MATH 6012 Exam-1-2019 Answer: Key

1. Find the cosine of the angle between vectors \(\vec{u} + \vec{v} \) and \(\vec{u} - \vec{v} \) if \(\vec{u} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \) and \(\vec{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \).

Answer: \(\vec{s} = \vec{u} + \vec{v} = \begin{bmatrix} 2 \\ 1 \\ 2 \\ 1 \end{bmatrix} \) and \(\vec{d} = \vec{u} - \vec{v} = \begin{bmatrix} 0 \\ -1 \\ 0 \\ -1 \end{bmatrix} \) so

\[
\cos \theta = \frac{\vec{s} \cdot \vec{d}}{\| \vec{s} \| \times \| \vec{d} \|} = \frac{-2}{\sqrt{10} \sqrt{2}} = -\frac{\sqrt{5}}{5}
\]

The angle is obtuse, with \(\theta \approx 2.03444 \) radians, i.e., about 116.565°.

2. Use the definition to show that functions \(g_1(x) = 1, g_2(x) = x, g_3(x) = x(e^x + e^{-x}) \) are linearly independent.

Answer: Suppose

\[c_1 g_1 + c_2 g_2 + c_3 g_3 = 0 \text{ for all real } x. \]

(\(^*)\)

Our goal is to show that this implies \(c_1 = c_2 = c_3 = 0. \)

Routine solution: Denote by \(f(x) \) the left hand side of \((*)\). Then \(f(0) = c_1 = 0, f'(0) = c_2 + 2c_3 = 0, f''(0) = 0, f'''(0) = 6c_3 = 0. \) This gives a system of 4 equations for 3 unknown coefficients \(c_1, c_2, c_3: \)

\[
\begin{align*}
 c_1 &= 0 \\
 c_2 + 2c_3 &= 0 \\
 0 &= 0 \\
 6c_3 &= 0
\end{align*}
\]

Clearly, all \(c_j = 0. \)

In summary, we showed that if \((*)\) holds then we must have \(c_0 = c_1 = c_2 = c_3 = 0, \) i.e. the functions are linearly independent.

There are numerous other solutions. An ad-hoc method: Evaluating \((*)\) expression at \(x = 0 \) we get \(c_1 = 0, \) as \(g_2(0) = g_3(0) = 0. \)

So \((*)\) becomes \(c_2 g_2 + c_3 g_3 = 0, \) i.e.

\[c_2 x + c_3 x(e^x + e^{-x}) = 0 \]

Dividing by \(x, \) we get

\[c_2 + c_3(x(e^x + e^{-x})) = 0 \]

(**)

Differentiating \((**\) at \(x = 1 \) we get \(c_3(e - \frac{1}{e}) = 0, \) so \(c_3 = 0. \) Inserting this back into \((**)\) we see that \(c_2 = 0, \) too.
3. Matrix $A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 7 \end{bmatrix}$ is row equivalent to matrix $B = \begin{bmatrix} 1 & 0 & -1 & -2 & -3 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$. Use this information to find a basis (and the dimension) for the null space $\text{Null}(A) = \{ \vec{x} : A\vec{x} = \vec{0} \}$.

Answer: Equation $A\vec{x} = \vec{0}$ is equivalent to $B\vec{x} = \vec{0}$, and B is in echelon form, so we can read out the solution. Basic variables are x_1, x_2. Free variables are $x_3 = u, x_4 = s, x_5 = t$. We get

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ -2u - 3s - 4t \\ u \\ s \\ t \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ -3 \\ 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

So the solution set is the span of 3 linearly independent vectors in \mathbb{R}^5:

$$\begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

The dimension of the $\text{Null}(A)$ is 3.

4. Consider the following basis $B = \langle 1, 1 - t, (1 - t)^2 \rangle$ of the vector space P_2 of quadratic polynomials. (You do not need to check that this is a basis of P_2)

(a) Which polynomial p has coordinates $\text{Rep}_B(p) = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$? Simplify your answer.

Answer: From the definition of coordinates, we have $p(t) = 3 + 2(1 - t) + (1 - t)^2 = 6 - 4t + t^2$

(b) What are the coordinates of the monomial t^2 in basis B?

Answer: $t^2 = (t - 1 + 1)^2 = (t - 1)^2 + 2(t - 1) + 1 = (t - 1)^2 - 2(1 - t) + 1$ so the coordinates are $[t^2]_B = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$
5. Suppose \(V = \text{span}\{1, \cos x, \sin x\} \) and \(W = \text{span}\{1, x, \cos x, \sin x\} \). Let \(S : V \rightarrow W \) be a mapping which to a function \(f(x) \) assigns its definite integral, the function \(g(x) = \int_0^x f(t)dt \). Without checking you can assume that \(S \) is a linear mapping and that the above sets of functions are linearly independent, so they form respective bases of the spaces \(V \) and \(W \).

(a) Find the matrix representation of \(S \) with respect to the above bases. **Answer:**

\[
\begin{align*}
\int_0^x 1dt &= x, \\
\int_0^x \cos tdt &= \sin x, \\
\int_0^x \sin tdt &= 1 - \cos x
\end{align*}
\]

So the columns of the matrix representation are the expansions of these functions in the second basis, i.e.

\[
\begin{bmatrix}
0 \\
1 \\
0 \\
1
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
1
\end{bmatrix},
\begin{bmatrix}
1 \\
0 \\
-1 \\
0
\end{bmatrix}
\]

(b) Is \(S \) one-to-one? Justify your answer. **Answer:** #1: Yes, the columns of \(A \) are linearly independent - this is easier seen after swapping the last two! **Answer:** #2: If \(\int_0^x f(t)dt = \int_0^x g(t)dt \) and \(f, g \) are continuous then by differentiation we get \(f = g \). So yes, it is one-to-one

(c) Is \(S \) onto? Justify your answer. **Answer:** #1: No, the dimensions do not match. The dimension of range of \(S \) can be at most 3. **Answer:** #2: If \(f(x) = a + b \cos x + c \sin x \) then \(S(f)(x) = ax + b \sin x + c - c \cos x \) so the range of range of \(S \) is span of functions \(x, \sin x, \cos x - 1 \) and is three dimensional, not the four dimensional space \(W \).
6. Find the inverse of \(A = \begin{bmatrix} 1 & b & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \) for arbitrary \(b \in \mathbb{R} \).

Answer: \(A^{-1} = \begin{bmatrix} 1 & -b & 2b - 3 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \)