
ILC Analysis of BICEP2 and Keck Array CMB
Polarization Data through the 2015 Observing

Season

A dissertation submitted to the
Graduate School of the University of Cincinnati

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in the Department of Physics

of the College of Arts and Sciences

by

Emma Hand
June 2023

supervised by

Dr. Colin Bischoff

Committee Member: Dr. Kay Kinoshita, Physics

Committee Member: Dr. Rohana Wijewardhana, Physics

Committee Member: Dr. Adam Aurisano, Physics



Abstract

The cosmic microwave background (CMB) is a snapshot of the universe at recombination, the

moment when the universe became transparent. Understanding the CMB could allow us to

constrain or rule out aspects of inflation theory, which suggests that the Universe underwent

a period of rapid expansion mere moments after the Big Bang. Specifically, we hope to

detect primordial gravitational waves (PGW), an as yet unobserved phenomenon predicted

by many inflationary models. BICEP/Keck is an experiment based at the South Pole with

telescopes that are specified to observe B-mode polarization patterns caused by PGW at

microwave wavelengths. The tensor-to-scalar ratio r is a parameter which if constrained

could provide indirect evidence of PGWs. Presented is the work I have done in an internal

linear combination (ILC) component separation method to separate the CMB signal from

galactic foregrounds while minimizing noise, and the likelihood analysis I performed with

the ILC results in an effort to constrain r.
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Chapter 1

Introduction

1.1 Cosmology

The Universe is a vast, empty space that is continuously expanding. The study of the be-

ginning of the Universe and how it evolved to its current state is called cosmology. Many

decades of ground and space based observations have given us the standard cosmological

model ΛCDM which tells us that the makeup of the Universe is cold dark matter (CDM),

baryonic matter, and dark energy (associated with a cosmological constant denoted by Λ,

which is a favored specific model of dark energy) [1], which drives the acceleration of the

expansion of the Universe. It tells us that the Universe began 13.7 billion years ago in the

Big Bang and has been expanding ever since. It does not, however, explain the flatness of

the Universe, the horizon problem, or how large scale structure was able to occur. Infla-

tion theory postulates that the Universe rapidly expanded during a period of approximately

10−35 seconds after the Big Bang, and can address these shortcomings of ΛCDM. The cos-

mic microwave background (CMB) is a remnant radiation field that gives us a snapshot of

the Universe just before recombination, the study of which can strengthen the argument

for Inflation theory. For this reason the BICEP/Keck collaboration specializes in looking

1



1.1. COSMOLOGY CHAPTER 1. INTRODUCTION

for B-mode patterns in the CMB polarization. This chapter will delve into the standard

cosmological model and inflation, and provide a deeper picture as to why the CMB is central

to understanding the early Universe.

1.1.1 The Standard Model of Cosmology

The standard model of cosmology assumes general relativity and invokes the cosmological

principle that the universe at large scales is homogeneous and isotropic. The following is a

brief derivation of the cosmological model beginning with the Einstein field equations.

At large scales, the behavior of the Universe can be described with the Einstein field

equations [2]:

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν (1.1)

where R and Rµν are the Ricci curvature scalar and tensor, Λ is the cosmological constant,

gµν is the metric tensor which describes the geometry of space-time, G is Newton’s constant

and Tµν is the stress-energy tensor which describes density and flux of momentum and energy

in space-time. Essentially, equation (1.1) relates the dynamics between the geometry and

energy of space-time, and solutions to this equation require some knowledge of the contents

and assumptions of the space-time metric. Assuming the cosmological principle, we can use

the Friedmann-Robertson-Walker (FRW) metric ds2 to describe space-time:

ds2 = c2dt2 − a(t)2
(

dr2

1− kr2
+ r2dθ + r2sin2θdϕ2

)
(1.2)

where t is the temporal coordinate, (r, θ, ϕ) are the spatial comoving coordinates, and k is

spatial curvature (k = 0 for a flat universe). The scale factor a(t) describes the expansion

rate of the Universe and is commonly set to 1 for the present time, and was smaller in earlier

2



CHAPTER 1. INTRODUCTION 1.1. COSMOLOGY

Figure 1.1: Simple diagram showing expansion of space. The comoving distance between
points remains the same over time, however the physical distance between the two points
increases. The relationship between these two distances relies on the scale factor a. Figure
from Ref. [1].

times than it is today. The diagram in figure 1.1 helps give an intuitive sense of the scale

factor a. We can think of a square connecting points on a grid which grows over time such

that the distance between the points increases, but the points on the grid maintain their

values. The comoving distance between two points is the difference in the coordinates at

which the points rest, and with time this difference remains the same. However the physical

distance between the points grows, and this distance is proportional to the comoving distance

times the scale factor a.

For sufficiently large scales, the contents of the universe can be described as a perfect fluid,

and the stress-energy tensor can be described in terms of energy density ρ and pressure p.

This simplification as well as the FRW metric in equation (1.2) allow us to solve the Einstein

equations to get the Friedmann Equations [3]:

H2 =

(
ȧ

a

)2

=
8πG

3
ρ+

Λc2

3
− kc2

a2
(1.3)

ä

a
=

Λc2

3
− 4πG

3

(
ρ+

3p

c2

)
(1.4)

where H is the Hubble parameter which measures the rate at which the scale factor changes.

3



1.1. COSMOLOGY CHAPTER 1. INTRODUCTION

Figure 1.2: Energy density (in units of today’s critical density) versus a for the different en-
ergy components of a flat universe. Solid black is nonrelativistic matter, dashed is radiation,
and bold solid is a cosmological constant Λ. aeq is the point at which radiation and matter
were equal. Figure from Ref. [1].

It is necessary to know how the energy density evolves with time in order to be able to

use Einstein’s equations. This requires an understanding of the contents of the universe,

since each distinct component scales differently with a. Matter density scales inversely with

its volume, therefore ρm ∝ a−3, while the wavelength of radiation stretches with expansion

and has a more rapid scaling of ρr ∝ a−4. This relationship comes from the fact that the

energy of a photon is inversely proportional to its wavelength (1/a), so the energy density

then would be its energy multiplied by the number density (which is inversely proportional

to volume, or 1/a3). Finally, dark energy appears to have a relatively constant density over

time and ρΛ ∝ a0. Figure 1.2 shows the relationship between energy density of the different

components (for a flat universe) and the scale factor.

4



CHAPTER 1. INTRODUCTION 1.1. COSMOLOGY

With these relationships we can find what dominated the expansion of the early Universe.

When the scale factor a was small radiation dominated the expansion of the Universe, and

because the energy density faded more quickly than matter density, matter eventually dom-

inated the acceleration. As matter density faded an era of dark energy density domination

ensued, an era which continues to this day.

There is a critical density for which the Universe is spatially flat, ρcr = 3H2

8πG
. This density

separates closed (ρ > ρcr) and open universes (ρ < ρcr). Using a ratio between energy density

and this critical density, Ω = ρ
ρcr

, equation (1.3) can express the relationship between the

contents of the Universe and the dynamics of the scale factor as:

H2

H2
0

= Ω0,ra
−4 + Ω0,ma

−3 + Ω0,ka
−2 + Ω0,Λa

0 (1.5)

where H0 is today’s Hubble constant and each of Ω0,r,Ω0,m and Ω0,Λ describe the current

energy densities. Ω0,m can be further broken down into baryonic matter (Ω0,b) and dark

matter (Ω0,d) (evidence for which can be found imprinted in the CMB temperature and

polarization power spectra [4]), which are stable particles with negligible electromagnetic

interactions [5]. Ω0,k = 1−Ω0 is the current spatial curvature density (where Ω0 is the sum

the energy densities described above). The Planck Collaboration’s most recent results [6]

find that the Universe is broken down into 31% matter (or 5% baryonic matter and 26%

cold dark matter), 69% dark energy (Λ) and negligible (0.005%) radiation, and a spatial

curvature density ≈ 0.001, meaning the universe can be approximately modeled as flat with

a spatial curvature parameter k = 0.

1.1.2 Inflation

While ΛCDM excellently describes the evolution of the Universe as we see it today, it does

not describe the initial conditions that caused the current state of the Universe, and still has

5
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some open questions:

• The Horizon Problem: The temperature of the sky that we observe is uniform on

the order of 1 part in 10, 000 in all points of the sky. According to ΛCDM alone,

the maximum distance two particles of light in causal contact could have traveled is

approximately a 2◦ separation on the sky [7]. Why then do we observe photons in all

directions of the sky measure to be the same temperature?

• The Flatness Problem: As mentioned above, the Universe is observed to be spatially

flat. Given the infinite values that Ωk could take for an open (Ωk < 0) or closed (Ωk > 0)

universe, the existence a flat universe requires extremely fine tuned conditions.

• The Source of Initial Perturbations: While ΛCDM provides explanation for the

existence of large scale structure, it does not explain the source of the initial pertur-

bations from which the large scale structures emerge.

Inflation is an extension to the ΛCDM model first proposed over 40 years ago [8] modeling

the very early stages of the universe and can resolve the above problems. It postulates that

the space-time exponentially expanded by ≈ 60 e-folds in the span of 10−35 seconds after

the Big Bang before continuing to standard expansion. This extreme growth in such a

small amount of time can explain how it was possible for particles on opposite sides of

the sky to have been in thermal equilibrium, explaining why the universe is isotropic and

homogeneous and solving the horizon problem. A flat universe can be explained in a similar

way. At sufficiently small scales space-time is locally flat, therefore after inflation the flat

curvature is preserved. The large scale structure is sourced from quantum fluctuations that

are expanded to astrophysical scales with inflation [9].

6
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1.1.3 Single Field Slow Roll Inflation

Inflation is a relatively simple theory, requiring an exponential expansion for a sufficient

period of time in order to solve the above questions. The dominant class of inflation models,

Single Field Slow Roll, proposes a scalar inflation field Φ which dominates the energy density

with energy potential V (ϕ). The pressure and density for such a field can be written as:

p =
1

2
ϕ̇2 + V (ϕ) (1.6)

ρ =
1

2
ϕ̇2 − V (ϕ) (1.7)

Taking the time derivative of equation (1.3) along with the definitions of pressure and

density above, we arrive at the equation of motion for inflation field:

ϕ̈+ 3Hϕ̇− dV

dϕ
= 0 (1.8)

where 3Hϕ̇ is the dampening term, also known as Hubble friction. An accelerated expansion

requires that ä > 0, which from equation (1.4) implies that ρ + 3p < 0 (where we are

setting the speed of light c = 1). This condition tell us that p < 0 (because density is always

positive) and from equation (1.6) we see that this is satisfied for ϕ̇ ≪ V (ϕ), meaning that the

inflation field must evolve slowly. For this to be the case the kinetic term cannot overwhelm

the potential one, therefore from equation (1.8) we get the condition ϕ̈ ≪ 3Hϕ̇.

These two conditions are often written as the slow roll parameters [8]

ϵ = 3
ϕ̇2/2

V + ϕ̇2/2
≃ M2

Pl

2

(
V ′

V

)2

≪ 1 (1.9)

η = −2
Ḣ

H2
− ϵ̇

2Hϵ
≃ M2

Pl

2

(
V ′′

V

)2

≪ 1 (1.10)
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where MPl is the reduced Planck mass 8πG−1/2 and V ′ and V ′′ are the first and second

derivatives of V with respect to ϕ.

During the period of inflation the inflaton energy density is dominant. Quantum me-

chanical fluctuations in the inflaton field become very important as they induce scalar per-

turbations in the space time metric that take form as matter density fluctuations and tensor

perturbations which correspond to primordial gravitational waves (PGW).

The scalar perturbations can be parameterized by a power law in Fourier space

Ps(k) = ∆s

(
k

ks∗

)ns−1

(1.11)

where k is the wave number and ks∗ is the pivot scale (wave number) for which amplitude ∆s

has been specified, and ns is the scalar spectral index describing how the scalar fluctuations

vary with scale. The generic models of inflation state that the scalar perturbations are scale-

invariant corresponding to ns−1 = 0, however this is for a special space time and realistically

ns is expected to deviate slightly from 1 [8] (Planck measures a value of ≈ 0.96 [6]).

The tensor perturbations occur due to the PGW stretching and compressing space, and

can similarly be described with a power law

Ptk = ∆t

(
k

kt∗

)nt

(1.12)

where again kt∗ is the pivot scale for defined amplitude ∆t, and nt ≈ 0 is the tensor spectral

index.

The tensor-to-scalar ratio r is what gives PGW amplitude and is defined as

r =
∆t

∆s

(1.13)

8
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The detection of this ratio would provide an amplitude for PGW and strong evidence for

Inflation, and give information on the energy scale of Inflation which is directly related to the

strength of the gravitational waves. The direct detection of PGW is not currently possible

due to the low signal amplitude, however looking for certain imprints on the CMB provides

a way in which this parameter can be measured indirectly.

1.2 The Cosmic Microwave Background

The CMB is the earliest remnant of the universe that we can directly observe. The photons

from the CMB last scattered 380,000 years after the Big Bang, when the universe was still

opaque. At the time when the CMB photons decoupled their temperatures were several

thousand Kelvin. Due to the continuing expansion of the universe, the photon wavelengths

have been stretched from the visible spectrum to microwave wavelengths, a process which

cooled the photons. Today the CMB closely follows the spectrum of a 2.7 Kelvin blackbody

with temperature fluctuations on the order of 10−5 Kelvin [5]. These fluctuations are due to

density fluctuations which eventually evolve into large scale structure [9]. Figure 1.3 shows

the CMB blackbody spectrum.

1.2.1 CMB Anisotropies

The small fluctuations in the CMB temperature are where we are able to glean the wealth

of information that the statistics of the CMB provide. The CMB can be thought of as a

snapshot of the early universe at the time of recombination, as it is the moment that photons

were able to escape the primordial plasma that described the early universe.

During the time before recombination, there were constant reactions between the grav-

itational pull of the matter and the counteractive photon pressure, causing oscillations in

the baryonic fluid which lead to density perturbations corresponding to the hot and cold

9
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Figure 1.3: CMB blackbody spectrum as measured by the FIRAS instrument of the COBE
experiment, with error bars a fraction of the width of the best fit line. [10]

regions of the patterns imprinted on the CMB temperature. At the time of recombination

we see that some modes were at maximum compression for the first time while others were

at their first rarifaction, which caused the largest hot and cold spots. Other modes were at

their second contraction/rarifaction, leading to hot and cold spots half the angular size of

the maximum modes, and so on.

The temperature anisotropies (∆T ) at some point (θ, ϕ) in the sky can be modeled in

spherical harmonics with amplitude aℓ,m:

∆T (θ, ϕ) =
inf∑
ℓ=1

ℓ∑
m=−ℓ

aℓ,mYℓ,m(θϕ) (1.14)

where θ and ϕ are the angles describing the celestial sphere, ℓ corresponds to angular size

(θ ≈ 180◦/ℓ) and m is the number of modes at scale ℓ. These anisotropies are shown in

figure 1.4 as measured by Planck. While we are not able to predict the actual values of aℓ,m,

we can predict a Gaussian distribution, and then extract the cosmological information from

10
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Figure 1.4: Planck CMB temperature map with mean temperature subtracted as measured
by SMICA [11]. This map has had residual foregrounds removed, and a mask applied to
remove the galactic plane, as endicated by the grey lines towards the center of the map.

the CMB angular power spectrum (APS) which is the variance on the amplitudes:

Cℓ =
1

2ℓ+ 1

m=ℓ∑
m=−ℓ

aℓ,ma
∗
ℓ,m (1.15)

It is common in cosmology to use the scaled power spectrum Dℓ = ℓ(ℓ+ 1)Cℓ/2π, so that ℓ

modes which have not gone through full oscillations are essentially flat.

In practice we can calculate the APS from the map of the CMB by "crossing" the map

by itself (auto power spectra), or crossing it with another map (cross power spectra). For

example, a cross of a CMB polarization map with a CMB temperature map will yield a cross

spectrum, while a cross of a temperature map with itself will yield an auto spectrum.

The variance on a power spectrum is called the cosmic variance, and is given by

∆Cℓ

Cℓ

=

√
2

2ℓ+ 1
(1.16)

This is the theoretical limit on the measurement of the CMB power spectrum coming from

the fact that we only have one sky to measure. Figure 1.5 shows the CMB temperature power

11
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Figure 1.5: CMB temperature power spectrum as measured by Planck [11]. The data points
are shown in red, while the blue line shows the ΛCDM best-fit model. Note that the x-axis
scale changes from log to linear at ℓ = 100.

spectrum as measured by Planck [11], where the blue line is the best fit ΛCDM model.

