(U) \in \mathcal{F} \). \(\square \)

Here are some examples of such functions:

Proposition 4.9 (Sum theorems). Suppose \(X_1, X_2, \ldots \) are independent and \(S = X_1 + X_2 + \cdots + X_n \).

(i) If \(X_1, \ldots, X_n \) are i. i. d. Bernoulli random variables, i.e., \(P(X_j = 1) = p, P(X_j = 0) = 1 - p \), then \(S \) is Binomial Bin\((n,p)\) (see Example 1.6)

(ii) If \(X_1, X_2, \ldots \) are Poisson random variables with parameters \(\lambda_1, \lambda_2, \ldots \) then \(S \) is Poisson with parameter \(\lambda = \lambda_1 + \cdots + \lambda_n \) (see Example 1.7)

(iii) If \(X_1, X_2, \ldots \) are i. i. d. Normal \(N(0,1) \) random variables (see Example 2.5) then \(Y = X_1 + \cdots + X_n \) is normal with mean zero and variance \(n \) (i.e., has same law as \(\sqrt{n}Z \) for some \(N(0,1) \) r.v. \(Z \)).

Proof. Omitted\(^8\) \(\square \)

3. Convergence of random variables

Definition 4.7. A sequence of random variables converges in probability to a random variable \(X \), abbreviated as \(X_n \overset{P}{\to} X \), if for every \(\varepsilon > 0 \), we have

\[
\lim_{n \to \infty} P(\{\omega : |X_n(\omega) - X(\omega)| \geq \varepsilon\}) = 0
\]

We will use the abbreviated notation

\[
\lim_{n \to \infty} P(|X_n - X| \geq \varepsilon) = 0.
\]

It is also clear that it is enough to consider only rational \(\varepsilon > 0 \).

Example 4.4. On \(\Omega = [0, 1] \) consider \(X_n = I_{[0,n/(2n+1)]}(\omega) \). Then \(X_n \overset{P}{\to} X \). In act, here convergence holds for every \(\omega \). Exercise 4.10 shows that this does not have to be so. See also next example.

\(^7\)Observe that the diadic intervals \([0, k/2^n]\) with \(k, n \in \mathbb{N} \) form a \(\pi \)-system. That generates \(\mathcal{B} \)

\(^8\)These are “elementary” facts covered in undergraduate courses.
Example 4.5. Suppose Ω is a unit circle with (with probability measure from arclength, i.e. measure induced by $\theta \mapsto (\cos \theta, \sin \theta)$). Suppose $X_n = I_{\Theta_n}$ where Θ_n are consecutive arcs of length $1/n$ on the unit circle. Then $X_n \xrightarrow{P} 0$, but for every ω the sequence $X_n(\omega)$ does not converge.

Suppose X_n, X are random variables on some probability space (Ω, F, P). Then we have

Proposition 4.10.

$$\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\} \in F$$

Proof. First we note that for a fixed $\varepsilon > 0$, the set $A_n = \{\omega : |X_n(\omega) - X(\omega)| < \varepsilon\} \in F$. This is a consequence of Exercise 4.15.

Next, we note that $A_\varepsilon = \{\omega : \forall_n \exists_{k>n} |X_k(\omega) - X(\omega)| > \varepsilon\}$ is in F. Indeed, $A_\varepsilon = \bigcap_n \bigcup_{k\geq n} A^c_k$.

Finally, we note that

$$\bigcap_{\varepsilon > 0} \bigcup_{n \in \mathbb{N}} A_{1/n} \in F$$

In view of the above proposition, the probability that a sequence of random variables converges to a random variable is well-defined.

Definition 4.8. A sequence of random variables converges with probability one if

$$P\left(\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\}\right) = 1$$

Proposition 4.11. If $X_n \to X$ with probability one, then $X_n \xrightarrow{P} X$

Proof. The discussion of measurability shows that $P(\forall_{\varepsilon>0} \exists_{n>N} \forall_{n>N} \{\omega : |X_n - X| < \varepsilon\}) = 1$ iff for every rational $\varepsilon > 0$

$$P(\exists_{n>N} |X_n - X| < \varepsilon) = P(\bigcup_{n>N} |X_n - X| < \varepsilon) = 1$$

This is the same as

$$P(\bigcap_{n>N} |X_n - X| > \varepsilon) = P(\sup_{n>N} |X_n - X| > \varepsilon) = 0$$

Now $P(\bigcap_{n>N} |X_n - X| > \varepsilon) = \lim_{N \to \infty} P(\bigcup_{n>N} |X_n - X| > \varepsilon)$. So convergence with probability one is equivalent to

$$\forall \varepsilon > 0 \lim_{N \to \infty} P(\sup_{n>N} |X_n - X| > \varepsilon) = 0.$$

Of course, $P(|X_N - X| > \varepsilon) \leq P(\sup_{n>N} |X_n - X| > \varepsilon)$. □

Proposition 4.12. Suppose $X_n \xrightarrow{P} X$. Then there exists a subsequence n_k such that $X_{n_k} \to X$ with probability one.
Proof. Choose positive \(\varepsilon_k \to 0 \). Given \(k \), choose \(n_k > k \) so that \(P(|X_{n_k} - X| > \varepsilon_k) < 1/2^k \). Since \(\sum_k 1/2^k < \infty \), by the first Borel-Cantelli Lemma,

\[
P(|X_{n_k} - X| > \varepsilon_k \text{ i.o.}) = 0
\]

Therefore, for any \(\varepsilon > 0 \),

\[
P(|X_{n_k} - X| > \varepsilon \text{ i.o}) \leq P(|X_{n_k} - X| > \varepsilon_k \text{ i.o.}) = 0
\]

Details: Choose \(N_0 \) such that \(\varepsilon_{n_k} < \varepsilon \) for \(k > N_0 \). Then

\[
\bigcap_{N=1}^{\infty} \bigcup \{ |X_{n_k} - X| > \varepsilon \} \subset \bigcap_{N>N_0} \bigcup \{ |X_{n_k} - X| > \varepsilon \} \subset \bigcap_{N>N_0} \bigcup \{ |X_{n_k} - X| > \varepsilon_k \}
\]

\[\square\]

Remark 4.3. Convergence in probability is a metric convergence. Convergence with probability one is not a "metric convergence".

