Differential Equations MATH 2073 Quiz-5 _key

Instructions. Simplify your answers when appropriate. Be sure to show your work so that it is clear how you got your answers.

1. Solve the initial value problem $y'' - 4y = 6e^t$, $y(0) = 7$, $y'(0) = 0$.

 The homogeneous equation $y'' - 4y = 0$ has characteristic equation $r^2 - 4r = 0$ with roots $r = \pm 2$ that give $y_1 = e^{2t}, y_2 = e^{-2t}$.

 Using method of undetermined parameters, we seek a particular solution $y_\ast = Ae^t$. We compute $A = -2$.

 So the formula $y = C_1y_1 + C_2y_2 + y_\ast$ for the general solution gives $y(t) = C_1e^{2t} + C_2e^{-2t} - 2e^t$.

 Using the initial condition we now compute

 $$y(0) = C_1 + C_2 - 2 = 7$$
 $$y'(0) = 2C_1 - 2C_2 - 2 = 0$$

 We get $C_1 = 5, C_2 = 4$.

 The answer is $y(t) = 5e^{2t} + 4e^{-2t} - 2e^t$.

2. Find the general solution of nonhomogeneous equation $y'' - 4y' + 4y = 6t$.

 We first solve homogeneous equation $y'' - 4y' + 4y = 0$. The characteristic equation is $r^2 - 4r + 4 = (r - 2)^2 = 0$, with double root. The general solution of homogeneous equation is $y = C_1e^{2t} + C_2te^{2t}$.

 By undetermined coefficients method we seek particular solution of the form $y_\ast = A + Bt$. We get $B = \frac{3}{2}, A = B = \frac{3}{2}$ so $y_\ast = \frac{3}{2}(1 + t)$.

 Combining these two together, we get the answer: $y = C_1e^{2t} + C_2te^{2t} + \frac{3}{2}(1 + t)$.
Differential Equations MATH 2073 Quiz-5 \textbf{Key}

\textbf{Instructions.} Simplify your answers when appropriate. Be sure to show your work so that it is clear how you got your answers.

1. Solve the initial value problem \(y'' - 4y = 18e^t \), \(y(0) = 5 \), \(y'(0) = 0 \).

 The homogeneous equation \(y'' - 4y = 0 \) has characteristic equation \(r^2 - 4r = 0 \) with roots \(r = \pm 2 \) that give \(y_1 = e^{2t} \), \(y_2 = e^{-2t} \).

 Using method of undetermined parameters, we seek a particular solution \(y_* = Ae^t \). We compute \(A = -6 \).

 So the formula \(n C_1 y_1 + C_2 y_2 + y_* \) for the general solution gives \(y(t) = C_1 e^{2t} + C_2 e^{-2t} - 6e^t \).

 Using the initial condition we now compute

 \[
 \begin{align*}
 y(0) &= C_1 + C_2 - 6 = 5 \\
 y'(0) &= 2C_1 - 2C_2 - 6 = 0
 \end{align*}
 \]

 We get \(C_1 = 7, C_2 = 4 \).

 The answer is \(y(t) = 7e^{2t} + 4e^{-2t} - 6e^t \).

2. Find the general solution of nonhomogeneous equation \(y'' - 4y' + 4y = 10t \).

 We first solve homogeneous equation \(y'' - 4y' + 4y = 0 \). The characteristic equation is \(r^2 - 4r + 4 = (r - 2)^2 = 0 \), with double root. The general solution of homogeneous equation is \(y = C_1 e^{2t} + C_2 te^{2t} \).

 By undetermined coefficients method we seek particular solution of the form \(y_* = A + Bt \). We get \(B = \frac{5}{2}, A = B = \frac{5}{2} \) so \(y_* = \frac{5}{2}(1 + t) \).