The power spectrum for ℓ < 20 indicates the initial conditions of the universe, with modes

corresponding to Fourier modes at time of decoupling that had wavelengths longer than the

horizon scale. The first three peak positions and relative heights tell us that the universe is

spatially approximately flat, and give constraints on the baryonic and dark matter [5].

1.2.2 CMB Polarization

The CMB is a polarized field due to Thomson scattering at the time of recombination, in

which an incoming unpolarized photon scattering off of a free electron is converted to a

photon with polarization perpendicular to the line of sight. Due to the fact that Thomson

scattering was happening constantly at all angles before recombination, the final polarization

of the escaping photon depends on the local temperature anisotropy in which the photon

scattering off of the electron occurs.

For example, photons scattering off of an electron in a local temperature dipole will have

no final net polarization, as the polarization aligned with the 180◦ temperature difference

will average out and match the polarization at 90◦. Photons scattering off of an electron in

12
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a temperature monopole, a local uniform temperature, will also yield a collection of pho-

tons with no final net polarization. A photon scattering off of an electron sitting in a local

temperature quadrupole, however, will result in a linearly polarized photon. Because the

requirement for a photon from last scattering to be linearly polarized is local termpera-

ture quadrupoles, the CMB polarization can be thought of as a map of these temperature

quadrupoles on the surface of last scattering.

Stokes Parameters

The polarization of photons traveling in the ẑ direction can be described by equation (1.17)

E(x, t) = Excos(ωt− θx)

E(y, t) = Eycos(ωt− θy)

(1.17)

where E is the electric field with corresponding amplitudes Ex and Ey, ω is the frequency of

the wave, t is time, and θx and θy are the phase of the wave. This electric field can then be

broken down into the Stokes’ parameters in equation (1.18)

I = ⟨E2
x⟩+ ⟨E2

y⟩

Q = ⟨E2
x⟩ − ⟨E2

y⟩

U = 2⟨ExEy⟩cosϕ

V = 2⟨ExEy⟩sinϕ

(1.18)

where ϕ is the phase difference between x and y components, and ⟨·⟩ is the time average. I is

the radiation intensity invariant under rotation of the x and y axes, Q and U are the linearly

polarized light in + and × directions and are coordinate dependent, and V is circularly

polarized light. Because Thomson scattering can only produce linear polarization for the

CMB, V is 0.
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We are interested in the power spectrum of the CMB polarization just as we are the

CMB temperature. We can expand the polarization maps in spherical harmonics just like

the temperature, however the harmonics must be weighted with spin ±2 as the two quantities

Q± iU are spin ±2 quantities [12].

(Q± iU)(n̂) =
∑
ℓ,m

±2aℓ,m±2Yℓ,m(n̂) (1.19)

E and B-mode Polarization

It is convenient to work in a basis that is coordinate independent, and this can be done by

considering the rotationaly invariant coefficients and basis functions [12]

aEℓ,m =
−(+2aℓ,m + −2aℓ,m)

2
X1,ℓ,m =

+2Yℓ,m + −2Yℓ,m

2

aBℓ,m =
−i(+2aℓ,m − −2aℓ,m)

2
X2,ℓ,m =

+2Yℓ,m − −2Yℓ,m

2

(1.20)

We can completely write the linear combination of the Stokes Q and U into a coordinate

independent E and B basis

P (n̂) ≡

Q(n̂)

U(n̂)

 = −
inf∑
ℓ=2

ℓ∑
m=−ℓ

aEℓ,m

 X1,ℓ,m(n̂)

−iX2,ℓ,m(n̂)

+ aBℓ,m

 iX2,ℓ,m(n̂)

−X1,ℓ,m(n̂)


= −

inf∑
ℓ=2

ℓ∑
m=−ℓ

aEℓ,mY
E
ℓ,m(n̂) + aBℓ,mY

B
ℓ,m(n̂)

(1.21)

where Y E
ℓ,m and Y B

ℓ,m are the basis functions for the linear polarization P field on a sphere, and

E-mode Y E
ℓ,m and B-mode Y B

ℓ,m are patterns in the CMB polarization analogous to the curl-

free electric and divergence-free magnetic fields. Figure 1.6 shows a cartoon illustrating the

production of E and B-mode polarization. Under parity transformation, E-modes remain
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Figure 1.6: A pictoral representation density and gravitational waves producing E-mode and
B-mode polarization. An electron through which a single density wave which propagates
as shown in the top left panel will see hotter and colder regions in either the parallel or
perpendicular direction to the plane of the density wave. This wave will only produce E-
mode polarization patterns, shown directly to the right. If now instead a single gravitational
wave propagates through the electron in the same direction as the density wave, it can warp
the space in a direction perpendicular from its propagation, as shown in the bottom left
panel. This type of wave, depending on the orientation of the stretch/squeeze motion, can
create either E-mode or B-mode patterns (shown on the bottom right). Diagram curtesy of
BICEP/Keck.

the same while B-modes flip signs, allowing for differentiation between their sources. E-

modes in the CMB can be sourced from both scalars (temperature, density) and tensors

(PGW), while B-modes can only be sourced from tensors.

Similar to the CMB temperature power spectrum, we can obtain the polarization EE

and BB power spectra

CEE
ℓ =

1

2ℓ+ 1

ℓ∑
m=−ℓ

aEℓ,ma
E∗
ℓ,m (1.22)

CBB
ℓ =

1

2ℓ+ 1

ℓ∑
m=−ℓ

aBℓ,ma
B∗
ℓ,m (1.23)
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While in practice we can obtain power spectra between the fields, the only non-zero cross

spectrum is the TE power spectrum. This is due to the fact that the CMB power spectra

are invariant under parity transformation according to the ΛCDM model, hence the cross

between even-parity (E) and odd-parity (B) quantities must be zero.

Primordial Gravitational Waves

PGWs are a phenomenon predicted by inflation which have not yet been directly observed.

Immediately after the Big Bang there were perturbations in the gravitational metric, and

with inflation these perturbations would have stretched out to become PGWs. These are

a standard prediction for many inflationary models and their discovery would be a strong

source of evidence favoring inflation [13]. If PGWs exist, they would leave an imprint on the

polarization of the CMB, and because PGWs are the only source that could have imprinted

B-mode patterns we focus on the study of B-modes to find evidence of PGWs.

E modes have much higher amplitudes than B modes [8]. The amplitude of PGW is

set by the parameter r, the ratio between tensor power and scalar power, and is directly

proportional to the energy scale of inflation. Inflation predicts a peak in the B-mode power

spectrum around ℓ = 80, or about a two degree scale on the sky.

1.3 Foregrounds

There are other components in the sky that have signal in the same frequency range as

the CMB, the brightest of which are the Galactic material foregrounds. The Galaxy emits

radiation in the microwave, some of which is polarized and can look like patterns expected in

the CMB polarization. Dust can be aligned with the magnetic field of the Milky Way causing

B-mode patterns in the signal we observe, and is brightest at high frequencies. Free electrons

spiraling in the magnetic field of the galaxy emit synchrotron radiation and produce B-mode
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Figure 1.7: Submillimeter sky dust and synchrotron polarization frequency dependence. The
grey bands show the frequecy channels for Planck, the green band indicates synchrotron, red
indicates dust, and blue is CMB. As this figure is from a specific fraction of sky, we note
that the foregrounds are not necessarily larger than the CMB for all small patches of sky.
Figure from [11].

patterns brightest at low frequencies [5]. Figure 1.7 shows the spectral characteristics of the

foregrounds in polarization with respect to frequency [14].

Dust

The dust in the Milky Way emits radiation at a characteristic temperature of Td ≈ 20K,

with a frequency dependence that follows a modified blackbody spectrum, shown in equation

(1.24).

Id(ν) ∝ νβdB(ν, Td) (1.24)

where νβd accounts for the dust emissivity as a function of frequency [15] and B(ν, Td) is the

Planck function given as
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Figure 1.8: Planck dust polarization amplitude map at 353 GHz, where P =
√

Q2 + U2

produced from Planck and WMAP data. Image from Ref. [17].

B(ν, Td) =
2hν3

c2
1

exp( hν
kBT

)− 1
(1.25)

While the science of the dust in the Milky Way is quite complex [16], for the purposes of

our work it can be thought of as elongated grains, with their major axis aligning with the

magnetic fields of the galaxy. They emit more efficiently along their shorter axis, creating

a net polarized emission. Because of the frequency dependence of dust polarized radiation,

observing at varying frequencies makes it possible to constrain and remove this signal from

CMB polarization signal. The concentration of the dust grains is highest along the Galactic

plain, so observing outside of this region allows for minimization of dust interference in CMB

data. Figure 1.8 shows the Planck dust polarization amplitude map at 353 GHz.

Synchrotron

Cosmic ray electrons accelerating in the Milky Way emit synchrotron radiation, which is

partially polarized perpendicular to the magnetic field [18]. The intensity of the radiation
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is dependent on both the cosmic ray density (ne) and the strength of the magnetic field

perpendicular to the line of sight (B⊥). We can write synchrotron intensity for frequency ν

(for a cosmic ray distribution which follows the power law N(E) ∝ E−s where s is cosmic

ray spectrum) as

S(ν) = ϵs(ν)

∫
z

neB
(1−s)/2
⊥ dz (1.26)

where the integral is over the direction of line of sight z and B⊥ =
√
B2

x +B2
y is the magnetic

field for the x-y axes being the plane of the sky. ϵs(ν) is the emissivity term given by

ϵ(ν) = ϵβs

0 (1.27)

and

βs = −s+ 3

2
(1.28)

We can then model the synchrotron intensity as

S(ν) = S(ν0)(
ν

ν0
)βs (1.29)

where spectral index βs has a best fit βs ∼ −3 from WMAP and Planck low frequency band

observations [19]. Figure 1.9 shows the Planck synchrotron polarization amplitude map at

30 GHz.

Gravitational Lensing

The CMB photons that reach us have traversed the radius of the universe, which has a

distribution of large gravitational sources. This distribution creates a lensing potential ϕ
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Figure 1.9: Planck synchrotron polarization amplitude map at 30 GHz, where P =√
Q2 + U2 produced from Planck and WMAP data. Image from Ref. [17].

which deflects the photons from their straight line trajectories. While the lensing does not

affect polarization direction or intensity, it does remap the position of temperature and

polarization anisotropies. Gravitational lensing distorts E-modes into B-mode polarization

which follows the frequency scaling of primordial B-modes (due to the photon source being

the CMB), therefore a multi-frequency observation strategy will not remove these B-modes.

The power spectra of these B-modes however follows the multipole scaling of CMB E-mode

power spectra. This B-mode signal that is present at all frequencies must be delensed using

the gravitational lensing potential. [20]

While we have a strong model for the lensing BB spectrum, there is still a variance

contributed to the CMB BB power spectrum estimate. It is important to account for the

lensing B-modes so that they are not mixed in with the B-mode signal of the CMB. A joint

analysis by BICEP/Keck and South Pole Telescope [21] has shown that as we accumulate

more data and the sensitivity of CMB measurements increases the lensing effects are more

prevalent and delensing becomes necessary.
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BICEP/Keck Experiments

2.1 Program Overview

The BICEP/Keck experiment observes the CMB at low ℓ with the intent to detect polariza-

tion caused by PGWs, focusing on getting a measurement of tensor-to-scalar power ratio r.

The BICEP/Keck telescopes are located in Antarctica at the Amundsen-Scott South Pole

Station. Data has been taken here beginning in 2006 with BICEP1, continuing to BICEP2

in 2010, Keck Array in 2011, BICEP3 in 2015, and the most recent BICEP Array, which

began taking data in 2020.

BICEP1 was the first telescope of the BICEP/Keck experiment, and took data from

2006 - 2008. The data analyzed by this telescope put a constraint of r < 0.7 [22]. BICEP2

was the first telescope to detect degree scale B modes in 2014, but it was determined after

comparison with Planck data that these could not be disentangled from foregrounds [23].

Keck Array is a series of 5 telescopes of the similar design as BICEP2 on one mount and

finished taking data in 2018. Analysis of Keck data combined with BICEP2, Planck and

WMAP data produced a constraint of r < 0.036 [24]. BICEP3 began taking data in 2015

and is still taking data currently. This is a larger telescope than the detectors in Keck Array,
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and takes data in the 95 GHz frequency band.

BICEP Array is the newest telescope, and is comprised of four BICEP3-scale receivers

and is located where the Keck Array mount used to be. Currently there are two BICEP Array

receivers deployed in the South Pole, with two spots in the BICEP Array mount containing

Keck receivers for the time being. The BICEP Array receivers bring a new contribution to

the experiment with detectors observing in previously unobserved (by BICEP/Keck) 30 and

40 GHz frequency bands in addition to adding more integrated sensitivity to the 95, 150,

220, and 270 GHz frequency bands [25].

2.2 Observing Site

The BICEP/Keck telescopes are stationed at the Amundsen-Scott South Pole Station which

for many reasons is a near ideal location for ground-based CMB observations. Its location on

the axis of Earth’s rotation allows for the constant observation of the same area of sky, and

gives the schedule of a one day cycle per year, allowing us to observe without interruption

from the sun from February to November. There is little variation in the atmosphere and

low precipitable water vapor at Pole to interfere with our observations.

The Amundsen-Scott South Pole Station is funded by the United States Antarctic Pro-

gram which provides lodging, generators, travel options, and more for the staffing that stays

there. The BICEP/Keck collaboration does not need to worry about these aspects which

makes the South Pole a relatively simple place to run such an experiment. The telescopes

are located in the Dark Sector, an area where there are no wireless signals located ∼1 km

from the geographic South Pole. BICEP1, BICEP2, and BICEP3 have all been located in

the Dark Sector Laboratory (DSL), and the Keck and BICEP Array telescopes have been

located in the Martin A. Pomerantz Observatory (MAPO).
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2.3 Instrument Design

While the current running telescopes are BICEP3 and BICEP Array, I will focus on describ-

ing the retired BICEP2/Keck Array receivers in this section as the simulations and data

used in my analysis come from those experiments.

2.3.1 Instrument Overview

The BICEP2 telescope was built specifically to measure CMB polarization on 1 to 5 degree

angular scales (or ℓ = 40− 200) [26] because CMB B-mode polarization is expected to peak

within this range. The signal of B-modes compared to that of the total CMB polarization

is such that the limiting factors of detection are systematics and sensitivity.

BICEP2 and Keck Array were built with on-axis refractive optics kept at a very low

temperature to minimize internal loading, and a 26 cm aperture. The aperture was small

enough to resolve degree-scale features in the sky while also preserving light-collecting power

with a wide field-of-view. It had a detector design such that for each camera "pixel" there

was a pair of beam-defining slot antennas coupled to photon-noise limited transition-edge

sensor (TES) bolometers (kept at sub-kelvin temperatures, where each antenna had its own

TES detector) which allowed for high sensitivity. Each member in an antenna/detector pair

was labeled "A" and "B", where the the antenna pair is co-located on the focal plane such

that each antenna is nominally observing the same area of sky. Physical detectors in reality

are not sensitive to an infinitely fine point source, rather are simultaneously sensitive to a

finite area about that source. The beam is the response of the detector to a point source,

i.e. a point in the sky when looking at the CMB. There is some smoothing of the data

that occurs from the convolution of the sky measurements by the beam, analogous to the

point spread function for optical telescopes. Further description of the BICEP/Keck beam

characterization is described in section 2.6.
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The TES bolometers were produced by JPL Microdevices Laboratory as square silicon

tiles containing an 8 × 8 array of dual-polarized spatial pixels, and supported multiplexed

readout such that a total detector count of 500 bolometers at 150 GHz allowed greater

sensitivity to B-modes than had been achieved with BICEP1. The focal plane contained 4

such tiles, totaling 500 optically coupled detectors and 12 "dark" (no antenna) TES detectors.

The antenna-coupled TES arrays were able to be densely packed with detector readout

implementing multiplexing SQUID amplifiers 1 which reduced the amount of wires required,

which therefore minimized the heat load on the focal plane.

Figure 2.1 shows a cross-sectional view of a BICEP2/Keck Array telescope insert. It

consists of two tubes, with an optics tube on top and the camera tube below. In the optics

tube, from top to bottom, are the objective lens, nylon filter, and eyepiece lens which are

kept at 4 Kelvin. The superconducting components of the telescope are sensitive to ambient

magnetic fields, such as those from nearby electrical equipment. These are shielded with a

Nb magnetic shield kept at 350 mK. The focal plane assembly, the detector tiles pictured

within the focal plane assembly, and the passive thermal filter are kept at 280 mK. Down

in the camera tube are the flexible heat straps and the He sorption refrigerator, the fridge

mounting bracket and the camera plate which are kept at or below 4 K.

The bottom plate of the insert was directly connected to a helium bath (the Keck Array

used pulse tube coolers rather than the helium bath) which kept the whole insert cooled to 4

K, and allowed the sorption fridge to condense liquid helium. The detector tiles were mounted

to the focal plane, built around a gold-plated, oxygen-free high thermal conductivity copper

detector plate which had four square windows allowing radiation to reach the detectors

(shown in figure 2.2).

The BICEP2 lenses were made of high density polyethylene with a diameter of 30

1Superconducting Quantum Interference Device (SQUID) multiplexers allow for building arrays of thou-
sands of low-temperature bolometers and microcalorimeters with a reasonable amount of readout channels
[27]
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Figure 2.1: BICEP2/Keck Array receiver cross-section [26]. The optics tube is a rigid
structure containing the focal plane assembly, filters, and lenses. The camera tube encloses
the refrigerator and and cryogenic readout electronics.

Figure 2.2: BICEP2 focal plane assembly on the carbon-fiber truss structure and a 350 mK
Nb plate. On the left is the unsheilded assembly, and on the right is the underside of the
focal plane Cu plate. [26]
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Figure 2.3: BICEP2 and Keck Array Optical Design [26]. Besides the vacuum window, all
components have an antireflection coating for minimal reflection at 150 GHz. The optics
below the nylon filter were kept cooled at 4K for low, stable optical loading.

cm. The optical design allowed for an effective focal length of 587 mm and a 550 mm

lens separation. Simulations of this design predict well-matched beams for two idealized

orthogonally polarized detectors on the focal plane. Figure 2.3 shows the BICEP2 optical

design.

2.4 Observing Strategy

All generations of the BICEP/Keck telescopes follow a similar observation strategy. The

same patch of sky is always observed, an area referred to as the "Southern Hole" outside

of the galactic plane, which has low foreground emissions and accounts for 1% of the sky.
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Figure 2.4: The patch of sky observed by BICEP/Keck referred to as the Southern Hole,
with background color begin a map of dust brightness at 150 GHz. Image from Ref. [26].

The telescopes scan in RA, step up in Dec, and repeat the azimuth scan repeatedly. For

BICEP2 and Keck generation telescopes, the observations were centered at RA = 0h and Dec

= −57.5◦ Some understanding of terminology is required for the remainder of this chapter.

• Elnod: An "elevation nod" is a 1.28◦ peak-to-peak triangle wave scan performed

about the central elevation of a scanset in fixed azimuth. Each scanset has a leading

and trailing symmetric up-down-up and down-up-down elnod. Since the atmosphere

is unpolarized this motion is done as a relative gain calibration.

• Halfscan: The smallest movement of the telescope during a CMB observation, a

halfscan is a smooth 64.4◦ sweep of the telescope in azimuth at constant elevation.

The central 50◦ of this scan is at a constant speed of 2.8◦/s, with a smooth decelera-

tion/acceleration at the turnaround in preparation for the next halfscan.

• Scanset: A scanset is comprised of ∼50 pairs of left and right-going halfscans at

fixed elevation and azimuth center, allowing the sky to drift 12.5◦ per scanset. Before
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and after each scanset is each variation of elnod and a partial load curve 2 for data

calibration. The elevation and azimuth center positions are updated every other scanset

to account for the turning sky and to provide more sky coverage.

• Phase: A phase is a collection of 6-10 scansets. Each phase is labeled by a letter of

the alphabet from A through I, and covers different ranges of azimuth and elevation.

2.5 Data Reduction

Time Ordered Data

The raw time-ordered data during a CMB observation is directly sent from Pole and stored

to disk. This is the lowest level of reduced data and is monitored by graduate students and

discussed on a weekly basis within the collaboration. This is where small details are initially

observed, and is important for the experiment to run smoothly. Constant monitoring of the

incoming data is where we check for anything that could become a problem, and is very

important in a collaboration such as BICEP/Keck with an experiment so remotely located

with limited communication. Figure 2.5 shows an example of what the timestream data

looks like. The low-level processing steps applied to this data are described below.

Deconvolution

Because the data has to be sent from Pole to North America, in the interest of efficiency the

data is down-sampled. Therefore there is a series of down-sampling by MCE 3, and filtering

by GCP 4 that the data goes through between readout at the bolometers and being written

2A partial load curve (PLC) is a voltage sweep of the detector bias, in which we begin at high bias and
and end at the target bias, giving us an IV curve.

3Multi-Channel Electronics (MCE) is a readout and biasing system developed by the University of British
Columbia [28]

4Generic Control Program (GCP) is a software control system that reads out and stores the data from
the telescopes
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Figure 2.5: BICEP3 data for one scanset. On the x-axis is time in fractions of hours, such
that the full 50 minute scanset is shown. The top center panel shows the motion of the
mount. The center panel shows the pair-sum data, which measures the total intensity of
the incoming radiation, and the bottom center shows the pair-diff data, which shows the
polarized component. On either side of each of the center panels are plots for the leading
and trailing elnods. The data shown is after round2 cuts have been performed and is in
arbitrary feedback units.
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to disk. The first step of looking at the data is then to deconvolve the transfer functions of

these downsampling and filtering steps.

De-glitching

The next step in data reduction is de-glitching. Our data is often subject to spikes and

jumps due to the high gain of the detectors and readout system. Spikes can occur in the

TOD timestreams from cosmic ray hits and are removed along with the data one second

before and one second after the event which is set to NaN. Discontinuous jumps in the data

can occur from a flux-jump in a SQUID, causing it to jump from one lock-point to another.

This data is removed, and the data right before the glitch is matched to the data immediately

after.

Relative Gain Calibration

As mentioned in section 2.4, there are elnods performed at the beginning and end of each

scanset. This motion injects a signal into the detector timestreams proportional to the

atmospheric opacity gradient [26]. The data from each detector is read out in arbitrary units

(FBU) and as such each detector does not necessarily have the same gain. The gain for each

channel can be roughly equalized with the derivation of a relative gain (relgain) coefficient

from SQUID feedback units per air mass, which comes from regressing the elnod against

the air mass profile through which it was pointing. Dividing each scanset’s timestream by

its own relgain coefficient and multiplying by the median over all good detectors does the

equalizing, as well as canceling out a significant amount of atmospheric fluctuations when

taking the difference of the detector pairs which is very important to the construction of

maps (as will be discussed in section 2.6). The relgain coefficients are obtained in units

of FBU per airmass, and later in section 2.6 the FBU units will be converted to units of

µKCMB.
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Data cuts

Before the data is able to be used to create maps, a series of selections and cuts is done

to remove bad quality data due to weather and atypical instrument behavior. This data

selection process is divided into two steps, Round 1 cuts and Round 2 cuts. The Round 1

cuts are performed on halfscans, and Round 2 cuts are done at each scanset.

Timestream Filtering and Ground Subtraction

Timestream filtering is when each halfscan is fit with a third ordered polynomial which is

then subtracted to account for changing weather conditions. An average of each hour of data

is taken in azimuth as a ground template and is removed from each halfscan.

2.6 Map Making

From TOD to Map

Here we describe the process of converting our weighted time ordered data to two-dimensional

binned pixel maps in the celestial coordinates RA and Dec [29]. The TOD consists of the

sum and difference of the signals observed by the orthogonal detector pairs A and B as

described in section 2.3.1. Each detector is sensitive to both unpolarized T and polarized Q

and U , with observed timestream of detector A being:

τAt = Tt + cos(2ΨA
t )Qt + sin(2ΨA

t )Ut (2.1)

where Tt, Qt and Ut are the temperature and Stokes parameters for timestream sample t,

and there are nt time ordered measurements of the sky within a timestream. ΨA
t is the angle

that the detector A makes with the Q,U axis in the sky. The sum and pair difference then
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is taken with respect to detector B:

st =
1

2
(τA + τB) = Tt + α+

t Qt + β+
t Ut

dt =
1

2
(τA − τB) = α−

t Qt + β−
t Ut

(2.2)

where αt and βt are defined with ΨA
t (ΨB

t ) being the angle the A(B) detector makes with the

Q,U axis on the sky:

α±
t =

1

2

[
cos(2ΨA

t )± cos(2ΨB
t )
]

β±
t =

1

2

[
sin(2ΨA

t )± sin(2ΨB
t )
] (2.3)

If we make the assumption that the detector pairs A/B are co-pointed and perfectly

orthogonal to one another, we can rewrite the pair sum and pair differences in equation (2.2)

as

st = AtjTj

dt = cos(2ΨA
t )AtjQj + sin(2ΨA

t )AtjUj

(2.4)

where Atj is the transformation from the input pixel map (with pixel index j) to the

timestream sample (with index t), and α+
t and β+

t cancel in the pair-sum signal due to

the orthogonality. We see now that the temperature map simply comes from the pair-sum

while the pair-diff gives a linear combination of the Q and U maps.

Taking into account the fact that we take many observations over a single pixel, we sum

over the N samples during which process we weight each detector pair i (wi) with the inverse

timestream data during the scanset. We can then in matrix form compute T , Q and U maps

by the following:
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∑
i

wi =


si

α−
i di

β−
i di

 =
∑
i

wi


N 0 0

0 (α−
i )

2 α−
i β

−
i

0 α−
i β

−
i (β−

i )
2



T

Q

U

 (2.5)

And then obtain the T , Q and U maps through the matrix conversion:


T

Q

U

 =

∑iwi


N 0 0

0 (α−
i )

2 α−
i β

−
i

0 α−
i β

−
i (β−

i )
2




−1∑i wi


si

α−
i di

β−
i di


 (2.6)

Multiple detector angles are required for this matrix to be invertible, which is taken care of

physically by rotating the boresight of the telescope through multiple angles.

Deprojection

Ideally, the detector pairs A and B are orthogonal to one another, but in reality this is not

always the case. Small mismatches in detector pairs can cause temperature to polarization

leakage, and because the intensity of temperature is so much brighter than that of polariza-

tion this can overwhelm the polarization maps and cause false B-mode signal. The beam of

each detector in a pair can be modeled as an elliptical Gaussian, and the difference between

these Gaussian curves can be Taylor expanded which to second order can be used in different

deprojection techniques to filter out this T → P leakage.

Three types of leakage occur and are described in more detail in the BICEP2 systematics

paper [30]:

1. Monopole: If the detectors Gaussian heights or widths are mismatched (difference in

gain between detectors), the leakage caused by these mismatches is monopole symmet-

ric, meaning the differences are invariant under rotation. The false polarization signal
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from T → P leakage changes sign once the detector pairs are rotated 90◦ due to the

spin-2 nature of the polarization fields. In other words, under 90◦ rotation leakage of

temperature to polarization switches sign, Q → −Q and U → −U . Because of this,

monopole leakage can be canceled out through averaging over signal collected at deck

rotations of 90◦.

2. Dipole: Mismatched beam centroids among detector pairs causes dipole symmetric

T → P leakage. Similarly to monopole leakage, dipole leakage changes sign under a

180◦ deck rotation, and again can be canceled out through multiple observations taken

through 180◦ rotations.

3. Quadrupole: A mismatch in the relative angle of ellipses can cause the most prob-

lematic leakage, quadrupole symmetric leakage. This type of leakage looks like real

CMB polarization which is also quadrupole symmetric, and no sequence of boresight

rotation can cancel out this type of leakage. Because of this, the real beam mismatch

must be accurately simulated to predict the effects of this ellipticity mismatch in the

data.

While observing under the different deck rotations cancels out a good amount of the

monopole and dipole symmetric leakage, not all is removed because there is some unequal

detector and deck coverage. Deprojection is performed to filter out this leftover leakage.

Each of the beam modes can be described with an elliptical Gaussian of the form:

B(x) =
g

Ω
exp

[
− 1

2
(x− µ)TΣ−(x− µ)

]
(2.7)

where x is a two dimensional position vector with relation to the focal plane. This coordinate

system is defined for each detector pair such that two orthogonal great circles intersect at the

centroid of the detector beams, and rotates with the focal plane under deck angle rotations.

µ is the position of the peak, g is the gain and Ω a normalization factor, and Σ is a covariance
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matrix defined:

Σ = σ2

1 + p c

c 1− p

 (2.8)

where σ is the beam width and c and p are ellipticity parameters describing "plus" and

"cross" ellipticity. These describe the allignment of the ellipse major axis with the x axis

and 45◦ from the y axis of the focal plane. +(−)p ellipticity has the major axis pointing

along the x(y) axis, and ±c ellipticity has the major axis at ±45◦ to the x axis.

If we have two ideal detectors A and B then we can model them as circular Gaussian

beams (p = c = 0) with width σ that are pointed in the same direction (µ = 0). If we perturb

(δ) one of the parameters (k) and take the differences between the two beams, we can then

Taylor expand about the parameter of interest to first order and obtain six differential beam

modes Bδk (where δk = kA − kB) [30]:

Bδg = δgB(x, y) Bδσ = σδσ(∇2
x +∇2

y)B(x, y)

Bδx = δx∇xB(x, y) Bδy = δy∇yB(x, y)

Bδp =
σ2

2
δp(∇2

x −∇2
y)B(x, y) Bδc =

σ2

2
δc(2∇x∇y)B(x, y)

(2.9)

The three types of T → P leakage can be described by these six parameters and characterized

with their symmetries: monopole (Bδg and Bδσ), dipole (Bδx and Bδy), and quadrupole (Bδp

and Bδc). Figure 2.6 shows a visualization of T → P leakage coming from these differential

beam modes.

The convolution theorem allows us to move derivatives of the beam modes to those of a

temperature map to get a deprojection template which is then used to perform deprojection:

(
∂

∂η
B

)
∗ T =

∂

∂η
(B ∗ T ) = B ∗

(
∂

∂η
T

)
(2.10)
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Figure 2.6: Difference in elliptical Gaussian beams. The gain and beamwidth panels show
monopole leakage, centroid X and Y panels show dipole leakage, and the Plus and Cross
ellipses plot shows quadrupole leakage. [30]

We can collect these template maps for each detector on a per-scanset basis. We build

simulated timestreams by sampling the templates along the detector pointing location. The

timestreams are then filted and binned into pairmaps exactly as is done for the real data.

We obtain the deprojection coefficients by simultaneously regressing all of the six templates

against the real pair-difference time streams.

For the monopole and dipole leakage, we can simply apply the deprojection by scaling the

template by the necessary coefficient and subtract from the data. This causes some loss in

data which can be precisely accounted for in simulation. In the case of quadrupole leakage,

we must use direct measurements of the beam mismatch to scale the templates which we

subtract from the data.
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Absolute Calibration

Until now, the data has been stored in arbitrary units and has undergone a relative gain

calibration. At this point the data is ready to undergo an absolute calibration which will

convert the maps from their arbitrary units to more useful CMB temperature units, µKCMB.

An absolute calibration factor, or abscal, is computed by first cross-calibrating our observed

temperature map with a reobserved Planck reference temperature map, which has undergone

a BICEP/Keck beam smoothing and filtering. We then compute another cross spectrum

between this same reference map and another calibration Planck map generally chosen to

be close in frequency to the observed map that we are calibrating. The ratio between these

two cross spectra gives us a conversion factor of FBU/µKCMB. This factor gb is calculated

for each ℓ bin (further described in section 2.7):

gb =
⟨mref ×mcal⟩b
⟨mref ×muncal⟩b

(2.11)

The reobserved Planck reference map is denoted as mref and the calibration Planck map

close in frequency to our uncalibrated (muncal) is denoted mcal.

2.7 Power Spectra

Once we have our data binned into calibrated maps of the sky we are ready to calculate

angular power spectra, but first need to perform a bit of manipulation. Because as described

in section 2.4 we observe a 1% patch of sky, we can use flat sky approximation and convert

our maps into Fourier space. Before doing this, we need to weight the pixels by their inverse

noise variance in order to obtain a clean Fourier map.

The first step is calculating the variance of our pixel map and then taking the inverse.