Remark 4.4. Suppose \(X_n \) are random variables such that \(X_n(\omega) \) converges for all \(\omega \in \Omega \). Then \(X(\omega) := \lim_{n \to \infty} X_n(\omega) \) is a random variable.

Proof.

\[
\{ \omega : X(\omega) \leq x \} = \bigcap_{j \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} \bigcap_{k>n} \{ \omega : X_k(\omega) \leq x + 1/j \}
\]

\[\square\]

Convergence in probability is a “metric convergence” (the metric cannot yet be written, but appears on page 11), so it has the following property.

Proposition 4.13. If every subsequence of \(\{X_n\} \) has a \(P \)-convergent subsequence, then all the limits must be equal (with probability one) and \(X_n \) converges in probability.

Proof. If different subsequences converge to say \(X' \) and \(X'' \), then by choosing a subsequence that alternates between the two subsequences we can check that \(\Pr(|X' - X''| > \varepsilon) = 0 \) for every \(\varepsilon > 0 \), so \(X' = X'' \) with probability one. Let’s denote the common limit by \(X \).

To prove convergence, to the above \(X \), we proceed by contradiction. Suppose that \(X_n \) does not converge in probability. Then there exists a subsequence \(\{X_{n_k}\} \) such that \(P(|X_{n_k} - X| > \varepsilon) > \delta > 0 \). This subsequence cannot have a further subsequence that would converge to \(X \).

To see that this is quite useful, try solving Exercise 4.20 without using Proposition 4.13. (Yes, it can be done!)

Every convergent sequence of numbers is bounded. An analog of this involves a separate concept which is introduced in Exercise 4.12.

The third type of convergence, the so called *convergence in distribution*, is somewhat different, as it is really convergence of the induced probability measures, not random variables. This topic will appear in Chapter 9, but we can give a definition here:

Definition 4.9. We say that a sequence of \(\mathbb{R} \)-valued random variables \(X_1, X_2, \ldots, X_n, \ldots \) with cumulative distribution functions \(F_1, \ldots, F_n, \ldots \) converges in distribution to a random variable \(Y \) with cumulative distribution function \(F \), if \(F_n(x) \to F(x) \) for all continuity points \(x \) of \(F \).
Convergence in distribution is a metric convergence (of measures on \((\mathbb{R}, \mathcal{B})\), with Levy’s metric defined on page 11 and in Exercise 9.10.). It is a good exercise to check that if \(X_n \overset{P}{\to} X\) then \(X_n \overset{D}{\to} X\).

Required Exercises

Measurability.

Exercise 4.1. Suppose that \(\varphi : (0,1) \to \mathbb{R}\) is strictly increasing. Prove that \(\varphi\) is measurable with respect to the Borel sigma-fields.

Solution: We use Proposition 4.3 with \(\mathcal{A}\) consisting of all sets \((-\infty, b]\). For an increasing function the inverse image \(\varphi^{-1}(0, b]\) can only be of the form \((0, a]\) or \((0, a]\), the latter including \((0, 1)\) and \(\emptyset\).

Indeed, if \(b\) is above or below the range of \(\varphi\) then we get either \((0, 1)\) or \(\emptyset\). If \(b = \varphi(a)\) is in the range of \(\varphi\), then \(\varphi^{-1}(0, b]\) is \((0, a]\). If \(b\) is in the range of a jump at point \(a\), i.e. \(\varphi(a-) < b < \varphi(a)\) or \(\varphi(a) < b < \varphi(a+\) then \(\varphi^{-1}(0, b]\) is \((0, a]\) in the first case and \((0, a]\) in the second.

Exercise 4.2. Suppose that \(\varphi : (0,1) \to \mathbb{R}\) is continuous. Prove that \(\varphi\) is measurable with respect to Borel sigma-fields.

Solution: We use Proposition 4.3 with \(\mathcal{A}\) consisting of all open sets. For a continuous function, \(\varphi^{-1}(U)\) is open for \(U \in \mathcal{A}\), it is in \(\mathcal{B}\).

(Solution of Exercise 4.3 provides additional details!)

Exercise 4.3. Prove one/some/all of the statements in Proposition 4.4.

Solution: Note that the number of properties in Proposition 4.4 increased from the initial number of points.

If \(A \in \mathcal{F}\) then \(I_A : \Omega \to \mathbb{R}\) is measurable.

Proof. This was done in class. Use the fact that \(\{\omega : I_A(\omega) \leq a\}\) is either \(\emptyset\) (when \(a < 0\)) or \(A^c\) (when \(0 \leq a < 1\)) or \(\Omega\) (when \(a \geq 1\)).

A continuous function \(\mathbb{R}^m \to \mathbb{R}^n\) is measurable.

Proof. This is based on Proposition 4.3 used with \(\mathcal{A}\) = open sets, together with the following property of continuous functions: if \(f : \mathbb{R}^m \to \mathbb{R}^n\) is continuous and \(U \subset \mathbb{R}^n\) is an open set, then \(f^{-1}U\) is an open set in \(\mathbb{R}^m\).

To prove the later fact, look at closed set \(U^c\). Then \(f^{-1}U^c\) must be closed: if \(x_n \in f^{-1}U^c\) and \(x_n \to x\) then \(f(x_n) \in U\) and \(f(y) = \lim_{n \to \infty} f(x_n) \in U^c\), as \(U^c\) is closed.
Solution: Composition of measurable transformations is measurable.

Proof. This is direct application of definition of measurability. See notes from class. □

Sum of two measurable functions is measurable.

Proof. $X + Y$ is a composition of a measurable function $\Omega \ni \omega \mapsto (X(\omega), Y(\omega)) \in \mathbb{R}^2$ with the continuous (hence measurable) function $\mathbb{R}^2 \to \mathbb{R}$ given by $(x, y) \mapsto x + y$. □

Product of two measurable functions is measurable.

Proof. This is similar to the sum: function $\mathbb{R}^2 \to \mathbb{R}$ given by $(x, y) \mapsto xy$ is continuous □

Solution: A pointwise limit of a sequence of measurable functions $\mathbb{R} \to \mathbb{R}$ is a measurable function.

Proof.

$$\{\omega : \lim_{n \to \infty} X_n(\omega) \leq x\} = \{\omega : \forall \varepsilon > 0, \exists n \in \mathbb{N} \forall k > n, X_k(\omega) < x + \varepsilon\}$$

$$= \bigcap_{\varepsilon > 0} \bigcup_{n=1}^{\infty} \bigcap_{k=n+1}^{\infty} \{\omega : X_k(\omega) < x + \varepsilon\}$$

□

Cumulative distribution functions.

Exercise 4.4. Consider probability space $((0, 1), \mathcal{B}, \lambda)$. Suppose $X : (0, 1) \to \mathbb{R}$ is given by $X(\omega) = \ln(\omega)$. Find the CDF of X.

Solution: $X(\omega) \leq x$ iff $\omega \leq e^x$. So

$$F(x) = \begin{cases} 1 & x \geq 0 \\ e^x & x < 0 \end{cases}$$

Exercise 4.5. Suppose $X : \Omega \to \mathbb{R}$ has CDF F. Let $Y = X^2$. What is the CDF of Y?

Solution:

$$G(y) = P(X^2 \leq y) = \begin{cases} 0 & y < 0 \\ P(-\sqrt{y} \leq X \leq \sqrt{y}) & y \geq 0 = \begin{cases} 0 & y < 0 \\ F(\sqrt{y}) - \lim_{x \uparrow -\sqrt{y}} F(x) & y \geq 0 \end{cases} \end{cases}$$

Exercise 4.6. Suppose $X : \Omega \to \mathbb{R}$ has CDF F. Let $Y = X I_{|X| \leq M}$ be the truncation of r.v. X at level M. What is the CDF of Y?

Solution: This was done in class. For a similar calculation, see Example 4.1.

Exercise 4.7. Suppose U is uniform on $(0, 1)$. Let $X = U^2$, $Y = U^3$. What is their joint CDF? (See (4.2).)
Solution: For \(x, y \in (0, 1) \) we have
\[
F(x, y) = \lambda(u < \sqrt{x}, u \leq \sqrt[6]{y}) = \min\{\sqrt{x}, \sqrt[6]{y}\}
\]

Somewhat more generally, when we apply a construction from the second proof of Theorem 4.5 to construct a pair of random variables with prescribed CDFs \(F, G \) then the joint PDF is
\[
F(x, y) = \min\{F(x), G(y)\}. \tag{4.8}
\]
This is related to the concept of copula, which is a fancy name for the multivariate CDF with uniform marginals. For uniform \(U, \) bivariate random variable \(U, U \) has CDF \(C(u, v) = \min\{u, v\} \). For independent \(U, V \), the corresponding copula is \(C(u, v) = uv \).

Exercise 4.8 (Statistics). Use the second proof of Theorem 4.5 to describe how to simulate exponential random variables (see Example 2.4) using a random number generator that produces uniform \(U(0, 1) \) random variables.

Solution: This was essentially done in class: With \(F(x) = 1 - \exp(-\lambda x) \) (or 0) the set \(\{x : F(x) \geq \omega\} \) is the interval with \(\varphi(\omega) = \frac{-\ln(1-\omega)}{\lambda} \). So given uniform r.v. \(U \), we can take \(Y = \frac{-\ln(1-U)}{\lambda} \). Since \(U \) and \(1-U \) have the same uniform CDF, we can instead take \(Y = -\log(U)/\lambda \). (This is the answer you would get from google.)

Independence.

Exercise 4.9. Consider \(\omega = [0,1] \) with Lebesgue measure and the measure-preserving map \(f \) defined in Exercise 2.3. Show that events \(A := [0,1/2], B := f^{-1}(A) \) and \(C := f^{-1}(B) \) are independent. (This is one of the possible answers to Exercise 3.3.)

Solution: \(B = f^{-1}(A) = \{x \leq 1/2 : 2x \leq 1/2\} \cup \{x > 1/2 : 2x - 1 \leq 1/2\} = [0,1/4] \cup (1/2,3/4] \). Similarly, we can write out explicitly \(f^{-1}(B) \). Compare solution of Exercise 3.3.

Convergence.

Exercise 4.10. Suppose random variables
\[
X_n = \begin{cases}
 n & \text{with probability } p_n \\
 0 & \text{with probability } 1 - p_n
\end{cases}
\]

Prove that
(i) if \(p_n \to 0 \) then \(X_n \overset{P}{\to} 0 \).
(ii) if \(\sum p_n < \infty \) then \(X_n \to 0 \) with probability one.
(iii) if \(X_n \) are independent then \(X_n \to 0 \) with probability one iff and only if \(\sum p_n < \infty \)

Exercise 4.11. Prove that if \(X_n \overset{P}{\to} X \) and \(Y_n \overset{P}{\to} Y \) then \(X_n + Y_n \overset{P}{\to} X + Y \).

Exercise 4.12. Suppose \(X_n \overset{P}{\to} X \). Show that \(\{X_n\} \) is stochastically bounded (which is the same as the sequence of laws being tight, compare Exercise 1.13), i.e. for every \(\varepsilon > 0 \) there exists \(K > 0 \) such that for all \(n \) we have \(P(|X_n| > K) < \varepsilon \).

