Linear Algebra MATH 2076 Worksheet Key

This is an in-class worksheet on coordinates.

1. Consider the following basis \(B = \{1, 1 + t, (1 + t)^2\} \) of the vector space \(\mathbb{P}_2 \) of quadratic polynomials.

(a) Which polynomial \(p \) has coordinates \([p]_B = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}\)? Simplify your answer.

\[
p(t) = 3 + 2(1 + t) + (1 + t)^2 = 6 + 4t + t^2
\]

(b) What are the coordinates of the monomial \(t^2 \) in basis \(B \)?

\[
t^2 = (t + 1 - 1)^2 = (t + 1)^2 - 2(t + 1) + 1 \text{ so the coordinates are } [t^2]_B = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}
\]

2. Consider the subspace \(H \) of \(\mathbb{R}^4 \) spanned by the vectors \(\vec{b}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \vec{b}_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix}, \vec{b}_3 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix} \). Assume (without checking) that \(B = \{\vec{b}_1, \vec{b}_2, \vec{b}_3\} \) is linearly independent so that \(B \) is a basis of \(H \).

(a) Find the coordinates of vector \(\vec{v} = \begin{bmatrix} 5 \\ 7 \\ 11 \\ 11 \end{bmatrix} \) in basis \(B \).

We need to solve the system of equations \(c_1 \vec{b}_1 + c_2 \vec{b}_2 + c_3 \vec{b}_3 = \vec{v} \) for the unknown coordinates \(c_1, c_2, c_3 \) of vector \(\vec{v} \) in basis \(B \). That is

\[
c_1 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 11 \\ 11 \end{bmatrix}
\]

The augmented matrix of this system is

\[
\begin{bmatrix}
1 & 1 & 1 & 5 \\
1 & 2 & 2 & 7 \\
1 & 2 & 3 & 11 \\
1 & 2 & 3 & 11
\end{bmatrix}
\]

After row reduction we get

\[
\begin{bmatrix}
1 & 1 & 1 & 5 \\
0 & 1 & 1 & 2 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

Solving the resulting system \(c_1 + c_2 + c_3 = 5, c_2 + c_3 = 2, c_3 = 4 \) we get \(c_1 = 3, c_2 = -2, c_3 = 4 \).

So the coordinates of \(\vec{v} \) in basis \(B \) are \(\begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix} \).
3. Consider the vector space V of all symmetric 2 by 2 matrices with the basis $B = \{ A_1, A_2, A_3 \}$ where $A_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $A_2 = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$, $A_3 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. (These matrices come from the take-home quiz where you verified their linear independence.)

(a) Find the coordinates of the identity matrix I in this basis.

(b) Which matrix A has coordinates $[A]_B = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$?

(c) Which 2×2 matrix is not in V?

4. Prove that polynomials $p_1(t) = t^3$, $p_2(t) = (1-t)^3$, $p_3(t) = (1+t)^3$ are linearly independent. (This can be done in many ways - for this worksheet, use the coordinates!)

There are many ways of solving this question: one can compute the derivatives, one can express the problem in the standard coordinates, or one can choose enough values of t. Here is one of the solutions by the latter method:

Consider $f(t) = C_1 t^3 + C_2 (1-t)^3 + C_3 (1+t)^3$ and suppose that $f(t) = 0$ for all t. Then $f(0) = 0$ and $f(1) = 0$ and $f(-1) = 0$ so we get the following system of equations:

\[
\begin{align*}
C_2 + C_3 &= 0 \\
C_1 + 8C_3 &= 0 \\
-C_1 - 8C_2 &= 0
\end{align*}
\]

The matrix of this system is $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 8 \\ -1 & -8 & 0 \end{bmatrix}$. Now

\[
\det A = \det \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 8 \\ 0 & -8 & 0 \end{bmatrix} = -\det \begin{bmatrix} 1 & 1 \\ -8 & 8 \end{bmatrix} = -16 \neq 0
\]

So A is invertible. We now use the invertibility as follows:

Write $\vec{C} = \begin{bmatrix} C_1 \\ C_2 \\ C_3 \end{bmatrix}$. The system of equations (1-3) in vector notation is $A \vec{C} = \vec{0}$. Since A is invertible, the equation $A\vec{C} = \vec{0}$ has the unique solution $\vec{C} = A^{-1}\vec{0} = \vec{0}$. So $\vec{C} = \begin{bmatrix} C_1 \\ C_2 \\ C_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. This shows that $C_1 = C_2 = C_3 = 0$ is the only choice of the coefficients for the linear combination to make $f(t) = 0$ for all t.