Doing so down-weights the edges of the maps as these are more noisy due to having less

37



2.7. POWER SPECTRA CHAPTER 2. BICEP/KECK EXPERIMENTS

observation time than the center of the map. This also provides a smooth transition to zero

at the edge of the map allowing for a well-behaved transform. This inverse variance map

is then multiplied by our pixel map to create an apodized map, which then undergoes a

2D Fourier transform. We now have temperature and polarization maps in Fourier space

denoted T̂ (ℓx, ℓy), Q̂(ℓx, ℓy), and Û(ℓx, ℓy), where ℓx and ℓy are the coordinates in Fourier

space analagous to the wavenumbers kx and ky.

We recall that our Q̂ and Û maps are coordinate dependent, and can convert to our

Ê and B̂ maps as described in section 1.2.2. These maps are most useful to us in radial

coordinates (ℓ,ϕ) using ℓ =
√

ℓ2x + ℓ2y and ϕ = tan−1( ℓx
ℓy
), and this rotation from Q̂ and Û to

Ê and B̂ is shown in equation 2.12.

Ê(ℓ) = Q̂(ℓ)cos(2ϕ) + Û(ℓ)sin(2ϕ)

B̂(ℓ) = Q̂(ℓ)sin(2ϕ)− Û(ℓ)cos(2ϕ)

(2.12)

The Fourier apodized map is multiplied by its complex conjugate, giving us a two di-

mensional angular power spectrum, an example of which is shown in figure 2.7. The units

of the x and y axes of this map are rescaled from 1/deg to approximately ℓ, and the z-axis

is in units of µK2. On the left hand side of each plot are the square of the imaginary parts,

and on the right are the square of real parts. There are 17 annuli with radii ranging from

ℓ ∼10 to ℓ ∼600 which is how we bin our ℓ values, and each annulus has a width of ∆ℓ = 35.

The "science" bins which are studied in the BICEP/Keck analysese are the second through

tenth bins. The two left panels are the Q̂ and Û speclin maps, and the right panels are the

Ê and B̂ speclin maps. The points in the Ê map are much brighter than the B̂ map as is

expected, and these points correspond to the x and y axes of the Q̂ map and 45◦ rotated in

the Û map.

We calculate an estimate of the power spectrum for each bin by averaging over the points

in each annulus, and the binned power spectra, or pseudo-Dℓ are referred to as bandpowers.
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Figure 2.7: Square of Fourier maps from BK15, where the left panels show the Stokes
parameters maps, and on the right are the E and B-mode Fourier maps. The left side
of each plot shows the imaginary and on the right are the real values. The E-modes are
dominant, and can be seen on the x and y-axes of the Q map, and on the 45◦ diagonals of the
U map. The gap that can be seen close to ℓx = 0 is due to the third order poly subtraction
filter and ground subtraction. The red annuli represent the bins for which we calculate the
power spectra.
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The filtering from the data processing and the beam as well as the map apodization sup-

presses and mixes the signal between modes. We account for this by calculating bandpower

window functions for each ℓ bin for each frequency band power spectrum, which relate the

theoretical input power spectrum to our bandpowers:

⟨Db,ℓ⟩ =
∑
ℓ

wb,ℓDℓ (2.13)

where ⟨Db,ℓ⟩ is the expectation value for our bandpowers, Dℓ is the theoretical power spec-

trum, and wb,ℓ are the BPWF for each bin. Our process of apodization mixes signal across

angular scales, and shows up in the shape of the BPWF. Figure 2.8 shows the 150 GHz

BPWF for our 9 science bins, and we see this mixing as the contribution to the lower ℓ bins

from the higher ℓ BPWF. To calculate the BPWF, 100 map realizations are constructed for

each multipole with unit power and then reobserved. The integral of these BPWF gives us

a suppression factor for each bin which tells us how much power was lost in the data to map

process. We can obtain a BPWF and suppression factor for both auto power spectra and

the cross power spectra between frequency bands.

2.8 WMAP and Planck Maps

The BICEP/Keck collaboration ground based data has been studied in conjunction with the

full sky maps made by the outer-space based experiments WMAP and Planck. WMAP was

a 9 year mission that was launched June 30 of 2001 and ended August 2010 [31] with the

intent to replicate and confirm the COBE sky maps, as well as measure the sky beyond what

COBE had done. The WMAP mission observed the sky through 5 different frequency bands

surrounding the region within which the CMB to foreground signal to noise is maximized.

The two frequency bands from the WMAP data set used for the BICEP/Keck data analysis

are the 20 and 23 GHz frequency bands.
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Figure 2.8: The BK15 150 GHz bandpower window functions for the 9 science bins. We can
see each BWPF centered about each bin, however especially at high ℓ the BPWF have some
contribution at lower ℓ. We note that the scale of the y-axis is logarithmic.

The majority of the external maps utilized in the BICEP/Keck data analysis come from

the Planck satellite, which observed continuously from August of 2009 to October of 2013

[15]. Planck was equipped with detectors sensitive to 9 frequency bands between 25 GHz

and 1000 GHz. The Low Frequency Instrument (LFI) had detectors which covered frequency

bands centered at 30, 44, and 70 GHz while the High Frequency Instrument (HFI) detectors

covered the frequency bands centered at 100, 143, 217, 353, 545, and 857 GHz. All frequency

maps by Planck with exception of the 545 and 857 GHz, which did not have polarization

sensitivity, were analyzed with the WMAP and BICEP/Keck maps.

Because the WMAP and Planck maps cover the entirety of the sky while the BICEP2

and Keck Array maps cover only 1% of the sky, we need to get the external maps in a

format to be usefully integrated into the BICEP/Keck data set. Not only is the sky coverage

vastly different between the experiments, BICEP/Keck also has beams and filtering specific

to the experiment which also affect how we can compare our maps to the external ones. To

account for these differences, we need to "reobserve" the external maps according to the
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BICEP/Keck framework.

Because the BK15 150 GHz maps are the least noisy, we reobserve the external maps with

the BK15 150 GHz observation matrix. The observation matrix includes all of the filtering

operations so that it can transform to the true sky to the sky as observed by BICEP/Keck

through the 150 GHz frequency. The steps required to do this are to first deconvolve the

WMAP(or Planck) beam and reconvolve with the BK15 150 GHz beam. We then rotate

from galactic to celestial coordinates and truncate the full sky external maps to the pixels

which are compatible with the observing matrix, and then finally multiply each map by the

observing matrix.

In summary, there are a total of 12 frequency maps which are contained in the BK15

dataset:

• 3 Planck LFI maps: 30, 44, and 70 GHz

• 4 Planck HFI maps: 100, 143, 217, and 353 GHz

• 2 WMAP maps: 20 and 33 GHz

• 3 BICEP/Keck maps: 95, 150, and 220 GHz

From these maps we can obtain a 12 × 12 covariance matrix containing all of the auto

and cross power spectra between the maps where the auto power spectra are located on

the diagonal. The order in which the maps are multiplied by each other to calculate the

cross spectra does not matter, so this is a symmetric covariance matrix, giving us a total

of 78 unique power spectra. The covariance matrix is integral to the analysis detailed in

the following chapters, in which I will detail the an internal linear combination component

separation method that takes a weighted average of all of the frequency maps listed above,

and the covariance matrix is used to calculate the weights that are applied to the maps.
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Chapter 3

Internal Linear Combination Component

Separation Method

3.1 Motivation

The advancement of technologies specializing in observing the CMB has vastly improved

measurements of the temperature and polarization fluctuations to such a degree that fore-

grounds have become the greatest source of contamination in CMB observations. Due to

this, developments in data analysis methods which aim to identify and separate foreground

contamination from CMB signal have become of utmost importance.

One of the most common class of algorithms for foreground disentanglement is called

Internal Linear Combination, a component separation method with variations used by other

experiments such as Planck [32], which uses a Scale-discretized ILC variation and WMAP

[33], for which a modified internal linear component algorithm (MILCA) variation was de-

veloped that includes extra steps such as correcting for intrinsic noise bias. The ILC method

averages over measurements of the sky taken at different frequencies, with the aim to jointly

minimize noise and foregrounds while recovering the CMB signal. It is different than other
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methods of separating foregrounds which use models of dust composition because it makes

very little assumptions about the contents of sky maps beyond the fact that there exists

a mixture of sources. The following sections describe the specific ILC method used in this

analysis to recover CMB signal using simulations from the BICEP/Keck 2015 data release

[34].

3.2 Internal Linear Combination

The Internal Linear Combination (ILC) method is a component separation method which

averages over measurements taken at different frequencies. Component separation indicates a

class of methods that aim to recover a specific signal from a mixture of sources. The purpose

of the ILC is to reconstruct the signal of interest, the CMB in our case, by minimizing the

total error variance between the estimated and true CMB signal [35]:

χ2 =
∑
ℓ⃗

|ŝ(p)− s(p)|2 (3.1)

Where ŝ is the estimated signal component, s is the signal, and p is the space of interest

for which these signal maps exist. For this analysis we work in Fourier space, with ℓ⃗ as the

position (ℓx, ℓy) in the Fourier plane. The ILC assumes that the CMB signal is the same for

all frequencies up to a scaling factor, which in our units (µKCMB) is 1.

In order to ensure that the CMB temperature is equivalent for all observed frequencies, we

employ the thermodynamic temeprature unit TCMB which is proportional to the brightness

temperature TB through the relation:

TB =
x

expx− 1
TCMB

x ≡ hν

kT

(3.2)
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where TB is the brightness temperature given by

TB =
c2

2kν2
B(ν) (3.3)

and brightness is

B(ν) =
2hν3

c2

[
exp

(
hν

kT

)
− 1

]−1

(3.4)

and T is the measured temperature of the CMB.

Because the foregrounds are optically thin, we may model observation y with the following

linear equation:

yi(ℓ⃗) = s(ℓ⃗) + fi(ℓ⃗) + ni(ℓ⃗) (3.5)

where yi is the observed data in Fourier space coordinates, s is the true CMB signal, and

fi and ni are the foreground signal and noise for each observed frequency i. The only

assumptions made by the ILC are that the CMB signal is the same at all frequencies, and

we can model our data as a sum of the different components, where foreground signal and

noise do not correlate with the CMB signal.

The ILC takes a weighted combination of the measurements from each frequency to form

one overall measurement, assigning a specific weight wi,ℓ (ℓ =
√

ℓ2x + ℓ2y being the multipole

number) to each frequency band and multipole. This gives us the estimated signal ŝ of the

following form:

ŝ(ℓ⃗) =
∑
i

wi,ℓ · yi(ℓ⃗) (3.6)

We use the simplest form of the ILC, in which the weights minimize σ̂2
CMB, the variance
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of the estimated signal ŝ. In order to preserve the true signal s, the weights must satisfy the

condition:

∑
i

wi,ℓ = 1 (3.7)

Inserting equation (3.5) for yi, equation (3.6) becomes:

ŝ(ℓ⃗) = s(ℓ⃗) +
∑
i

wi,ℓ · fi(ℓ⃗) +
∑
i

wi,ℓ · ni(ℓ⃗) (3.8)

With the variance:

(σ̂2
CMB)ℓ = w†

ℓRℓwℓ (3.9)

Rℓ is the covariance matrix of the frequency maps at scale ℓ, with the diagonal elements

containing the auto power spectra of the frequency maps and the off-diagonals containing

the cross power spectra between the maps. wℓ is a vector containing the weights wi for all

frequencies i at multipole ℓ.

Minimizing σ̂2
CMB (under the constraint in equation (3.7)) also minimizes χ2 in equation

(3.1). The minimum of σ̂2
CMB can be found by using Lagrange multiplication on the following

system of equations:

∀i ∂

∂wi,ℓ

[(σ̂2
CMB)ℓ + λ(1−

∑
i

wi,ℓ)] = 0

∑
i

wi,ℓ = 1

(3.10)

Which gives us the following equation for weight at each frequency i and scale ℓ:
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wi,ℓ =

∑
j[R

−1
ℓ ]i,j∑

i,j[R
−1
ℓ ]i,j

(3.11)

We note that the derivations performed above are under the assumption that the noise

and foreground maps have been calibrated with respect to the CMB component. Were this

not the case, we could still perform the ILC process with a slight modification to equation

(3.5):

yi(ℓ̂) = ais(ℓ̂) + fi(ℓ̂) + ni(ℓ̂) (3.12)

where ai are the recalibration coefficients to the CMB signal. In this case then the weights

equation would become:

w =
ATR−1

ATR−1A
(3.13)

where A is the vector containing the ai recalibration coefficients. Other variations of the ILC

include breaking down the sky maps and performing ILC separately on each of the regions.

The final ILC map is the addition of the independentaly obtained ILC maps.

3.3 ILC Adaptations for BICEP/Keck Pipeline

There are some details that must be taken into account when implementing the ILC with

maps coming from the BICEP/Keck pipeline, making it more complicated than described

above.

Although the ILC assumes that the CMB signal is the same for each observational fre-

quency, this is not true of the maps that we have. Our maps have encoded filtering and

beaming which is frequency dependent. We do not currently have the tools to make the
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CMB signal the same at the map level, however we can use suppression factors (described

in 2.7) for binned power spectra to do this at the power spectrum level. As such, the power

spectra must be suppression factor corrected both in the input map covariance matrix Rℓ

and in the final ILC power spectrum.

The weights we calculate depend on discrete ℓ values, so it is important to decide on a

binning scheme. We use one with 17 ℓ bins due to the ready availability of suppression factors

in the BICEP/Keck pipeline for this binning scheme. While the weights are calculated per

bin, the maps that these weights are multiplied by are almost continuous in ℓ (with the caveat

that there is some pixelization of the Fourier plane), so the weights are linearly interpolated

in ℓ.

We do not have immediately on hand the tools to first combine unpurified maps, and

then purify 1 the final ILC map. However we are able to purify individual frequency maps,

and do this before implementing the ILC.

The ILC literature derives everything in units of Cℓ, however the BICEP/Keck pipeline

contains many necessary components in units of Dℓ. Weights calculated in either unit did

not produce differing results, so this analysis is done in units of Dℓ.

3.4 Calculating Weights

This analysis utilizes simulations produced from the BICEP/Keck 2015 (BK15) data release,

which consisted of 12 frequency bands: BICEP/Keck frequency maps 95, 150, and 220 GHz,

WMAP 23 and 33 GHz, and Planck 30, 44, 70, 100, 143, 217, and 353 GHz. We construct

one 12x12 covariance matrix Rℓ for each ℓ bin from the auto and cross spectra found in the

existing pipeline for BK15. We then suppression factor correct the spectra that go into Rℓ,

multiplying each element by its corresponding rwf factor ("reciprocal window function", or

1Purification is the method in which the E to B leakage in the B-mode polarization maps is suppressed.
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Figure 3.1: ILC weights calculated for the 17 BICEP/Keck ℓ bins of a single realization for
the BK15 (left) and WMAP (right) frequencies. The solid points are the science bins focused
upon in this analysis, however weights are calculated in all bins. Note weights in the first
bin are zeroed out due to the fact that our scan strategy and TOD filtering remove signal
for ℓ < 20. Weights at ℓ values higher than the 17th bin are also zeroed out for interpolation
reasons, as there are no pseudo-Cℓ calculated in this region.

the inverse of the suppression factor).


Dℓ,(95×95GHz) · rwf(95×95GHz) · · · Dℓ,(95×353GHz) · rwf(95×353GHz)

... . . . ...

Dℓ,(95×353GHz) · rwf(95×353GHz) · · · Dℓ,(353×353GHz) · rwf(353×353GHz)

 (3.14)

Next we calculate one weight per frequency for each ℓ bin using equation (3.11). Our

goal is to eventually use this process on real data, and as such for this analysis all weights

are calculated using simulations composed of CMB signal, noise, and foregrounds. Weights

are calculated per simulation so that each simulation has its own set of weights. Figures 3.1

and 3.2 show weights for individual frequencies in one realization, where the linearly inter-

polated weights are grouped according to their experiments: the BICEP/Keck frequencies,

the WMAP frequencies, and the Planck LFI and HFI frequencies described in section 2.8.
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Figure 3.2: ILC weights calculated for the 17 BICEP/Keck ℓ bins of a single realization
for the Planck LFI (left) and HFI (right) frequencies. The solid points are the science bins
focused upon in this analysis, however weights are calculated in all bins. Note weights in the
first bin are zeroed out due to the fact that our scan strategy and TOD filtering remove signal
for ℓ < 20. Weights at ℓ values higher than the 17th bin are also zeroed out for interpolation
reasons, as there are no pseudo-Cℓ calculated in this region.