Exercise 4.13. Use the result from Exercise 4.12 to prove that if \(X_n \overset{P}{\to} X \) and \(Y_n \overset{P}{\to} Y \) then \(X_n Y_n \overset{P}{\to} XY \).
Exercise 4.14. Suppose $U_1, U_2, \ldots, U_n, \ldots$ are independent identically distributed $U(0,1)$ random variables (i.e. with cumulative distribution function $F(x) = x$ for $0 < x < 1$, see Example 2.2). Show that the sequence $Z_n = U_1 U_2 \ldots U_n$ converges with probability one.

Additional Exercises

Exercise 4.15. Suppose $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$ are two measurable functions (with respect to the Borel σ-field $\mathcal{B}(\mathbb{R})$). Prove that $(X,Y) : \Omega \to \mathbb{R}^2$ is measurable (with respect to the Borel σ-field $\mathcal{B}(\mathbb{R}^2)$). (Hint: Proposition 4.3.)

Exercise 4.16. Prove that $\sigma(X)$ as defined in the notes (as $X^{-1}(\mathcal{B})$) is in fact the smallest σ-field for which X is measurable. (This is the definition of $\sigma(X)$ in [Billingsley].)

Exercise 4.17. Suppose X, Y are random variables with cumulative distribution functions $F(x)$ and $G(y)$, constructed as in the second proof of Theorem 4.5. Find the joint cumulative distribution function of X, Y.

Exercise 4.18 (Statistics). Suppose X, Y are independent $N(0,1)$ random variables. Verify that $X^2 + Y^2$ is exponential. Hint: compute CDF using polar coordinates.

Exercise 4.19. Suppose that $X_1 \leq X_2 \leq \cdots \leq X_n \leq X_{n+1} \leq \cdots$. If $X_n \xrightarrow{P} X$, show that $X_n \to X$ with probability one.

Exercise 4.20. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a continuous function and $X_n \xrightarrow{P} X$. Prove that $Y_n = f(X_n)$ converges in probability to $Y = f(X)$.

Exercise 4.21. Suppose $X_n \xrightarrow{P} X$ and X_n are independent. Show that there is $a \in \mathbb{R}$ such that the cumulative distribution of X is $F(x) = \begin{cases} 0 & x < a \\ 1 & x \geq a \end{cases}$.

Simple random variables

This section is based on [Billingsley, Section 5]. A random variable X is a simple random variable if it has a finite range.

If the range $X(\Omega)$ of X is $\{x_1, x_2, \ldots, x_n\} \subset \mathbb{R}$ (distinct real numbers), then

$$X = \sum_{j=1}^{n} x_j I_{A_j},$$

where $A_j = X^{-1}({\{x_j}\}) \in \mathcal{F}$. Note that if x_j are distinct then A_j are disjoint, and that $\bigcup_{j=1}^{n} A_j = \Omega$.

Theorem 5.1. Let X_1, \ldots, X_n be simple random variables. A simple random variable Y is $\sigma(X_1, \ldots, X_n)$-measurable if and only if there exists $f : \mathbb{R}^n \to \mathbb{R}$ such that $Y = f(X_1, \ldots, X_n)$.

Proof. If $Y = f(X_1, \ldots, X_n)$ then $Y^{-1}(\{y\}) = \{\omega : (X_1(\omega), \ldots, X_n(\omega)) \in f^{-1}(\{y\})\}$. Of course, $f^{-1}(\{y\})$ could be a non-measurable set. But its intersection with a finite set $F_1 \times F_2 \times \cdots \times F_n$ is measurable. So $Y^{-1}(\{y\})$ is an inverse image of a measurable set in a measurable mapping $(X_1, \ldots, X_n) : \Omega \to \mathbb{R}^n$ (compare Exercise 4.15).

Suppose now that Y is $\sigma(X_1, \ldots, X_n)$. Denote by y_1, \ldots, y_r its distinct values. Then there exists a set $U_i \subset \mathbb{R}^n$ such that

$$\{\omega : Y(\omega) = y_i\} = \{\omega : (X_1(\omega), \ldots, X_n(\omega)) \in U_i\}$$

Take $f = \sum y_j I_{U_j}$. (The sets U_j are not disjoint, but their intersections with the range of (X_1, \ldots, X_n) are disjoint.)

The importance of simple random variables lies in their usefulness for approximations.

Theorem 5.2. If $X : \Omega \to [0, \infty)$ is a random variable then there exist a sequence of simple random variables $X_1 \leq X_2 \leq X_3 \leq X_n \leq \ldots$ such that $X(\omega) = \lim_{n \to \infty} X_n(\omega)$.

It is easy to produce good approximations on sets of large probability,

$$\sum_{k=1}^{n^2} k \frac{I_{\frac{k}{n}} \leq X < \frac{k}{n}}{n} \to X,$$
or discrete uniform approximations on entire Ω. For the latter, take

$$X_n = \sum_{k=1}^{\infty} \frac{k}{n} I_{\frac{k-1}{n}} \leq X < \frac{k}{n}.$$

Then $|X_n - X| \leq 1/n$.

For the proof, we want to be sure that the approximation is also increasing so that $X_n \uparrow X$.

Proof. We find an appropriate function $\varphi_n(x)$ and take as X_n the value of $\varphi_n(X)$. Here is one such function:

$$X_n := n I_{X \geq n/2^n} + \sum_{k=1}^{n \cdot 2^n} \frac{k-1}{2^n} I_{\frac{k-1}{2^n} \leq X < \frac{k}{2^n}} \uparrow X.$$

See Fig 1. □

![Figure 1](image)

Figure 1. Diadic approximations $\varphi_n(x) \uparrow x$ from (5.2). Drawn φ_1 (dashed) and φ_2 (dotted).