 Combining these two together, we get the answer: \(y = C_1 e^{2t} + C_2 te^{2t} + \frac{5}{2}(1 + t) \).
Differential Equations MATH 2073 Quiz-5c \textbf{key}

\textbf{Instructions.} Simplify your answers when appropriate. Be sure to show your work so that it is clear how you got your answers.

1. Solve the initial value problem \(y'' - 4y = 12e^t, \ y(0) = 2, \ y'(0) = 0. \)

The homogeneous equation \(y'' - 4y = 0 \) has characteristic equation \(r^2 - 4r = 0 \) with roots \(r = \pm 2 \) that give \(y_1 = e^{2t}, \ y_2 = e^{-2t}. \)

Using method of undetermined parameters, we seek a particular solution \(y_\ast = Ae^t. \) We compute \(A = -4. \)

So the formula \(y = C_1y_1 + C_2y_2 + y_\ast \) for the general solution gives \(y(t) = C_1e^{2t} + C_2e^{-2t} - 4e^t. \)

Using the initial condition we now compute

\[
\begin{align*}
y(0) &= C_1 + C_2 - 4 = 2 \\
y'(0) &= 2C_1 - 2C_2 - 4 = 0
\end{align*}
\]

We get \(C_1 = 4, C_2 = 2. \)

The answer is \(\{y(t) = 4e^{2t} + 2e^{-2t} - 4e^t\}. \)

2. Find the general solution of nonhomogeneous equation \(y'' - 4y' + 4y = 8t. \)

We first solve homogeneous equation \(y'' - 4y' + 4y = 0. \) The characteristic equation is \(r^2 - 4r + 4 = (r - 2)^2 = 0, \) with double root. The general solution of homogeneous equation is \(y = C_1e^{2t} + C_2te^{2t}. \)

By undetermined coefficients method we seek particular solution of the form \(y_\ast = A + Bt. \) We get \(B = 2, \ A = B = 2 \) so \(y_\ast = 2(1 + t). \)

Combining these two together, we get the answer: \(\{y = C_1e^{2t} + C_2te^{2t} + 2(1 + t)\}. \)
Differential Equations MATH 2073 Quiz-5 Key

Instructions. Simplify your answers when appropriate. Be sure to show your work so that it is clear how you got your answers.

1. Solve the initial value problem \(y'' - 4y = 12e^t, \ y(0) = 4, \ y'(0) = 0. \)

 The homogeneous equation \(y'' - 4y = 0 \) has characteristic equation \(r^2 - 4r = 0 \) with roots \(r = \pm 2 \) that give \(y_1 = e^{2t}, \ y_2 = e^{-2t}. \)

 Using method of undetermined parameters, we seek a particular solution \(y_* = Ae^t. \) We compute \(A = -4. \)

 So the formula \(n \ C_1 y_1 + C_2 y_2 + y_* \) for the general solution gives \(y(t) = C_1 e^{2t} + C_2 e^{-2t} - 4e^t. \)

 Using the initial condition we now compute

 \[
 y(0) = C_1 + C_2 - 4 = 4 \\
 y'(0) = 2C_1 - 2C_2 - 4 = 0
 \]

 We get \(C_1 = 5, \ C_2 = 3. \)

 The answer is \(y(t) = 5e^{2t} + 3e^{-2t} - 4e^t. \)

2. Find the general solution of nonhomogeneous equation \(y'' - 4y' + 4y = 5t. \)

 We first solve homogeneous equation \(y'' - 4y' + 4y = 0. \) The characteristic equation is \(r^2 - 4r + 4 = (r - 2)^2 = 0, \) with double root. The general solution of homogeneous equation is \(y = C_1 e^{2t} + C_2 te^{2t}. \)

 By undetermined coefficients method we seek particular solution of the form \(y_* = A + Bt. \) We get \(B = \frac{5}{4}, \ A = B = \frac{5}{4} \) so \(y_* = \frac{5}{4}(1 + t). \)

 Combining these two together, we get the answer: \(y = C_1 e^{2t} + C_2 te^{2t} + \frac{5}{4}(1 + t). \)