One can note that some frequencies have very little influence, while others are highly

weighted in the ILC map. One effect on the values of the weights for the 95 GHz and 150

GHz BICEP/Keck frequencies is the beam filtering. The 95 GHz instrument beam filtering

for BK15 was 43 arcmin FWHM 2 and for 150 GHz 30 arcmin FWHM, meaning that the

95 GHz map has heavier beam filtering than the 150 GHz. We expect then that the 95

GHz map is less sensitive than the 150 GHz map to higher multipoles (which correspond

to smaller angular scale), and we see this in the behavior of weights at higher ℓ in the left

panel of figure 3.1, where the 95 GHz weights go to zero and the 150 GHz weights remain

high. The high frequency weights tend to be negative as they are subtracting foreground

signal, and 150 GHz has the highest weights because it is less noisy and drives the signal of

the ILC.

As mentioned previously, in practice the weights are linearly interpolated in two dimen-

2Full width at half maximum (FWHM) is a parameter commonly used to characterize the width of a
beam.
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sional ℓ space because the maps that they are applied to are continuous in ℓ. In the first and

last ℓ bins the weights are forced to zero before interpolation. The filtering process removes

signal at ℓ < 20, and for interpolation reasons the seventeenth bin has zeroed weights because

there is no pseudo-Cℓ calculated for this region of ℓ. The interpolation scheme assumes that

the binned weight calculations are done for the center of the bins, for example in the second

bin (but first science bin) ell = 37.5. This interpolation is done over a matrix containing all

of the coordinates (ℓx,ℓy) of the maps in Fourier space, resulting in a matrix of interpolated

weights IW for each frequency.

Observations from the 95 and 150 GHz frequencies in the BK15 weights panel of figure

3.1 contain the lowest noise, hence their high weighting. The weights in the WMAP weights

panel on the right are at the low end of the observed frequency spectrum. We see the weights

spike around ℓ ≈ 500 for WMAP 33 GHz, and while plotted is a single realization, this trend

occurs for all realizations. This may be due to the way in which BICEP/Keck reobserves

the WMAP and Planck maps, however because this analysis focuses on the power at much

lower values of ℓ not affected by this weighting, this behavior is not explored.

The Planck weights in figure 3.2 include frequencies at the very edges of the observed

frequency spectrum where occurs the peak brightness for synchrotron radiation and dust. Be-

cause these weights are calculated in CMB units, they tell us how much each map contributes

CMB signal to the ILC map rather than how much dust or synchrotron is contributed. Al-

though the weights are quite small compared to the BK15 weights they nonetheless carry an

important contribution to the cancellation of foregrounds in the ILC map.

3.4.1 Alternate Interpolation Methods

We explored two other interpolation methods besides a linear interpolation: spline and step.

The spline interpolation is a piece-wise cubic polynomial while the step interpolation assumes

a step function in ℓ, where all weights for each ℓ bin are the same value. Figures 3.3 and 3.4
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Figure 3.3: ILC weights calculated for the 17 BICEP/Keck ℓ bins of the same realization
plotted in figure 3.1. To the left are plotted the weights for the BK15 frequencies, and on the
right are the weights for WMAP frequencies. The solid points are the science bins focused
upon in this analysis. Note weights in the first bin are zeroed out due to the fact that our
scan strategy and TOD filtering remove signal for ℓ < 20. Weights at ℓ values higher than the
17th bin are also zeroed out for interpolation reasons, as there are no pseudo-Cℓ calculated
in this region. The smooth line denotes a spline interpolation method in the weights, while
the horizontal lines show the step interpolation.

show the same weights as the circle points from figures 3.1 and 3.2 calculated for each ℓ bin,

this time with continuous lines denoting the spline interpolation and horizontal denoting

step interpolation.

Upon examining the output ILC power spectra calculated with weights interpolated with

spline or step methods versus a linear method, we found that while the mean of sims (de-

scribed in section 3.6) was not greatly affected by the method of interpolation, the error on

the mean was slightly higher for spline and step interpolation as compared with the linear

interpolation. Therefore we chose to continue the analysis using only a linear interpolation

on the weights.
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Figure 3.4: ILC weights calculated for the 17 BICEP/Keck ℓ bins of the same realization
plotted in figure 3.2. To the left are plotted the weights for the Planck LFI frequencies, and
on the right are the weights for Planck HFI frequencies. The solid points are the science
bins focused upon in this analysis. Note weights in the first bin are zeroed out due to the
fact that our scan strategy and TOD filtering remove signal for ℓ < 20. Weights at ℓ values
higher than the 17th bin are also zeroed out for interpolation reasons, as there are no pseudo-
Cℓ calculated in this region. The smooth line denotes a spline interpolation method in the
weights, while the horizontal lines show the step interpolation.
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3.5 ILC Map

Our Fourier ILC map is calculated using a modification of equation (3.6):

mILC =
∑
i

IWi ·mi (3.15)

where mi is the purified B-mode Fourier space map, IWi is the interpolated weight matrix,

and i denotes the frequency. While this analysis focuses on B-modes, this process can easily

be modified for both E-mode and temperature maps.

Figure 3.5 shows maps in order from top to bottom on the left-hand side (with RA and

Dec plotted on x and y axes) the 150 GHz B-mode map from one of the realizations in the

BK15 dataset, the ILC B-mode map, and the difference between the two maps. Because the

150 GHz map is by far the highest weighted map in the ILC process, it is most interesting

for us to compare directly to the ILC map. Comparing first the top two maps on the left, we

see that while large scale structure is preserved in the ILC map, the ILC seems to remove

a significant amount of the noisy small structure. The difference map shown in the bottom

left panel shows us the amount of noise that is removed by the ILC when compared to just

the 150 GHz map. On the right-hand side we have the CMB B-mode map, and below it the

150 GHz dust map. We can see some common structure between the ILC map and the CMB

map, and more obviously between the dust map and the difference between the 150 GHz and

ILC maps. These CMB and dust maps are useful for comparison because as described in

section 3.2, the ILC map is the estimated CMB signal. We expect the ILC map to be more

noisy than the CMB because of the leftover noise and foreground residuals. The difference

between the 150 GHz and ILC maps should contain the 150 GHz dust signal, which we can

easily see is the case when comparing to the dust map on the right.
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Figure 3.5: Left top: BK15 150 GHz B-mode map. Left center: ILC B-mode map. Left
bottom: Difference between ILC and BK15 150 GHz B-mode maps. Right top: CMB B-
mode map. Right bottom: BK15 150 GHz dust map.
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3.6 ILC Power Spectrum

Now that we have an ILC map, we can calculate the ILC auto power spectrum which also

needs to be suppression factor corrected. The rwf factors for the ILC are calculated from

the existing frequency rwf factors described in section 3.4. While the calculations for this

analysis use 12 maps, a description of the ILC rwf calculation can be easily written out

with a two map system:

mILC = W1m1 +W2m2 (3.16)

where W1 is the weight matrix for map m1 and W2 is the weight matrix for map m2. We can

then write the binned uncorrected ILC power spectrum as mILCm
∗
ILC , where m∗

ILC is the

conjugate ILC map, and sum this value over the annuli in Fourier space, similar to figure

2.7 in chapter 2.

Duncorrected,ℓ =
∑

(W 2
1m1m

∗
1 +W 2

2m2m
∗
2 +W1W2m1m2 +W1W2m

∗
1m

∗
2) (3.17)

We want to correct this power spectrum with the ILC rwf calculated in equation (3.18),

where each input frequency auto and cross spectrum has its own corresponding rwf factor.

rwfILC,ℓ = W 2
1 rwf1 +W 2

2 rwf2 + 2W1W2rwf1×2 (3.18)

rwf1 and rwf2 correspond to m1 and m2 auto spectra, and rwf1×2 corresponds to the cross

spectra between m1 and m2. This equation can be used for any arbitrary number of maps,

and is modified to account for the 12 maps that we use. The ILC power spectrum is corrected

for each bin with equation (3.19).
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Figure 3.6: Power spectra for the ILC simulations, where grey lines are the individual sim-
ulations and the black line is the average of the grey. The power spectra are in units of Dℓ

and calculated for the 9 science ℓ bins.

Dcorrected,ℓ = Duncorrected,ℓ · rwfILC,ℓ (3.19)

The grey lines in figure 3.6 show the results of equation (3.19) for each of the 499 CMB+dust+noise

BK15 simulations.

We will describe in the next chapter a derivation of an ILC model which requires ILC

simulations to be calculated for the different signal components that go into the sky simula-

tions used to obtain the ILC power spectra in figure 3.6. The sky map simulations are for 499

realizations of the real sky, and each simulation has a corresponding noise only, CMB only

and dust only map. We can use these to create six different types of spectra: noise, dust,

and CMB only auto-spectra, and the three cross spectra between each of these components
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Figure 3.7: Power spectra for the ILC noise, dust, and CMB only simulations, where grey
lines are the individual simulations and the black line is the average of the grey. On the left
is the dust auto power spectra, center is the CMB power spectra, and on the right is the
noise power spectra. The power spectra are in units of Dℓ and calculated for the 9 science ℓ
bins. The means of the corresponding BK15 150 GHz simulations are plotted in dashed red.

(dust × CMB, dust × noise, and noise × CMB).

We calculate the auto spectra using weights obtained from the CMB+dust+noise maps

and apply to the map of interest to create a dust/CMB/noise only map, and then calculate

the auto spectrum of this ILC map in the same manner as was done for the CMB+dust+noise

ILC map. We can directly compare these APS to those of the BK15 150 GHz dust/CMB/noise

only simulations as an additional check to the map to map comparison shown in figure 3.5.

Figure 3.7 shows the auto power spectra for each of these simulation types, with dust APS

on the left, CMB APS in the center, and noise on the right. The grey lines are the individual

simulations, the black lines are the means of the grey, and the dashed red are the means of

the corresponding BK15 150 GHz simulations.

All panels are plotted on the same logarithmic y-axis, and we can see immediately when

comparing the ILC dust APS to the average of 150 GHz dust simulations that we have

removed dust on average by an order of magnitude at the lowest science bin. We can see

in the center panel that we preserve the CMB signals through our process, and in the right

panel that for ℓ > 100 we have a consistent level of noise.

Figure 3.8 shows the cross terms between the dust, noise, and CMB only maps. In the
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Figure 3.8: Cross terms between the ILC CMB, noise, and dust simulations. The limits for
the y-axis are the same for all three panels. On the left are the dust×noise cross terms, the
center panel shows the dust×CMB cross terms, and on the right are the CMB×noise cross
terms. The grey lines denote the individual realizations, and the black lines are the average
of the grey.

right panel are the dust×noise cross terms, in the center panel are the dust×CMB cross

terms, and on the right are the CMB×noise cross terms. The cross terms for individual

realizations are plotted in grey, and the average of the grey realizations is plotted in black.

These cross terms are calculated by applying the same weights that have been used thus

far to the dust/CMB/noise only map simulations, and then the cross spectra between the

different types of maps can be calculated in the same manner as an auto cross spectrum being

the cross of a map by itself. On average, because CMB, dust and noise are three uncorrelated

sources, we would expect their cross terms to be zero. We can see most obviously from the

cross terms plotted in the right panel that this is not the case, the reasons for which are

described further in section 4.1.1. We can see more clearly the average cross term divergence

from zero in figure 4.3.

3.7 CMB Component

The CMB component that we wish to compare to the ILC power spectrum is calculated

by applying an ILC weighted BPWF (described in section 2.7) to the lensing CMB theory
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spectrum (which includes the lensing B-modes), as detailed below.

The ILC weights are applied to the BPWF of each frequency in a similar manner as they

were applied to maps in equation (3.15). However, since the BPWF are one dimensional

in ℓ, they are multiplied by a vector of weights interpolated along ℓ rather than a matrix

interpolated in the 2D Fourier space of (ℓx,ℓy). The equation for the ILC BPWf is

bpwfILC(ℓ) =
∑
i,j

iwi · iwj · bpwfi,j (3.20)

where bpwfi,j is the band power window function for frequencies i, j and iw is the interpolated

weight vector for frequency i, j. As mentioned previously, historically the BICEP/Keck

collaboration bins the power spectra into 17 bins of width 35 multipoles. These estimated

bandpowers, however, are not simply the mean over the bin width, rather are sensitive to

adjacent bins. The BPWF provide the contribution of each multipole to the bandpower

of interest. Figure 3.9 shows the ILC BPWF compared to the 150 GHz BPWF for all

bandpowers. We have seen that the 150 GHz map is highly weighted in this ILC, which is

why the ILC BPWF follows the 150 GHz BPWF very closely for most of the bandpowers 3.

We see through the local maxima in this plot the contribution of other multipoles to each

bandpower.

Once we have our ILC BPWF, we can then calculate the CMB component for each ℓ bin:

⟨D̂c
ℓ⟩ =

∑
ℓ

bpwfℓ,ILC ·Dℓ,LCDM (3.21)

where Dℓ,LCDM is the scaled ΛCDM theory spectrum for the ILC where r can be tuned to

the desired value. bpwfℓ,ILC are the ILC BPWF from equation (3.20).

Figure 3.10 compares the CMB component (magenta) for r = 0 to the CMB only ILC

realizations (grey) with their mean plotted as a solid black line. These are the same CMB
3The BPWF for all other frequencies are very similar to the 150 GHz BPWF.
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Figure 3.9: Bandpower window functions for BK15 150 GHz (dashed black) and ILC (red)
power spectra. We see that the ILC BWPF follow very closely the 150 GHz BPWF, as this
frequency has the highest weighting.
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Figure 3.10: The grey lines are the ILC CMB simulations, which have been calculated by
applying weights obtained from full sky simulations and to CMB only simulations. The black
line is the average of the grey, and the CMB component is plotted in the dashed magenta
line.

ILC realizations plotted in the center panel of figure 3.7. There is clearly a strong agreement

between the black and dashed magenta lines, which confirms that we are calculating our ILC

rwf values correctly. The normalization factor of the BPWF is the suppression factor, for

which the rwf is the inverse. Recall from section 3.6 the ILC power spectra is corrected with

the ILC rwf factors, and our CMB component is calculated with ILC BPWF calculated in

a similar way to the rwf , the agreement between which confirms the calculations are done

correctly.
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Chapter 4

Likelihood Analysis

Here I present the likelihood analyses performed with two different ILC models. The first

is a simulation based model, for which we conduct a multi-parameter maximum likelihood

search (ML search) over CMB and dust parameters. The second model we explore is the

analytic Saha ILC model for which we do a one dimensional ML search in r space, having

first marginalized over foreground parameter space. The results of an ML search provide the

values of the specified parameters for which the data has the highest probability.

The parameters used in this analysis are as follows, recalling that dust and synchrotron

signals follow a power law in both ℓ 1 and frequency:

• Ad: the amplitude of dust power. We specify this amplitude for ℓ = 80 at the frequency

353 GHz, or it’s "pivot" frequency. This is the frequency for which we could change

the scale factor βd without affecting Ad.

• βd: the spectral index scaling factor describing how dust scales with frequency.

• As: the amplitude of synchrotron power. This amplitude is specified at ℓ = 80 for the

1We consider only the frequency scaling. The descriptor for how dust(synchrotron) scales with ℓ is αd(αs).
We choose to define the dust and synchrotron parameters at ℓ = 80 because we expect the CMB signal to
be strongest here.
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same reason as Ad, however the pivot frequency for this parameter is 23 GHz.

• βs: the spectral index scaling factor describing how synchrotron scales with frequency.

• r: the tensor-to-scalar power ratio.

4.1 ILC Models

We run our likelihood analysis in a simplified framework, using fewer free parameters than

the standard BICEP/Keck likelihood analysis. This section will detail the two models that

were tested. First I will describe a simulations based model using the realizations from BK15,

and following that will be an analytic model derived by Rajib Saha in his 2008 paper [36].

4.1.1 Simulation Based ILC Model

A large part of this analysis includes studying the effects of varying the dust model. We create

a modified sky simulation by adding simulations with CMB to those with noise and with

dust (as opposed to the BICEP/Keck sky simulation, which has all of these signal included

from the start). For this model we did not consider synchrotron for reasons discussed further

in section 4.1.2. The simulations containing only dust can be scaled with respect to the Ad

and βd parameters with a scale factor calculated relative to the dust in the 150 GHz map

with an internal BICEP/Keck pipeline function specifically written for frequency scaling.

This function is multiplied by another scale factor dependent on the variable Ad, all of which

is done before the maps go through the ILC process. We create ILC maps with these sky

simulations as well as for dust, CMB, and noise only simulations which are used for modeling

purposes. The calculation of the ILC power spectra is done in the same manner as described

in section 3.6.