1. Expected value

A simple random variable of the form (5.1) is assigned *expected value*

$$E[X] = \sum_{j=1}^{n} x_j P(A_j)$$

(5.3)
Remark 5.1. Note that if \(\Omega = [0, 1] \) and \(A_j \) are intervals, then \(E(X) = \int_0^1 X(\omega) d\omega \), defined as the Riemann integral.

Remark 5.2. A special case of (5.3) is
\[
E(I_A) = P(A).
\]

It is clear that if \(X \) is simple and \(f : \mathbb{R} \to \mathbb{R} \) is an arbitrary function then \(Y = f(X) \) is simple, and that
\[
E(Y) = \sum_j f(x_j)P(A_j) \tag{5.4}
\]
In particular, the moments of \(E \)
\[
E(X)\sum_{j,k} x_j y_k
\]
where
\[
m_k = E(X^k)
\]
If \(X = \sum x_j I_{A_j} \) and \(Y = \sum y_k I_{B_k} \) then \(X + Y = \sum (x_j + y_k) I_{A_j \cap B_k} \). Thus \(E(X + Y) = \sum (x_j + y_k) P(A_j \cap B_k) = \sum x_j \sum_k P(A_j \cap B_k) + \sum y_k \sum_j P(A_j \cap B_k) \). This gives linearity
\[
E(X + Y) = E(X) + E(Y) \tag{5.5}
\]
Expected value also preserves order: if \(X \geq 0 \) for all \(\omega \) then \(E(X) \geq 0 \). Thus if \(X \leq Y \) (i.e. \(Y - X \geq 0 \)) then \(E(X) \leq E(Y) \).

Since \(X - Y \leq |X - Y| \), this gives
\[
|E(X - Y)| \leq E|X - Y|. \tag{5.6}
\]

Theorem 5.3. If \(X_n \xrightarrow{P} X \) and \(\{X_n\} \) is uniformly bounded, then \(E(X) = \lim_{n \to \infty} E(X_n) \).

Proof. Suppose \(|X_n| \leq K \). Since \(X \) is simple, we can increase \(K \) to ensure also \(|X| \leq K \).

If \(A_n = \{ \omega : |X - X_n| \geq \varepsilon \} \) then
\[
|X(\omega) - X_n(\omega)| \leq 2K I_{A_n} + \varepsilon I_{A_n^c}
\]
Thus \(E|X - X_n| \leq 2KP(|X_n - X| \geq \varepsilon) + \varepsilon \to \varepsilon \). Inequality (5.6) ends the proof. \(\square \)

Definition 5.1. The variance of a simple random variable \(X \) is
\[
\text{Var}(X) = E(X - m)^2 = E(X^2) - m^2 \tag{5.7}
\]
where \(m = E(X) \).

The mean and variance of a linear transformation \(Y = aX + B \) of \(X \) are \(E(Y) = aE(X) + b \), \(\text{Var}(Y) = a^2 \text{Var}(X) \).

1.1. Expected values and independence. If \(X_1, \ldots, X_n \) are independent then
\[
E(X_1 X_2 \ldots X_n) = E(X_1) E(X_2) \ldots E(X_n) \tag{5.8}
\]
It is enough to verify this for two independent random variables. If \(X = \sum x_j I_{A_j} \) and \(Y = \sum y_k I_{B_k} \) then \(XY = \sum_{j,k} x_j y_k I_{A_j \cap B_k} \). Thus \(E(XY) = \sum_{j,k} x_j y_k P(A_j \cap B_k) = \sum_j x_j P(A_j) \sum_k y_k P(B_k) \). Thus \(E(X_1 X_2 \ldots X_n) = E(X_1) E(X_2) \ldots E(X_n) \) and inductively we can pull one factor at a time. In particular, if \(X_1, \ldots, X_n \) are independent then
\[
\text{Var}(X_1 + \cdots + X_n) = \text{Var}(X_1) + \cdots + \text{Var}(X_n)
\]
Again, we verify this for the sum of two independent variables \(X, Y\). Replacing \(X\) by \(X - m\) if needed, without loss of generality we may assume \(E(X) = E(Y) = 0\). Then \(\text{Var}(X + Y) = E(X + Y)^2 = E(X^2 + Y^2 + 2XY) = E(X^2) + E(Y^2) = \text{Var}(X) + \text{Var}(Y)\)

1.2. Tail integration formula. If \(X \geq 0\) then

\[
E(X) = \int_0^\infty P(X > x)dx = \int_0^\infty P(X \geq x)dx
\]

\textbf{Proof.} For simple random variables this is just a picture. \qed

2. Inequalities

\textit{Markov’s inequality} for non-negative \(X\) is

\[
P(X \geq \alpha) \leq \frac{1}{\alpha} E(X)
\]

(5.10)

This follows from (5.9), as \((X) \geq \int_0^\alpha P(X \geq x)dx \geq \int_0^\alpha P(X \geq \alpha)dx\).

This implies \textit{Chebyshev’s inequality}

\[
P(|X - m| \geq \alpha) \leq \frac{\text{Var}(X)}{\alpha^2}.
\]

(5.11)

Recall that \(\varphi : \mathbb{R} \rightarrow \mathbb{R}\) is a \textit{convex function} if \(\varphi(px + (1-p)y) \leq p\varphi(x) + (1-p)\varphi(y)\). Inductively, \(\varphi(\sum_j x_j p_j) \leq \sum_j \varphi(x_j)p_j\). This gives \textit{Jensen’s inequality}

\[
\varphi(E(X)) \leq E(\varphi(X))
\]

(5.12)

Special cases are \(|E(X)| \leq E|X|, E(X)^2 \leq E(X^2), \exp(E(X)) \leq E(\exp X), E \ln X \geq \ln E(X)\).

