1. Consider \(\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix} \) and \(H = \text{span}\{ \vec{v}_1, \vec{v}_2, \vec{v}_3 \} \) where

\[
\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \\ 0 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ -1 \\ 0 \end{bmatrix}
\]

Check that \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \) are orthogonal, and find the distance of \(\vec{x} \) to \(H \).

For practice, you can also find the formula for the orthogonal projection onto \(H \).
2. Let H be the null space of matrix $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \end{bmatrix}$. Find the formula for the orthogonal projection onto H. (Or find matrix representation for the projection.)

Note: This is a long problem! You need to find a basis for H then find orthogonal basis for H, and then the matrix for the projection.