Due to expensive computation time the simulated ILC power spectra are only created for
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discrete values in a limited range of Ad and βd values where r = 0. To conduct a likelihood

analysis, we create a model which evaluates the power spectra for arbitrary values of these

parameters:

ILCaps = ⟨Dc
ℓ⟩+ bnoi + bILC + bfg (4.1)

where ⟨Dc
ℓ⟩ is the contribution to the ILC power spectrum by the CMB signal from equation

(3.21). bnoi is the noise contribution to the ILC power spectrum, or the noise bias, calculated

from noise only simulations combined together with ILC weights calculated from full sky

simulations. bILC is the ILC bias contribution from dust × CMB and CMB × noise cross

terms. Because of the way the ILC is applied to each realization individually there are some

chance correlations that appear between these cross terms where we would expect there to

be none. bfg is the residual foreground bias, containing contributions from dust power that

has not been completely removed in the ILC process.

Noise Bias

We have a good understanding of the noise contribution from instruments and atmosphere

and are able to calculate a noise bias by applying our sky ILC weights to noise only sim-

ulations, however even in the ideal case of zero foregrounds we still could not completely

remove noise and there will always be a non-zero contribution to the ILC power spectrum.

While the noise simulations have no dependence on dust parameters Ad and βd, the overall

noise bias will have some small dependence because the ILC weights are calculated with a

full sky map which does contain dust. To account for this a noise bias must be calculated

for arbitrary values of Ad and βd for this model.

Our ILC weights are calculated from the sky simulations for discreet values of Ad and

βd spanning βd = [1.2, 2] and Ad = [0, 10], and can obtain an ILC noise map by applying
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these weights to noise only simulations, and from that we can calculate an ILC noise power

spectrum. This is repeated for all 499 realizations, and the average of these simulations

is our noise bias, which is plotted as the green line in figure 4.1 for the nominal values

Ad = 3.75, βd = 1.6. We note that this curve closely follows the black line, the average of

full sky ILC power spectra, and can see that the dominant contribution to the cleaned power

spectrum is noise. We perform a two dimensional linear interpolation of the noise bias in the

(Ad, βd) parameter space for each individual ℓ bin, and show the surfaces for each science

bin in figure 4.2. We can easily see from the shape of these surfaces the dependence of the

noise bias on Ad and βd.

Foreground Bias

As mentioned previously, our ILC power spectrum still contains a foreground contribution,

call the residual foreground bias. We do not have a strong understanding for the behavior

of the galactic foregrounds like we do with the noise, so cannot predict how the residual

foregrounds will behave once the ILC has been implemented. To get around this, we model

the foreground residuals using the foreground power spectra and the cross spectra between

ILC noise and foreground maps. As mentioned earlier for the purpose of this section we only

consider galactic dust, assuming no synchrotron.

Figure 4.3 shows the average of the cross spectra between noise and dust for all realizations

simulations in yellow. As dust and noise are two uncorrelated objects, one would expect

that on average their cross spectra would be zero. Instead, we observe a negative trend in

their average due to chance correlations between the noise and dust, where there are some

simulations in which the dust will randomly cancel with some of the noise in the maps.

Ordinarily the ILC would want to remove this dust, but in these cases will leave it alone.

Because the ILC weights are calculated per realization, on average this will look like there is

some negative correlation between dust and noise, and must be accounted for when modeling
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Figure 4.1: Average power spectra of ILC simulations. The black line shows the average of
the sky ILC power spectra, green shows the average of noise only ILC power spectra, red
shows the average of the CMB ILC power spectra, and the blue shows the average of dust
ILC power spectra. Each of the different types of power spectra are calculated with weights
obtained from full sky simulations.
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Figure 4.2: Noise bias surfaces for each science ℓ bin. The science bins are bins 2-10 of the
17 total ℓ bins described in section 2.7, and are ordered above going from left to right where
bin 2 is shown in the top left, to bin 10 on the bottom right. The titles of each surface are
the ℓ values at which the bins are centered.
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the ILC power spectrum. The blue line in figure 4.1 shows the power spectrum average over

all ILC dust simulations with Ad = 3.75 and βd = 1.6. We can see that the contribution of

dust to the full ILC power spectrum is quite small compared to the noise bias, however is

still a positive one. The way we calculate our foreground residual bias is

bfg = ⟨Dℓ,d⟩+ 2⟨Dℓ,d×n⟩ (4.2)

where ⟨Dℓ,d⟩ is the average ILC dust only power spectrum over all simulations, and Dℓ,d×n

is the average cross power spectrum between ILC dust and noise maps over all simulations.

Again the curves shown in figure 4.3 show results for weights and simulations with nominal

values of Ad = 3.75 and βd = 1.6. We create simulations for our normal range of βd and Ad,

and perform a two dimensional surface fit over dust parameter space for each ℓ bin in the

same manner as the noise bias calculation. Figure 4.4 shows the foreground residaul bias

surface for each of the science ℓ bins. We find that the behavior of dust as a function of Ad

and βd is different for the first two bins than in the rest, especially in the first bin which is

centered at ℓ = 37.5, where for positive values of Ad this bias actually goes negative. This is

because at low ℓ, the negative cross terms between dust and noise overpower the dust only

power spectrum, which can be seen visually when comparing the blue line in figure 4.1 to

the yellow line in figure 4.3.

ILC Bias

The ILC bias is the contribution of the CMB × noise and CMB × dust cross terms to the

ILC power spectra. We ignore the dust × noise term since that is included in the foreground

bias calculation above.

For this calculation, we look to the blue and orange lines in figure 4.3. Because the noise

level in the maps is much larger than dust and CMB, the CMB × noise term dominates the
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Figure 4.3: Average cross power spectra of ILC simulations. The blue line is the average of
the dust × CMB simulations, yellow is the average of the dust × noise simulations, and the
oragne line is the average of the CMB × noise simulations. While the fact that the three
signals (CMB, noise and dust) are uncorrelated would lead us to believe the average of these
cross terms would be zero, we actually find that in fact there is a negative trend.
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Figure 4.4: Foreground bias surface fits for each science ℓ bin. The science bins are bins 2-10
of the 17 total ℓ bins described in section 2.7, and are ordered above going from left to right
where bin 2 is shown in the top left, to bin 10 on the bottom right. The titles of each surface
are the ℓ values at which the bins are centered.
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dust × CMB term, and as a result the ILC bias does not change significantly if we vary the

values of Ad and βd, even though both the CMB and noise ILC maps are calculated with full

sky weights. The fact that the ILC bias is negative tells us that a small fraction of the true

signal is lost when performing the ILC. Figure 4.6 shows in grey the envelope of values the

ILC bias takes for different values of Ad and βd, with the solid black line showing the bias

for nominal values of Ad = 3.75 and βd = 1.6. The ILC bias is calculated in equation (4.3):

bILC = 2(⟨Dℓ,CMB×n⟩+ ⟨Dℓ,d×CMB⟩ (4.3)

where ⟨Dℓ,CMB×n⟩ is the average of the CMB × noise ILC cross terms over all realizations,

and ⟨Dℓ,d×CMB⟩ is the average of the dust × CMB terms. In the same manner as the noise

and foreground bias previously described, we calculate these terms for the same range of

Ad and βd values and fit with a two dimensional linear interpolation to obtain values for

arbitrary Ad and βd. Figure 4.5 shows the surface of the ILC bias in each of the science ℓ

bins.

4.1.2 Simulation Based ILC Model Result

The results for the simulation based ILC model from equation (4.1) are shown in figure 4.7

as the red dashed line. We can see that the model agrees very well with the average of

simulations, and we will see in section 4.4 that this model yields promising results when

implemented in a ML search. However, while this model works very well for the dust only

case, we do not explore further results for the case assuming synchrotron is present in the

maps. This is because this method relies heavily on creating simulations for many values

of the dust and synchrotron parameters. We see already that dust has two parameters (Ad

and βd), and adding synchrotron increases our free parameters by another two (As and βs),

possibly three if we assume some correlation between dust and synchrotron (ϵ).
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Figure 4.5: ILC bias surface fits for each science ℓ bin. The science bins are bins 2-10 of the
17 total ℓ bins described in section 2.7, and are ordered above going from left to right where
bin 2 is shown in the top left, to bin 10 on the bottom right. The titles of each surface are
the ℓ values at which the bins are centered.
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Figure 4.6: ILC bias at 9 science ℓ bins. The black line is calculated for Ad = 3.75 and
βd = 1.6, and the grey area shows the range of values that the bias can take for the range of
Ad and βd that have been calculated.
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Figure 4.7: ILC power spectra, where grey lines are individual realizations, the black line is
the mean of realizations, and the red dashed line is the simulation based ILC model.

Another drawback to this method is because the model is built entirely off of simulations,

we need to completely start over should the types of simulations we use change. For example,

the simulations shown here are standard simulations where we assume Gaussian dust and

no synchrotron. However, there are altdust simulations described in section 4.4 which have

different dust and synchrotron models than the standard simulations. It is possible to re-

produce this ILC model process with these simulations, however the amount of computation

time required to do so complicates things prohibitively.
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4.1.3 Saha ILC Model

The Saha ILC model was derived at length by Rajib Saha et al. [36]. This model contains

components reflecting the theory lensing CMB signal, noise and foreground residual contri-

butions, and a bias implicit to the ILC method. Rather than working from the map level,

this equation forms the power spectrum resulting from the ILC method, shown in equation

(4.4). The work done by Saha is in units of Cℓ, however because my work is done in units

of Dℓ
2 I have slightly modified his equations to reflect this.

⟨D̂Clean
ℓ ⟩ = ⟨D̂c

ℓ⟩+

〈
1

eT0 (D̂
f+N
ℓ )−1e0

〉
+ (1− nc)

⟨D̂c
ℓ⟩

2ℓ+ 1
(4.4)

Here ⟨D̂Clean
ℓ ⟩ is the ILC power spectrum, aiming to reflect the mean ILC simulation based

power spectrum (the black line in figure 4.1). ⟨D̂c
ℓ⟩ is the same CMB component from the

simulation based ILC model in equation (4.1).

The second term in equation (4.4) contains the noise and foreground contributions to the

ILC power spectrum, and will for simplicity will be referred to as S2. Here e0 is a column

vector containing unit elements, and D̂f+N
ℓ is a covariance matrix of the noise and foreground

frequency maps. The diagonal contains auto power spectra from maps containing only noise

and foregrounds, and the off-diagonals are the cross power spectra for these maps.

The last term is the ILC bias, which comes from the chance correlations in the cross

spectra described in section 4.1.1. nc is the number of frequency maps going in to the ILC,

which for this analysis is 12. By the very nature of the ILC being a combination of multiple

maps, this bias is negative.

2Dℓ =
ℓ(ℓ+1)Cℓ

2π
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Adjusted Saha Model

The Saha model as written in equation (4.4) does not quite agree with the average ILC

simulation power spectra due to the noise and foreground component, as can be seen in

the middle panel of figure 4.9. We need to make some changes to the Saha model before

proceeding with the likelihood analysis. This adjusted model is shown in equation (4.5).

⟨D̂Clean
ℓ ⟩ = ⟨D̂c

ℓ⟩+ (
Nmode − neff + 1

Nmode

)
1

eT0 ⟨D̂f+N
ℓ ⟩−1e0

+ (1− nc)
⟨D̂c

ℓ⟩
Nmode

(4.5)

First we note the change in the ILC bias term where the 2ℓ+1 denominator is now Nmode,

the number of χ2 degrees of freedom per ℓ bin. This change is due to the small size of the

BICEP/Keck observation patch, and because the effective number of pixels in our maps is

small at low ℓ due to correlations between the map pixels.

The more subtle change to the S2 term is the placement of the brackets around the

foreground and noise covariance matrix, as opposed to the whole fraction. We know how to

calculate the expectation value of this covariance matrix, where the auto and cross power

spectra are obtained from the bandpower expectation values from the BICEP/Keck multi-

component model, and can be calculated for arbitrary values of the dust and synchrotron

parameters. The expectation value of the entire fraction is another matter that we do not

currently have the tools to calculate. Our way of working around this is through the multi-

plicative factor dependent on Nmode and neff .

We obtained the multiplicative factor (Nmode−neff+1

Nmode
) through the use of a toy ILC model

where we assume a case of 4 input maps, all of which only contain independent noise. We

created 500 ILC power spectrum realizations and compared the average of the realizations to

both 1

eT0 ⟨D̂f+N
ℓ ⟩−1e0

, and through trial and error found the best results for the scale factor for

the modified term (
Nmode−neff+1

Nmode
) 1

eT0 ⟨D̂f+N
ℓ ⟩−1e0

, where for the BK15 dataset we found a best

fit for neff = 8. We repeated this process varying the number of modes in the toy maps, and
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Figure 4.8: Fractional error between ILC toy model and variations on Saha noise term (all
maps only contain noise in this toy model). The blue line shows the ILC average compared
to the Saha noise term without the multiplicative scale factor, and orange shows with the
comparison with the scale factor. The x-axis is number of modes in the maps, and we see
that for low number of modes the term without the scale factor becomes quite large in
comparison to the ILC average.

plotted the fractional errors in figure 4.8. We can clearly see that without the scale factor,

for low number of modes the Saha S2 term becomes quite large in comparison to the ILC

toy model average, and once we include this scale factor the agreement between the S2 term

and ILC average greatly improves. This is most obvious at low number modes, however we

can see even at higher numbers of modes the orange line is closer to zero than the blue line.

Once we obtained this scale factor, it was found empirically that the S2 term agrees best

with our ILC average using BK15 realizations when the effective number of maps neff = 8.

Figure 4.9 shows the individual components of equation (4.5) compared with the corre-

sponding ILC simulations. Going from left to right, the first panel shows the CMB compo-

nent, or the first term in equation (4.5), compared with the ILC CMB only simulations where

the black dotted line is the mean of grey simulations. The center panel shows the Saha noise
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Figure 4.9: Left: ⟨D̂c
ℓ⟩ compared with ILC CMB only realizations. Center: adjusted S2 in

red compared with the original noise and foreground Saha term in blue, with the ILC dust,
noise, and twice dust × noise realizations. Right: Saha ILC bias in red compared with ILC
dust × CMB realizations, and CMB × noise.

and foreground term without the multiplicative term in blue and the adjusted noise and

foreground term with the multiplicative factor in red. These two models are compared with

the ILC noise power + ILC foreground power + 2 · noise × foregrounds, where the average

of these simulations is the dotted black line. The third panel shows the ILC bias compared

with the average of dust × CMB + noise × CMB cross spectra. While the mean of these

simulations does not completely agree with the analytic ILC bias term, we nonetheless see

the general behavior of these lines agrees to close approximation.

As mentioned previously, the BK15 standard simulations contain foregrounds of only

Gaussian dust and no synchrotron, and is the reason why we only consider ILC dust sim-

ulations for these comparisons. In later sections we will explore a Saha model allowing for

synchrotron when we analyze altdust simulations, however we do not directly compare the

terms of the Saha model to individual foreground, noise and CMB components of these

simulations as all of the simulations are mixtures of all signals in the simulated sky.
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Saha ILC Bias

In the simulations based model the bias inherent to the process of the ILC was addressed by

examining the CMB × foregrounds and CMB × noise cross terms. In the Saha model this

bias is addressed in the third term of equation (4.5), rewritten below:

bias = (1− nc)
⟨D̂c

ℓ⟩
Nmode

(4.6)

Because we observe in more than one frequency band this bias is negative, and is more

negative as the number of frequency channels grows.

Appendix E of [36] extensively derives the Saha ILC bias for the ideal case of foregrounds

following a rigid frequency scaling, no detector noise, and the number of channels is nc ≥

nf + 1, where nf is the number of foreground components.

The case for nc ≥ nf + 1 is especially true for our analysis, as we consider either nf = 1,

assuming foregrounds only composed of dust, or nf = 2, assuming synchrotron is present as

well. If we include an additional term for the CMB, this gives us a case of 3 independent

components. The number of channels we have is 12, coming from the 12 frequency bands of

the BK15 data set. It is often the case where the number of channels nc is chosen to be equal

to the full rank nf +1 of the covariance matrix to ensure the matrix is invertible, however we

can see that it is important to consider the case of a singular covariance matrix arising from

the fact that the number of channels nc = 12 is greater than full rank, nf +1 = 3. Assuming

a case where no detector noise is present is convenient for the sake of deriving a simplified

form of the ILC bias, however the calculations can be generalized to include detector noise

as well to give us the bias as written in equation (4.6).