In particular, \(E(|X|) \leq \sqrt{E(X^2)}\). More generally, we have \textit{Lyapunov’s inequality}; if \(\alpha \leq \beta\) then

\[
E^{1/\alpha}(|X|^\alpha) \leq E^{1/\beta}(|X|^\beta)
\]

(5.13)

Indeed, with \(p = \beta/\alpha \geq 1\) function \(\varphi(x) = |x|^p\) is convex\(^2\). Write \(|X|^\beta = (|X|^\alpha)^p = \varphi(|X|^\alpha)\). Then by Jensen’s inequality,

\[
E(|X|^\alpha)^{\beta/\alpha} \leq E|X|^\beta
\]

Another important inequality is \textit{Cauchy-Schwarz inequality}

\[
|E(XY)| \leq \sqrt{E(X^2)E(Y^2)}
\]

\textbf{Proof.} For \(x < y\) the difference quotient \((\varphi(y) - \varphi(x))/(y - x) = \varphi'(u)\). Since \(\varphi'' > 0\) we have \(\varphi'(x) < \varphi'(u) < \varphi'(y)\). This implies that

\[
\frac{\varphi(at + b(1-t)) - \varphi(a)}{(b-a)(1-t)} < \frac{\varphi(b) - \varphi(at + b(1-t))}{(b-a)t}
\]

Thus

\[
\frac{\varphi(at + b(1-t)) - \varphi(a)}{1-t} < \frac{\varphi(b) - \varphi(at + b(1-t))}{t}
\]

which is convexity. \qed

\(^2\)\(f''(x) = p(p - 1)x^{p-2} > 0\) for \(x > 0\) and \(p > 1\).
3. L_p-norms

For $p \geq 1$, define the $L - p$-norm of X as

$$
\|X\|_p = \sqrt[p]{E(|X|^p)}
$$

Lyapunov’s inequality says that if $p_1 \leq p_2$ then $\|X\|_{p_1} \leq \|X\|_{p_2}$.

In particular, $\|X\|_1 \leq \|X\|_2$.

The Cauchy-Schwarz inequality can be stated concisely as

$$
|E(XY)| \leq \|X\|_2 \|Y\|_2
$$

It is clear that $\|aX\|_p = |a|\|X\|_p$ and that $\|X\|_p \geq 0$ is zero only if $X = 0$ (with probability one). What is less obvious is that this is indeed a norm in the vector space of all simple random variables.

Theorem 5.4 (Minkowski’s inequality).

(5.14)

$$
\|X + Y\|_p \leq \|X\|_p + \|Y\|_p
$$

Sketch of proof. We will use a more general version of Jensen’s inequality: if $\varphi : [0, \infty) \times [0, \infty) \to \mathbb{R}$ is convex then and $X, Y \geq 0$ then $\varphi(E(X), E(Y)) \leq E(\varphi(X, Y))$.

We apply this to the convex function

$$
\varphi(x, y) = -(x^{1/p} + y^{1/p})^p \quad x, y \geq 0
$$

We get

$$
E(\sqrt[p]{X} + \sqrt[p]{Y})^p \leq (\sqrt[p]{E(X)} + \sqrt[p]{E(Y)})^p
$$

We now replace $X, Y \geq 0$ by $|X|^p, |Y|^p$

The following generalization of Cauchy-Schwarz inequality is often useful

Theorem 5.5 (Hölder’s inequality). Suppose $p, q > 1$ are conjugate exponents $1/p + 1/q = 1$.

Then

(5.15)

$$
|E(XY)| \leq \|X\|_p \|Y\|_q
$$
5. Simple random variables

Sketch of proof. We apply Jensen’s inequality to convex function $-\sqrt[2]{x}\sqrt[2]{y}$, $x, y \geq 0$. We get

$$E\left(\sqrt[2]{X} \sqrt[2]{E(Y)}\right) \leq \sqrt[2]{E(X) \sqrt[2]{E(Y)}}$$

We then replace $X, Y \geq 0$ by $|X|^p$ and $|Y|^q$ to get $|E(XY)| \leq E(|X||Y|) \leq \|X\|_p\|Y\|_q$. □

4. The law of large numbers

This is based on [Billingsley, Section 6]. Let X_1, X_2, \ldots be a sequence of simple independent identically distributed random variables on some probability space (Ω, \mathcal{F}, P). Define $S_n = X_1 + \cdots + X_n$. Denote $m = E(X_n)$.

Theorem 5.6. $\frac{1}{n}S_n \to m$ with probability one.

Proof. Without loss of generality we can assume $m = 0$. (Replace X_n by $X_n - m$.) We will use Borel-Cantelli lemma to verify that for every $\varepsilon > 0$, $P\left(\frac{1}{n}|S_n| \geq \varepsilon \text{ i.o.}\right) = 0$. We use Markov’s inequality,

$$P\left(\frac{1}{n}|S_n| \geq \varepsilon\right) \leq \frac{E(S_n)^4}{\varepsilon^4n^4}$$

We note that

$$E(S_n)^4 = \sum_{j_1, j_2, j_3, j_4=1}^n E(X_{j_1}X_{j_2}X_{j_3}X_{j_4}) = nE(X_1^4) + 3n(n-1)E(X_1^2)^2 \leq Cn^2$$

Thus $\sum_n P\left(\frac{1}{n}|S_n| \geq \varepsilon\right) < \infty$. By Borel-Cantelli (Theorem 3.6) $P\left(\frac{1}{n}|S_n| > \varepsilon \text{ i.o.}\right) = 0$, see the proof of Proposition 4.11. □

Required Exercises

Exercise 5.1. Let X, Y be simple random variables that (together) take values $0, 1, 2, \ldots, m$. Write

$$X = \sum_{j=0}^m jI_{A_j}, \quad Y = \sum_{j=0}^m jI_{B_j}.$$

Show that $\sigma(X, Y) = \sigma(A_0, A_1, \ldots, A_m, B_0, B_1, \ldots, B_m)$.

