MATH 2076 Quiz-1 Answer: Key

Be sure to show your work. No credit for inspired answers!

1. Use Gaussian elimination and the echelon form to determine the values of \(h \) such that the matrix
\[
\begin{bmatrix}
1 & -1 & 4 \\
-2 & 3 & h \\
0 & 1 & 8 + h
\end{bmatrix}
\]
is the augmented matrix of a consistent linear system. (Be sure to write the echelon form!)

Answer: This problem is similar to problems 19-22 in Section 1.1. The echelon form of the augmented matrix is
\[
\begin{bmatrix}
1 & -1 & 4 \\
0 & 1 & 8 + h
\end{bmatrix}
\]
with pivots in each row. So the system is consistent for all \(h \).

(In fact, the reduced echelon form is
\[
\begin{bmatrix}
1 & 0 & 12 + h \\
0 & 1 & 8 + h
\end{bmatrix}
\]
. So for every real \(h \), the system has unique solution: \(x = 12 + h \) and \(y = 8 + h \). But the question did not ask for the solution...)

Answer: all \(h \)

2. Use Gaussian elimination to determine if vector \(\vec{b} = \begin{bmatrix} 2 \\ 6 \end{bmatrix} \) is a linear combination of the vectors formed from the columns of matrix
\[
A = \begin{bmatrix}
1 & 0 & 5 \\
-2 & 1 & -6 \\
0 & 2 & 8
\end{bmatrix}
\]

Answer: This problem is similar to problems 13,14 in Section 1.3. Recall that \(\vec{b} \) is in the span of the columns of
\[
A = [\vec{a}_1 \ \vec{a}_2 \ \vec{a}_3]
\]
if we can find \(x_1, x_2, x_3 \in \mathbb{R} \) such that
\[
x_1 \vec{a}_1 + x_2 \vec{a}_2 + x_3 \vec{a}_3 = \vec{b}
\]

With \(\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \), this is the same as
\[
A\vec{x} = \vec{b}
\]
for some \(\vec{x} \in \mathbb{R}^3 \).

To see whether the linear system \(A\vec{x} = \vec{b} \) has a solution we row-reduce the augmented matrix
\[
\begin{bmatrix}
1 & 0 & 5 & 2 \\
-2 & 1 & -6 & -1 \\
0 & 2 & 8 & 6
\end{bmatrix}
\]

The equivalent system has (infinitely many) solutions,
\[
x_1 = 2 - 5x_3, \ x_2 = 3 - 4x_3, \ x_3 \in \mathbb{R} \text{ is free}
\]

For example \(x_1 = 2, \ x_2 = 3, \ x_3 = 0 \) is one such solution, and it is easy to check that it indeed gives the right answer:
\[
2 \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + 0 \begin{bmatrix} 5 \\ -6 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}
\]

So \(\vec{b} \) is indeed in the span of the columns of \(A \), and one such linear combination of the columns is written in equation (1).
MATH 2076 Quiz-1B Answer: Key

Be sure to show your work. **No credit for inspired answers!**

1. Use Gaussian elimination and the echelon form to determine the values of h such that the matrix
\[
\begin{bmatrix}
1 & -1 & h \\
-2 & 3 & 3 \\
0 & 1 & 6 + h
\end{bmatrix}
\]
is the augmented matrix of a consistent linear system. (Be sure to write the echelon form!)

Answer: This problem is similar to problems 19-22 is Section 1.1.

The echelon form of the augmented matrix is
\[
\begin{bmatrix}
1 & -1 & 3 \\
0 & 1 & 6 + h
\end{bmatrix}
\]
with pivots in each row. So the system is consistent for all h.

(In fact, the reduced echelon form is
\[
\begin{bmatrix}
1 & 0 & 9 + h \\
0 & 1 & 6 + h
\end{bmatrix}
\]. So for every real h, the system has unique solution: $x = 9 + h$ and $y = 6 + h$. But the question did not ask for the solution...)

Answer: all h

2. Use Gaussian elimination to determine if vector $\vec{b} = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}$ is a linear combination of the vectors formed from the columns of matrix $A = \begin{bmatrix} 1 & 0 & 5 \\ -2 & 1 & -6 \\ 0 & 2 & 8 \end{bmatrix}$.

Answer: This problem similar to problems 13,14 is Section 1.3.

Recall that \vec{b} is in the span of the columns of $A = [\vec{a}_1 \ \vec{a}_2 \ \vec{a}_3]$ if we can find $x_1, x_2, x_3 \in \mathbb{R}$ such that

\[x_1 \vec{a}_1 + x_2 \vec{a}_2 + x_3 \vec{a}_3 = \vec{b} \]

With $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, this is the same as $A\vec{x} = \vec{b}$ for some $\vec{x} \in \mathbb{R}^3$.

To see whether the linear system $A\vec{x} = \vec{b}$ has a solution we row-reduce the augmented matrix
\[
\begin{bmatrix}
1 & 0 & 5 & 2 \\
-2 & 1 & -6 & -1 \\
0 & 2 & 8 & 6
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 0 & 5 & 2 \\
0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

The equivalent system has (infinitely many) solutions,

\[x_1 = 2 - 5x_3, \ x_2 = 3 - 4x_3, \ x_3 \in \mathbb{R} \text{ is free} \]

For example $x_1 = 2, \ x_2 = 3, \ x_3 = 0$ is one such solution, and it is easy to check that it indeed gives the right answer:

\[2 \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + 0 \begin{bmatrix} 5 \\ -6 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix} \] (2)

So \vec{b} is indeed in the span of the columns of A, and one such linear combination of the columns is written in equation (2).