We begin with the premise that the ILC power spectrum can be written of the form
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ĈClean
ℓ =

1

eT0Rℓ
−1e0

(4.7)

where Rℓ is the covariance matrix described in section 3.4, and for singular matrix Rℓ can

be rewritten

ĈClean
ℓ =

1

eT0Rℓ
†e0

(4.8)

We now work through the steps as written in Appendix E of the Saha paper. In obtaining

an equation for the ILC bias, we wish to explore further simplification of equation (4.8). To

begin the calculation of the ILC bias under the ideal conditions described above, we need

to first obtain an analytic expression for the covariance matrix Rℓ. It is found that we can

get the full covariance matrix through three successive rank-one updates to three separate

matrices. We can then apply the Sherman Morrison formula to each of the three rank-one

updates in order to obtain the analytic expression for our ideal foreground only ILC bias.

While until this point we have been writing the angular power spectrum in terms of Dℓ,

for the sake of remaining consistent with the equations in appendix E of [36] I will denote

the power spectrum in Cℓ until the end, when I will revert back to Dℓ.

We recall that our full covariance matrix contains the auto and cross spectra between

our frequency maps, thus we begin with a general equation for the auto power spectrum of

the ith frequency channel:

Ĉi
ℓ = Ĉc

ℓ + 2

nf∑
p=1

f i
pĈ

cf(p)0
ℓ +

nf∑
p,p′

f i
pf

i
p′C

(pp′)0
ℓ (4.9)

where Ĉc
ℓ is the CMB auto power spectrum and f i

p carries the frequency dependence of the

pth foreground component for channel i. Ĉcf(p)0
ℓ is the chance correlation between the CMB

and the pth foreground component, and C
(pp′)0
ℓ is the correlation between the two foreground
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components p and p′. We can write the cross power spectrum between two frequency channels

i and j as

Ĉi,j
ℓ = Ĉc

ℓ +

nf∑
p=1

f i
pĈ

cf(p)0
ℓ +

nf∑
p=1

f j
p Ĉ

cf(p)0
ℓ + F ij (4.10)

where

F ij =

nf∑
p,p′

f i
pf

j
p′C

(pp′)0
ℓ (4.11)

If we define the f̂p0ℓ , e0 ∈ Rnc,1 vectors, where Rnc,nf
is the set of real nc × nf matrices

f̂p0ℓ = Ĉ
cf(p)0
ℓ



f 1
p

f 2
p

·

fnc
p



e0 =



1

1

·

1



(4.12)

We can write our full covariance matrix as

Rℓ = Ĉc
ℓe0e

T
0 +

( nf∑
p=1

f̂p0ℓ

)
eT0 + e0

( nf∑
p=1

f̂p0ℓ

)T

+A3 (4.13)

where A3 is the covariance matrix between the foregrounds in each channel. We define the

vector f̂0ℓ ∈ Rnc,1 to contain the cross of CMB and foreground components.
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f̂0ℓ =

nf∑
p=1

f̂p0ℓ (4.14)

We can rewrite our covariance matrix

Rℓ = Ĉc
ℓe0e

T
0 + f̂0ℓ e

T
0 + e0f̂

0T
ℓ +A3 (4.15)

where

A2 = e0f̂
0T
ℓ +A3

A1 = f̂0ℓ e
T
0 +A2

(4.16)

Now that we have this expression in terms of several successive rank-one updates, we

need to obtain an analytic form of its inverse. Reference [37] works through several cases

in which a general formula may be obtained of the inverse of matrix M = A + bc∗, where

complex matrix M is the modification of the complex m × n matrix A, and b and c are

complex column vectors of size m× 1 and n× 1, respectively. Below I will detail the steps

for which the Moore-Penrose General Inversion, or MPGI, may be calculated for our work

as:

M† = A† +G (4.17)

where G is a matrix that contains only sums and products of the matrices A, A†, b, c and

their conjugate transposes.

Step 1

Here we consider the case where b ∈ C(A), c ∈ C(A∗) and λ ̸= 0, where C(A) is the column

space for matrix A and λ = 1 + c∗A†b. For this case we may write M† as
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M† = A† − λ−1de∗ (4.18)

where

d = A†b

e = (A†)∗c

(4.19)

From equation (4.15) we see we can write our covariance matrix

Rℓ = Ĉc
ℓe0e

T
0 +A1 (4.20)

where we note that e0 ∈ C(A1), and we wish to rewrite equation (4.8) in terms of A1. It

can be shown that performing such a substitution will give us

ĈClean
ℓ = Ĉc

ℓ +
1

eT0A
†
1e0

(4.21)

Step 2

In this next step we will express the second term in equation (4.21) in terms of A2, where

we recall A1 = f0ℓ e
T
0 +A2, f0ℓ /∈ C(A2) and e0 /∈ C(AT

2 ). Going back to our general notation,

if we have our column vectors b /∈ C(A) and c /∈ C(A∗), then M† may be written as

M† = A† − ku† − v†h+ λv†u† (4.22)

where
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k = A†b

u = (I−AA†)b

v = c∗(I−A†A)

h = c∗A†

(4.23)

Then we can write

A†
1 = A†

2 − ku† − v†h+ λv†u† (4.24)

where

k = A†
2f

0
ℓ

h = eToA
†
2

u† =
f0Tℓ (I−A2A

†
2)

f0Tℓ (I−A2A
†
2)f

0
ℓ

v† =
(I−A†

2A2)e0

eT0 (I−A†
2A2)e0

(4.25)

and we skip some steps to obtain

1

eT0A
†
1e0

=
f0Tℓ (I−A2A

†
2)f

0
ℓ

f0Tℓ (I−A2A
†
2)e0

(4.26)

Step 3

Next, we consider b /∈ C(A) and c ∈ C(A∗), then

MM† = AA† − η−1eeT + η−1ν−1qqT (4.27)

where
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e = (A†)∗c

η = e∗e

ν = λλ∗ + ηϕ

ϕ = fTf

f = (I−AA†)b

(4.28)

In this case we are going to rewrite equation (4.26) in terms of A3, and we do this by first

expressing A2A
†
2 in terms of A3A

†
3 recalling that A2 = A3 + e0f

T
0 and f0ℓ ∈ C(A3

∗), e0 /∈

C(A3). We can then write

A2A
†
2 = A3A

†
3 − η−1eeT + η−1ν−1qqT (4.29)

where

e = A†
3f

0
ℓ

q = λe+ ηf

f = (I−A3A
†
3)e0

(4.30)

Again we have everything we need to proceed and skip some steps to obtain the second term

in the numerator of equation (4.26)

f0Tℓ A2A
†
2f

0
ℓ = f0Tℓ A3A

†
3f

0
ℓ − η−1(f0Tℓ A†

3f
0
ℓ )

2 + η−1ν−1(λ2
(
f0Tℓ A†

3f
0
ℓ

)2
+

η2
(
f0Tℓ (I−A3A

†
3)e0

)2
+ 2λη

(
f0Tℓ A†

3f
0
ℓ f

0T
ℓ (I−A3A

†
3)e0

)
)

(4.31)

Conveniently several terms drop from this equation due to the fact that fℓ
0 ∈ C(A3), so

(A3A
†
3)f

0
ℓ = f0ℓ . Using the definitions for ν and ϕ given in equation (4.28) and define the
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variables X and Y

X = f0Tℓ A3A
†
3f

0
ℓ

Y = f0Tℓ A†
3f

0
ℓ

(4.32)

we can write

f0Tℓ A2A
†
2f

0
ℓ = X +

Y 2ϕ

ν
(4.33)

We can then rewrite the numerator of equation (4.26)

f0Tℓ (I−A2A
†
2)f

0
ℓ =

−Y 2ϕ

ν
(4.34)

and in a similar fashion, the denominator

f0Tℓ (I−A2A
†
2)e0 =

Y ϕ

ν
(4.35)

We see once we input equations (4.34) and (4.35) into equation (4.26), we obtain

1

eT0A
†
1e0

= −Y = −f0Tℓ A†
3f

0
ℓ (4.36)

Referring back to equation (4.21), the bias to the ILC is the quantity we have just computed

in equation (4.36).

Obtaining Full Bias Expression

Now that we have our bias in terms of the foreground vectors and the updates to the

covariance matrix defined in equations (4.14), (4.15), and 4.16 we can rewrite in terms of

the power spectra. We begin with writing the foreground covariance matrix in terms of its
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elements

Aij
3 =

nf∑
pp′

f i
pf

j
p′C

(pp′)0
ℓ (4.37)

and recall the definition of the vector containing chance correlations between the CMB and

foregrounds

f0ℓ
i
=

nf∑
p

Ĉ
(cp)0
ℓ f i

p (4.38)

The magnitude of the ILC bias as given in equation (4.36) becomes

⟨f0Tℓ A†
3f

0
ℓ ⟩ =

∑
ij

A†ij
3

〈∑
pp′

Ĉ
(cp)0
ℓ Ĉ

(cp′)0
ℓ

〉
f i
pf

j
p′ (4.39)

From equation 1.15 we can infer that Ĉ
(cp)0
ℓ =

∑
m

acℓ,map0∗ℓ,m

2ℓ+1
, and we know that the CMB

anisotropies are isotropic so ⟨aℓ,maℓ′,m′⟩ = Cc
ℓ δℓ,ℓ′δm,m′ , we get

〈∑
pp′

Ĉ
(cp)0
ℓ Ĉ

(cp′)0
ℓ

〉
=

Cc
ℓ

2ℓ+ 1

∑
pp′

C
(pp′)0
ℓ (4.40)

Substituting equations (4.37) and (4.40) in for equation (4.39) gives us

〈
f0Tℓ A†

3f
0
ℓ

〉
=

Cc
ℓ

2ℓ+ 1

∑
ij

A†ij
3 Aij

3 (4.41)

We note that
∑

ij A
†ij
3 Aij

3 = tr(A†
3A3) = rank(A3) = nf , so

〈
f0Tℓ A†

3f
0
ℓ

〉
= nf

⟨Ĉc
ℓ ⟩

2ℓ+ 1
(4.42)

Now we can rewrite equation 4.21 with this substitution and in terms of Dℓ in place of
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Cℓ as

⟨D̂Clean
ℓ ⟩ = ⟨D̂c

ℓ⟩ − nf
⟨D̂c

ℓ⟩
2ℓ+ 1

(4.43)

We recall that this equation for the ILC power spectrum has been derived under the

conditions that detector noise is not present, and that foregrounds follow a rigid frequency

scaling. Once we consider a case where foregrounds have a more complicated relationship

with frequency (i.e. dust follows a power law in frequency and synchrotron follows a separate

frequency power law) and detector noise is present, a positive bias appears along with the

negative bias derived above and we get equation 4.4.

4.2 Hamimeche-Lewis Likelihood Approximation

The likelihood used for the ML search analyses is the Hamimeche-Lewis (H-L) log likelihood

approximation [38], and is the same likelihood calculation used by the standard BICEP/Keck

analysis. This is a useful method for the data we take because it was specifically developed

for partial sky observations and can obtain correct results at low ℓ, and is defined

−2logL({Cℓ}|{Ĉℓ}) =
∑
ℓℓ′

[Xg]
T
ℓ [M

−1
f ]ℓℓ′ [Xg]ℓ′ (4.44)

Here Cℓ are the bandpowers of the model being tested, Ĉℓ are the data bandpowers, Mf is

the fiducial bandpower covariance matrix, and Xg is the expression of the bandpowers:

[Xg]ℓ = vecp(C1/2
fℓ g[C

−1/2
ℓ ĈℓC

−1/2
ℓ ]C

1/2
fℓ ) (4.45)

with the nonlinear function g:
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g(x) ≡ sign(x− 1)
√

2(x− ln(x)− 1) (4.46)

where Cfℓ are the fiducial model bandpowers, or the mean of simulations, vecp() is a vector

function giving the vector of unique elements in a symmetric matrix, and by definition the

application of g to a positive definite matrix is equivalent to applying g to its eigen-values.

With this likelihood function we are then able to test the ILC models described in sections

4.1.1 and 4.1.3.

In terms of this specific analysis, the inputs required by the H-L likelihood to be calculated

at any point in parameter space are:

• The fiducial bandpower covariance matrix Mf of the 9 science ℓ bins that we have

been investigating. We zero out covariance between ℓ bins not adjacent to the diagonal

because although there is no correlation expected to appear between non-adjacent bins,

in practice there are some chance correlations that do appear.

• Fiducial bandpowers, Cfℓ, which are the average of the ILC realizations, or the black

line in figure 4.1.

• Data, or Ĉℓ, which for this analysis are individual ILC realizations, or the grey lines

in figure 4.7.

• ILC model, or Cℓ.

4.3 Sims based Likelihood/Posterior Calculation

We created ILC spectra for a range of Ad, βd, and r values using standard Gaussian dust

simulations and want to recover the true values of these parameters. By construction, the

ILC is insensitive to Ad and βd because it removes the foregrounds, and once the maps go
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through the ILC process it is hard to distinguish between the effects of changing Ad versus

changing βd. In an effort to find the true values, we need to calculate a posterior, which

places reasonable constraints on the likelihood and tells us the chance that a model that we

fit to a given measurement of data is true. The posterior can be calculated by multiplying

the likelihood by a prior distribution, which as its name suggests is a distribution based upon

prior knowledge of the given variable. For the simulations based likelihood our posterior is:

posterior = P (βd)L (4.47)

The prior on βd is the Gaussian prior used by BICEP/Keck shown in in equation (4.48),

where σβd
= 0.11 and µβd

= 1.6. We do not have a good model for dust amplitude in our

particular patch of sky so do not include a prior on Ad in the posterior calculation.

P (βd) =
1

σβd

√
2π

exp

(
−(βd − µβd

)2

(2σ2
βd
)

)
(4.48)

Calculating the posterior at every point in the 3-dimensional parameter space of Ad, βd

and r is a very time consuming process, so rather than performing a grid calculation to get

a full posterior shape we can do a Metropolis-Hastings Monte Carlo Markov Chain (MH-

MCMC). Figure 4.10 plots the MCMC posterior curves for a few ILC realizations with the

nominal values of Ad = 3.75 and βd = 1.6.

The MCMC plots were created in Python using the package getdist, which is an MCMC

engine used to perform cosmological parameter estimation, and in this case was used for

plotting posterior MCMC chains calculated in MATLAB. While the full posterior is not

necessary in an ML search, seeing the full shape is useful.

We see in the first column of plots, going from top to bottom, the marginalized βd

posterior curved where we have integrated over all values of Ad and r, in the center the two

dimensional posterior for Ad and βd where we have integrated over r, and on the bottom the
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two dimensional posterior for r and βd where we have integrated over Ad. In these plots we

see the curves centered pretty close to βd = 1.6, which we would expect because the value

of βd in the given data is 1.6, and because we center our very tight βd prior about βd = 1.6.

We can also see that the spread of the distributions is very narrow in βd, which is due to

the prior we’ve provided for βd being so narrow. While this distribution is calculated in

parameter space for three variables (Ad, βd and r), because the prior on βd is so tight this

posterior realistically only has 2 independent variables (Ad and r). In the center plot we see

a wide spread in Ad, which is due to the loose constraint we have placed on this parameter.

In the second column of figure 4.10 we see on top the marginalized Ad posterior where

we have integrated over βd and r space. We note that the realization shown as the black

line has a smaller local maxima, which is because the kernel used to smooth out this curve

was chosen to zero the posterior for Ad = 10, as we have reasonable expectation that the

true value of Ad lies within the range of 0 to 10. The bottom plot in this column shows the

two dimensional posterior for Ad and r where βd has been integrated out. We see that the

posterior is narrower in r than in the Ad direction.

Finally, the lone plot in the third column shows the marginalized r posterior curve where

we have integrated over Ad and βd. We see that these curves peak a bit below zero. If we

were to plot all 499 realizations, we would expect that their peaks would spread to both

positive and negative r values, and if our results are unbiased, the distribution of negative

and positive peaks should each be roughly half of the realizations.