Exercise 5.2 (Statistics). Show that the number $m = E(X)$ minimizes the function $\int x \mapsto f(x) = E((X - x)^2)$.

Exercise 5.3. Suppose X has non-negative integers $\{0, 1, 2, \ldots\}$ as values. Prove that $E(X) = \sum_{n=1}^\infty P(X \geq n)$.

Exercise 5.4. We say that random variables are centered if their mean is zero. We say that random variables X, Y are uncorrelated if $E(XY) = E(X)E(Y)$. Show that if X_1, X_2, \ldots are (pairwise) uncorrelated and centered then $\frac{1}{n}S_n \overset{p}{\to} 0$.

3Quadratic Loss Function
Exercise 5.5. Complete details in the sketch of proof for Minkowski’s inequality.

Exercise 5.6. Complete details in the sketch of proof for Hölder’s inequality.

Exercise 5.7. Show that L^p-convergence implies convergence in probability: if $\|X_n - X\|_p \to 0$ then $X_n \xrightarrow{p} X$.

Exercise 5.8. Show that $X_n \to X$ with probability 1 iff for every $\varepsilon > 0$ there exists n such that $P(|X_k - X| < \varepsilon, n \leq k \leq n) \geq 1 - \varepsilon$ for all $m > n$.

Exercise 5.9. Suppose X_1, X_2, \ldots are independent uniformly bounded mean zero (simple) random variables. Prove that

$$\frac{1}{n} \sum_{j=1}^{n} X_j X_{j+1} \to 0$$

with probability 1.

Hint: Verify that $\Omega_0 = \{\omega : \frac{1}{n^2} \sum_{j=1}^{n} X_j X_{j+1} \to 0\}$ has probability 1. Then show that this implies convergence in (5.16) for every $\omega \in \Omega_0$.

Exercise 5.10. Suppose X has mean m and variance σ^2. For $\alpha \geq 0$, prove Cantelli’s inequality

$$P(X - m \geq \alpha) \leq \frac{\sigma^2}{\sigma^2 + \alpha^2}$$

Deduce that

$$P(|X - m| \geq \alpha) \leq \frac{2\sigma^2}{\sigma^2 + \alpha^2}$$

When is this better than Chebyshev’s inequality?

Hint: Assume $m = 0$. $P(X \geq \alpha) \leq P((X + x)^2 \geq (\alpha + x)^2)$. Apply Markov’s inequality, minimize over $x > 0$.
Addenda

1. Modeling an infinite number of tosses of a coin

Consider a probability space $\Omega = (0,1]$ with field B_0 and probability measure λ as defined in Theorem 1.2. For $\omega \in \Omega$, write $\omega = \sum_{n=1}^{\infty} d_n(\omega)/2^n$ as the (non-terminating) binary expansion. For example, $\omega = 1/2$ has two such expansions:

$$1/2 = 1/2 + 0/2^2 + 0/2^3 \cdots = 0.1$$ and $1/2 = 0/2 + 1/2^2 + 1/2^3 + \cdots = .0111\ldots$

and we take the second expansion, so that $d_1(\omega) = 0$ and $d_2(\omega) = d_3(\omega) = \cdots = 1$.

Proposition A.1. For a sequence of digits $\varepsilon_1, \ldots, \varepsilon_n \in \{0, 1\}$, the set

$$A = \{ \omega : d_1(\omega) = \varepsilon_1, d_2(\omega) = \varepsilon_2, \ldots, d_n(\omega) = \varepsilon_n \}$$

is in B_0 and has measure $\lambda(A) = 1/2^n$.

Proof. We check that $A = \left(\frac{k}{2^n}, \frac{k+1}{2^n} \right]$ is a diadic interval with $k = 2^{n-1}\varepsilon_1 + 2^{n-2}\varepsilon_2 + \cdots + 2\varepsilon_{n-1} + \varepsilon_n$.

(Omitted in 2018)
(The details were done in class.)

Here is a probabilistic interpretation: Toss a coin repeatedly, and label the outcomes of the tosses as 0 or 1. Here 1 represents "a success" and 0 represents a "failure". Event A occurs if a sequence of tosses produces the prescribed sequence of $\varepsilon_1, \ldots, \varepsilon_n \in \{0, 1\}$ - the prescribed "pattern" of failures and successes.

The probability that event A occurs is $1/2^n$, and it is the same for each of the 2^n possible choices of $\varepsilon_1, \ldots, \varepsilon_n \in \{0, 1\}$. Note however that n is not fixed, so we have a model for an infinite number of tosses. This infinite sequence of "tosses" arises from a single use of "a random number generator" that gives us $\omega \in (0,1]$ "at random".
The following additional facts could be worked out for this model.

(i) One can compute the probability of exactly k "successes" in n tosses. For $n \in \mathbb{N}$ and integer $0 \leq k \leq n$, the set $B = \{ \omega : d_1(\omega) + \cdots + d_n(\omega) = k \}$ is in \mathcal{B}_0 and $\lambda(B) = \binom{n}{k}/2^n$ gives the probability for k "successes" in n tosses of a coin.

(ii) One can compute the probability that the n-th toss was successful. The set $D_n = \{ \omega : d_n(\omega) = 1 \}$ is in \mathcal{B}_0 and we have $\lambda(D_n) = 1/2$.

(iii) The set $C_1 = \{ \omega : d_n(\omega) = 1 \text{ for some } n \} = \bigcup_n D_n$ does not "have to be" in \mathcal{B}_0, but in fact it is (what is it?). Relying on our lifetime of experience with tossing coins, and based on the "probabilistic interpretation" that event C_1 occurs if we are successful at least once while tossing a coin repeatedly, we anticipate that we are "guaranteed" that C_1 occurs, that is we anticipate that $\lambda(C_1) = 1$.

