MATH 2076 Exam-2 Answer: Key

Be sure to show your work. No credit for inspired answers! No calculators/computers/cell phones.

1. Compute the determinant of matrix
\[
\begin{bmatrix}
0 & 0 & \sqrt{2} & e \\
0 & \sqrt{3} & 0 & e \\
0 & 0 & \sqrt{2} & 0 \\
\pi & \sqrt{3} & \sqrt{2} & e
\end{bmatrix}
\]
(e is the basis of the natural logarithm; \(\pi\) is the area of the unit disk.)

Answer: The determinant is \(-e\pi\sqrt{6}\).

2. Compute the determinant of matrix
\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 \\
1 & 2 & a & 3 \\
1 & 2 & 3 & a
\end{bmatrix}
\]
Hint: Gaussian elimination works well here.

Answer: \(\det A = (a - 2)^2 - 1 = a^2 - 4a + 3\)

3. Let \(A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & 2 & 4 \\ 2 & 4 & 3 & 5 \end{bmatrix}\). Answer: \(A \mapsto \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 3 \\ 0 & 2 & 1 & 3 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 1/2 & -1/2 \\ 0 & 0 & 0 & 0 \end{bmatrix}

(a) Find a basis for the null space of matrix \(A\). Answer: \(x_1 = -s/2 + t/2, x_2 = -s/2 - 3/2t\) so a basis is
\[
\begin{bmatrix}
-1/2 \\
-1/2 \\
1 \\
0
\end{bmatrix},
\begin{bmatrix}
1/2 \\
-3/2 \\
0 \\
1
\end{bmatrix}
\]

(b) Find a basis for the column space of matrix \(A\). Answer: \(\begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}\)

(c) Find a basis for the row space of matrix \(A\). Answer: \(\begin{bmatrix} 1 & 0 & 1/2 & -1/2, 1 & 1/2 & 3/2 \end{bmatrix}\)

4. Consider the vector space \(V\) of all symmetric 2 by 2 matrices with the basis \(B = \{A_1, A_2, A_3\}\) where \(A_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}\), \(A_2 = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}\), \(A_3 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}\).

(a) Find the coordinates of the matrix \(A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}\) in this basis.

(b) Which matrix \(C\) has coordinates \([C]_B = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}\)?

Answer: \(A_2 - A_1 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\), \(A_3 - A_2 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\) and \(A_3 - A_1 = I\) so \(A = 2A_1 - A_3 + (A_2 - A_1) = A_1 + A_2 - A_3\).

\([A]_B = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}\)

\(B = A_1 + 2A_2 + 3A_3 = \begin{bmatrix} 9 & 6 \\ 6 & 11 \end{bmatrix}\)
5. Prove that polynomials $p_1(t) = t^2, p_2(t) = (1-t)^2, p_3(t) = (1+t)^2$ are linearly independent.

Answer: There are many ways of solving this question: one can compute the derivatives, one can express the problem in the standard coordinates, or one can choose enough values of t. Here is one of the solutions by the latter method:

Consider

$$f(t) = C_1 t^3 + C_2 (1-t)^3 + C_3 (1+t)^3$$

and suppose that $f(t) = 0$ for all t. Then $f(0) = 0$ and $f(1) = 0$ and $f(-1) = 0$ so we get the following system of equations:

\[
\begin{align*}
C_2 + C_3 &= 0 \\
C_1 + 8C_3 &= 0 \\
-C_1 - 8C_2 &= 0
\end{align*}
\]

The matrix of this system is

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 8 \\ -1 & -8 & 0 \end{bmatrix}.$$

Now

$$\det A = \det \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 8 \\ 0 & -8 & 0 \end{bmatrix} = -\det \begin{bmatrix} 1 & 1 \\ -8 & 8 \end{bmatrix} = -16 \neq 0$$

So A is invertible. We now use the invertibility as follows:

Write $\vec{C} = \begin{bmatrix} C_1 \\ C_2 \\ C_3 \end{bmatrix}$. The system of equations (1-3) in vector notation is $A\vec{C} = \vec{0}$. Since A is invertible, the equation $A\vec{C} = \vec{0}$ has the unique solution $\vec{C} = A^{-1} \vec{0} = \vec{0}$. So $\vec{C} = \begin{bmatrix} C_1 \\ C_2 \\ C_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. This shows that $C_1 = C_2 = C_3 = 0$ is the only choice of the coefficients for the linear combination to make $f(t) = 0$ for all t.