(iv) The set $D^* = \limsup_n D_n$ is a subset of C_1 which is also in \mathcal{B}_0. Since $D^* = \{ D_n \text{ i.o.} \}$ occurs when an infinite sequence of tosses results in an infinite number of successes, our experience with tossing the coins tells us that we should assign here probability $\lambda(D^*) = 1$, too.

(v) The set $C = \{ \omega : d_n(\omega) = 0 \text{ for some } n \} = \bigcup_n D_n^c$ is not in \mathcal{B}_0, so we cannot compute its probability, yet. But of course it is in $\sigma(\mathcal{B}_0)$, and precisely this kind of situation is the topic for the next set of lectures. Based on our lifetime of experience with tossing coins, and based on the "probabilistic interpretation" that event C occurs if we "fail" at least once while tossing a coin repeatedly, we would like to "improve" our model to ensure that we are "guaranteed" that C occurs, that is we would like to have $\lambda(C) = 1$.

(vi) The set $F = \limsup_n D_n^c = (\liminf_n D_n)^c$ is a subset of C which is not in \mathcal{B}_0 either, so we cannot compute its probability, yet. But of course F is in $\sigma(\mathcal{B}_0)$, and precisely this kind of situation is the topic for the next set of lectures. Since $F = \{ D_n^c \text{ i.o.} \}$ occurs when an infinite sequence of tosses results in an infinite number of failures, our experience with tossing the coins tells us that we should assign here probability $\lambda(F) = 1$, too.
Bibliography

[Gut] A. Gut, Probability: a graduate course
Index

$L – p$-norm, 55
L_1 metric, 11
L_2 metric, 11
λ-system, 25
π-system, 25
σ-field, 16
σ-field generated by X, 41

distribution of a random variable, 42
Bernoulli random variables, 46
Binomial distribution, 17, 62
bivariate cumulative distribution function, 30
Bonferroni’s correction, 18
Boole’s inequality, 18
Borel σ-field, 41
Borel sigma-field, 16
Cantelli’s inequality, 57
cardinality, 9
Cauchy distribution, 93
Cauchy-Schwarz inequality, 54
centered, 56
Central Limit Theorem, 97
characteristic function, 89
characteristic function – continuity theorem, 93
Characteristic functions – uniqueness, 92
Characteristic functions – inversion formula, 92
Chebyshev’s inequality, 54
complex numbers, 88
conjugate exponents, 55
continuity condition, 14
convergence in distribution, 48, 79
converges in distribution, 103
converges in probability, 46
converges pointwise, 7
converges uniformly, 7
converges with probability 1, 47
convex function, 54
countable additivity, 14
covariance matrix, 106
cumulative distribution function, 26, 43
cylindrical sets, 32, 33
cylindrical sets, 32
DeMorgan’s law, 8
density function, 29
diadic interval, 111
discrete random variable, 62
discrete random variables, 45
equal in distribution, 43
events, 13, 17
expected value, 52
Exponential distribution, 63
exponential distribution, 29
Fatou’s lemma, 61
field, 13
finitely dimensional distributions, 32
finitely-additive probability measure, 14
Fubini’s Theorem, 68
Geometric distribution, 63
Hölder’s inequality, 55, 64
inclusion-exclusion, 18
independent σ-fields, 35
independent events, 35
independent identically distributed, 46
independent random variables, 44
indicator functions, 9
induced measure, 42
infinite number of tosses of a coin, 111
inTEGRABLE, 60
intersection, 8
Jensen’s inequality, 54
joint cumulative distribution function, 30
joint distribution of random variables, 43
Kolmogorov’s maximal inequality, 73
Kolmogorov’s one series theorem, 74
Kolmogorov’s three series theorem, 74
Kolmogorov’s two series theorem, 74
Kolmogorov’s zero-one law, 73
Kolmogorov-Smirnov metric, 10, 11
Kronecker’s Lemma, 75
Lévy distance, 85
law of X, 42
Lebesgue’s dominated convergence theorem, 61
Lebesgue’s dominated convergence theorem – used, 62, 72, 81, 94
Levy’s metric, 11
Levy’s theorem, 76
Lindeberg condition, 99
Lyapunov’s condition, 100
Lyapunov’s inequality, 54
marginal cumulative distribution functions, 30
Markov’s inequality, 54
maximal inequality, Etemadi’s, 76
maximal inequality, Kolmogorov’s, 73
measurable function, 41
measurable rectangle, 67
metric, 10
metric space, 10
Minkowski’s inequality, 55
Minkowski’s inequality, 64
moment generating function, 66
Monotone Convergence Theorem, 61
multivariate normal, 105
multivariate normal distribution, 106
multivariate random variable, 41
negative binomial distribution, 18
normal distribution, 29
Poisson distribution, 18, 63
Polya’s distribution, 18
Portmanteau Theorem, 81
power set, 7
probability, 13
probability measure, 14
probability space, 13, 17
product measure, 68
quantile function, 44, 81
random element, 41
random variable, 41
random vector, 41
sample space, 13
Scheffe’s theorem, 79
section, 67
semi-algebra, 15
semi-ring, 15
sigma-field generated by A, 16
simple random variable, 51
simple random variables, 45
Skorohod’s theorem, 81
Slutsky’s Theorem, 80
Standard normal density, 63
stochastic process with continuous trajectories, 43
stochastic processes, 42
stochastically bounded, 50
symmetric distribution, 77
tail sigma-field, 36
Tail integration formula, 69
Taylor polynomials, 87
tight, 50
tight probability measure, 19
Tonelli’s theorem, 68
total variation metric, 11
truncation of r.v., 49
uncorrelated, 56
uniform continuous, 28
Uniform density, 63
uniform discrete, 28
uniform singular, 28
uniformly integrable, 62, 83
union, 8
variance, 53
Wasserstein distance, 11
zero-one law, 36, 73