As mentioned above, while it is useful to look at plots of the full posterior curves as a

diagnostic, the information that we are most interested in is the distribution of the maxima

of the posteriors for all realizations.
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Figure 4.10: MCMC posterior triangle plot for simulation based ILC model. Top left:
marginalized βd posterior, where Ad and r have been integrated over. Middle left: 2D
Ad and βd posterior where r has been integrated out. Bottom left: 2D r and βd posterior
where Ad has been integrated out. Center top: marginalized Ad posterior, where βd and
r have been integrated out. Center bottom: 2D r and Ad posterior, where βd has been
integrated out. Right: marginalized r posterior, where Ad and βd have been integrated out.
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4.4 Sims ILC model Maximum Likelihood Search

We may conduct a maximum likelihood search using the posterior in place of likelihood.

Because the posterior is a prior multiplied by the likelihood, finding the maximum of a

likelihood is the same as searching for the maximum of a posterior. As mentioned before, we

only have an explicit prior for βd, however we have a reasonable expectation of where Ad and

r should exist, therefore we only allow our search to explore between Ad = [0,10], and r =

[-0.05,0.15], with an additional constraint for βd to be within the values of 1 and 3 by forcing

the posterior to infinity at these points. 3 The BICEP/Keck ML search algorithm makes

use of the MINUIT library developed by CERN. We also note that our simulation based

model is best defined within this parameter space. There are some points in the allowed

parameter space where the calculated likelihood is imaginary, and we don’t allow the ML

search to explore these regions.

To test the robustness of our ILC model, we use standard simulations created with

varying Ad and βd values (the grey lines in figure 4.7). We are also able to use ILC power

spectra composed from altdust simulations, where alternative models are used to describe

foregrounds. The four altdust models studied in this analysis are described in Table 4.1.

Some of these simulations predict higher foreground levels than we observe in our patch of

sky, however they prove useful as a test of the performace of our ILC analysis.

In three of the four altdust models in table 4.1 we see in the Python sky models (PySM)

a series of numbers and letters, for example in the 1682×1683 altdust model an alternative

name is PySM model a2d4f1s3. The letters in the sequence indicate the different foreground

components: AME (a), dust (d), free-free (f), and synchrotron (s). The numbers refer to

the models of each foreground component described in the PySM paper [39]. The a1 and f1

models are unpolarized and are thus irrelevant to our analysis. The a2 model has polarized

AME, however because our analysis does not include this component we may expect to see
3While we talk about Maximum Likelihood Searches, the way the code actually works is to find find the

minimum of the negative log likelihood, as this is computationally easier to do

94



CHAPTER 4. LIKELIHOOD ANALYSIS 4.4. SIMS ILC ML SEARCH

Model Description

1682x1683 PySM model a2d4f1s3. Two-component dust and curvature in syn-
chrotron spectral index. Polarized AME.

1688x1689 Flauger–Hensley MHD simulations that are meant to provide a con-
sistent simulation of dust and synchrotron.

1691x1692 PySM model a1d1f1s1. Most basic PySM model including dust, syn-
chrotron, AME, and free-free.

1693x1694 PySM model a2d7f1s3. Hensley–Draine dust with more complicated
SED. Curvature in synchrotron spectral index. Polarized AME.

Table 4.1: Summary of the four types of altdust model simulations analyzed with the ILC.
Models include varying levels of foreground and synchrotron signal. Some models include
contribution of anomalous microwave emission (AME), which is an unexpected component
of micrwave emission observed in the 10-60 GHz range and as can be inferred from its name,
the source of AME is an open question.

some bias from these simulations.

The d1 model uses dust templates from the Planck COMMANDER code [40] of the

545 GHz intensity and 353 GHz polarization, which is highly dominated by dust. They

find a best COMMANDER fit assuming frequency scaling as a single component, and the

intensity and polarization share the same index. βd and Td vary spatially so the model

implements some dust pattern decorrelation, which in practice is quite small. The d4 model

is a more generalized version of d1 where it assumes two dust components each with its own

temperature, using templates from Ref. [41]. The d7 model is a separate physical model of

dust which does not conform to the modified blackbody SED and is described in Ref. [42].

The s1 model simulates the spectral index of synchrotron as a power law in every direction,

and uses this to model the synchrotron polarization as a scaling of the 9 year WMAP Q

and U maps, assuming the index is the same temperature and polarization, knowing this is

a simplification of the true sky. The s3 model takes the s1 model and includes a curvature

on the spectral index.

All Planck and WMAP maps are noise dominated at smaller angular scales at higher
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Galactic altitude. The PySM model smooths the maps at these scales and inputs realizations

with Gaussian foreground structure as described in chapter 3 of Ref. [39].

The second altdust model listed, 1688×1689, is based on Galactic magnetic field simu-

lations [43] which naturally produces correlated dust and synchrotron, and gives a higher

level of synchrotron than is favored by the BICEP/Keck data. These simulations are not

based on external data so have no issue with noise level, and are quite different from the

standard Gaussian dust simulations in that the structure of foregrounds from this model are

non-Gaussian for all ℓ.

The standard BK15 analysis compares the simulations to an 8 parameter model of lensed

ΛCDM+r+dust+synchrotron+noise, exploring the parameter space and conducting a max-

imum likelihood search using COSMOMC which implements a Markov chain Monte Carlo.

We compare our 3 parameter maximum posterior search to the BICEP/Keck multi-spectrum

ML search with the modification to only allow for the three free parameters, Ad, βd, and r.

Results are shown for the three parameter BK15 ML search in figure 4.14.

Table 4.2 compares the statistics of this search with those of the simulation based ILC

maximum likelihood search using standard simulations with nominal values of Ad = 3.75

and βd = 1.6. Note that while the means of the Ad and βd maximum likelihood distributions

are directly listed, it is r̄/σr which is shown for the r maximum likelihood distribution, as

this is the standard of comparison for the BICEP/Keck analyses.

It is important to note that the effects that Ad and βd have on the ILC power spectrum

are less than their effects on the frequency simulations before combination, so we do not

have as much constraining power on Ad as the standard BICEP/Keck maximum likelihood

search and place more focus on marginalizing r. We can see evidence of this looking at the

second column of table 4.2 showing the Ad results, where the ILC results give σAd
= 1.79

and the BICEP/Keck results give σAd
= 0.68. We see similar results for the βd best fit

between the ILC and BK analyses, which is due to the fact that the same tight βd prior is
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BICEP/Keck and Sims ILC Max Likelihood Search Results
Model Ad (Ād, σAd

) βd (β̄d, σβd
) r (σr, r̄/σr)

BICEP/Keck 3.87, 0.68 1.6, 0.05 0.02, +0.1σ
Sims ILC 3.78, 1.79 1.6, 0.01 0.015, +0.05σ

Table 4.2: Results from standard BICEP/Keck 3 free parameter maximum likelihood search
performed on standard simulations compared to the simulations based ILC maximum like-
lihood search. The ILC analysis proved to have a tighter constraint on σr, while being less
sensitive to the dust parameters Ad and βd as compared to the BK15 search.

used used both calculations. The simulations based ILC method finds less biased results for

r and a smaller σr = 0.015 compared to the three free parameter standard BK ML search

which finds σr = 0.02.

The plots in figures 4.11 - 4.13 show the simulations based ILC ML search results for

ILC data composed with simulations having βd = 1.2, 1.6, 2 and keeping fixed Ad = 3.75.

Some interesting behavior arises as βd increases from 1.2 to 2. We see the bias on r, or µr,

decreasing from positive to negative. A source of this bias could be that as the value of βd

changes, the spread of ML values truncates at the edges in the Ad direction as evidenced in

the scatter plots between Ad and r. Another source of this bias, especially at the extremes

of βd = 1.2 and βd = 2, may be that the prior is strongly pulling βd away from these values.

We can check the goodness of fit by looking at the distribution of −2log(L) values. We

expect the mean of this distribution to be approximate to the degrees-of-freedom, which is

the number of data points (in our case 9, as we look at 9 ℓ bins) minus the number of model

parameters (for us this is 2, Ad and r). As mentioned previously, because there is such

a strong prior on βd, this cannot be considered a true free parameter, and we expect the

degrees of freedom to be 7. This is confirmed by calculating χ2 at the values in parameter

space given by the ML search, and can be seen in the top right panel in the ML search

figures.

Figures 4.15 through 4.18 shows the ML search results for the altdust simulations. These

results are less straightforward than those of the standard simulations, as some of the altdust
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Figure 4.11: Simulations based ILC maximum likelihood search results for standard ILC
input simulations composed with βd = 1.2 and Ad = 3.75. The top row going from left to
right are: histogrammed values of βd at point of maximum likelihood for all realizations,
histogrammed values of Ad, and χ2 of maximum likelihood values. The bottom row from
left to right are the histogrammed values of r and a scatter plot of the Ad and r points for
each realization at which the maximum likelihood occurs.
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Figure 4.12: Simulations based ILC maximum likelihood search results for standard ILC
input simulations composed with βd = 1.6 and Ad = 3.75. The top row going from left to
right are: histogrammed values of βd at point of maximum likelihood for all realizations,
histogrammed values of Ad, and χ2 of maximum likelihood values. The bottom row from
left to right are the histogrammed values of r and a scatter plot of the Ad and r points for
each realization at which the maximum likelihood occurs.
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Figure 4.13: Simulations based ILC maximum likelihood search results for standard ILC
input simulations composed with βd = 2 and Ad = 3.75. The top row going from left to
right are: histogrammed values of βd at point of maximum likelihood for all realizations,
histogrammed values of Ad, and χ2 of maximum likelihood values. The bottom row from
left to right are the histogrammed values of r and a scatter plot of the Ad and r points for
each realization at which the maximum likelihood occurs.
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Figure 4.14: BICEP/Keck three free parameter maximum likelihood search results. Standard
simulations were run through the standard BK analysis, however only the Ad, βd, and r
parameters were free while the remaining 5 were kept fixed. The top row going from left
to right are: histogrammed values of βd at point of maximum likelihood for all realizations,
histogrammed values of Ad, and χ2 of maximum likelihood values. The bottom row from
left to right are the histogrammed values of r and a scatter plot of the Ad and r points for
each realization at which the maximum likelihood occurs.
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simulations include polarized AME, and all models include synchrotron in their foregrounds

as well.

While these simulations have varying models for their foreground compositions that are

very different from the simple Gaussian dust and no synchrotron foregrounds of the standard

simulations, our simulations based ILC model still has foreground and ILC biases calculated

from the standard simulations. This is due to the fact that for the altdust models we only

have the full sky simulations, and do not have the conveniently separated foreground only

simulations like we do for our standard simulations. Therefore we keep in mind with these

altdust ML results that while we know that the simulations contain synchrotron and other

components, in some cases modeled in quite a complicated fashion, our simulation based

ILC model only has the capability of assuming that foreground levels in the maps are of the

same level as the Gaussian dust simulations.

Another important note is the ML search done on altdust simulations had noise, fore-

ground, and ILC biases calculated with a lowess interpolation surface fit, rather than the 2D

linear surface fit described for the standard simulations. The lowess fit is almost flat going

from Ad = 10 to higher Ad, however the linear surface fit tended to increase very significantly

for high Ad values. For these simulations, Ad was allowed to range from 0 to 50 and r was

again limited to the range [-0.05,0.15].

Figure 4.15 shows the results for the 1682×1683 model, where there is present polarized

AME, two-component dust, and a curvature in the synchrotron spectral index. In the top

left panel we see that we find unbiased results for βd with quite a narrow distribution, likely

owing to the narrow constraint we place on this parameter. We find a best fit in the center

top plot of Ad = 28.15. Our results for r are quite biased in the bottom left plot with

µr = −0.75σ, and the distribution appears to be sharply cut off at the lower end. If we look

at the scatter plot in the center bottom, we have confirming evidence that the distribution

of points is cut off at the lower end of our r range, which is where we place a boundary on
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Figure 4.15: Simulations based ILC maximum likelihood search results for ILC input sim-
ulations composed from 1682×1683 altdust simulations. The top row going from left to
right are: histogrammed values of βd at point of maximum likelihood for all realizations,
histogrammed values of Ad, and χ2 of maximum likelihood values. The bottom row from
left to right are the histogrammed values of r and a scatter plot of the Ad and r points for
each realization at which the maximum likelihood occurs.

our ML search. If we widened the ML search range in r it is likely that we would find more

biased results in r. We find from our χ2 plot in the top right corner shows a mean value of

8.67 where ideally this would be 7, telling us, unsurprisingly, that our model is not a very

good fit to these simulations.

Figure 4.16 shows the results for the altdust model 1688×1689, which has correlated

dust and synchrotron. These results show an unbiased βd distribution due to the tight

constraint placed on βd. The Ad distribution gives a best fit value of Ad = 3.13, similar

to the Gaussian dust simulations Ad = 3.75, however we see quite the pileup at Ad = 0,

which is a boundary we placed on our ML search. This suggests that the model finds likely
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Figure 4.16: Simulations based ILC maximum likelihood search results for ILC input sim-
ulations composed from 1688×1689 altdust simulations. The top row going from left to
right are: histogrammed values of βd at point of maximum likelihood for all realizations,
histogrammed values of Ad, and χ2 of maximum likelihood values. The bottom row from
left to right are the histogrammed values of r and a scatter plot of the Ad and r points for
each realization at which the maximum likelihood occurs.

values for the nonphysical region of negative Ad. The r results are quite biased as well, with

µr = 0.4σ, and our χ2 distribution gives a mean value of 7. The results here look better than

those from the 1682×1683, which may not be surprising because the 1688×1689 simulations

do not have polarized AME. Still we obtain worse results than the standard simulations, as

expected because these simulations more foreground components that are not accounted for

in the simulations ILC model.

Figure 4.17 shows the results for the 1691×1692 simulations, which include synchrotron

and a dust model where βd varies spatially. These results give a best fit Ad = 13.59 and an

unbiased r distribution with narrow σr = 0.018, though the χ2 distribution for this model
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Figure 4.17: Simulations based ILC maximum likelihood search results for ILC input sim-
ulations composed from 1691×1692 altdust simulations. The top row going from left to
right are: histogrammed values of βd at point of maximum likelihood for all realizations,
histogrammed values of Ad, and χ2 of maximum likelihood values. The bottom row from
left to right are the histogrammed values of r and a scatter plot of the Ad and r points for
each realization at which the maximum likelihood occurs.

is a bit high at 7.69. The βd distribution for this model is wider than the previous ones

we have seen although all ML searches have included the same βd prior. It’s possible the

analysis had a harder time constraining βd for this model because it assumes βd is the same

value across the area of sky contained in the simulations, while the altdust model assumes a

varying value for βd.

Figure 4.18 shows the results for altdust model 1693×1694 which are modeled with the

complicated Hensley SED. While the model for the foregrounds in these simulations is quite

different than the standard simulations which contain only Gaussian dust, we appear to find

unbiased results for r. We find a best fit Ad = 18.38 and a βd distribution centered about
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Figure 4.18: Simulations based ILC maximum likelihood search results for ILC input sim-
ulations composed from 1693×1694 altdust simulations. The top row going from left to
right are: histogrammed values of βd at point of maximum likelihood for all realizations,
histogrammed values of Ad, and χ2 of maximum likelihood values. The bottom row from
left to right are the histogrammed values of r and a scatter plot of the Ad and r points for
each realization at which the maximum likelihood occurs.

the nominal value 1.6, which we can attribute to the tight βd prior.

Overall we find looser constraints when running the altdust simulations through our

simulations based ILC analysis than we find with the standard simulations, an unsurprising

result for several reasons. First, we place a tight constraint on βd with a narrow prior centered

at 1.6, which may not be the true value of βd in these simulations due to the complicated

nature of their foreground composition. Another complication in performing this analysis

on altdust simulations is that the simulations ILC model is composed directly from noise

and foreground simulations that are components of the standard simulations. The altdust

simulations have a wide variation of foregound composition, and further a wide variety of
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BK internal Altdust ML fg Results, no βd prior
Model Ad βd

1682x1683 31.39 1.56
1688x1689 2.93 1.53
1691x1692 13.26 1.62
1693x1694 13.63 1.45

Table 4.3: Results from an internal BICEP/Keck 3 maximum likelihood search performed
on altdust simulations [44] compared to simulations based ILC maximum likelihood search
results. The ML searches performed here did not include a prior on βd, allowing the value
of this parameter to be found outside of its usual tight constraint. The findings from these
results were used in the calculation of the Saha model noise and foreground term for altdust
simulations.

modeling of the individual foreground components. We only have altdust simulations with

all components included and do not have convenient altdust noise only or foreground only

maps, and thus do not have the ability to adjust the noise and foreground biases calculated

for the ILC model to accomodate the foreground composition in the altdust simulations.

The ILC model is built in such a way that components other than dust are not considered,

and the ML search probes only a foreground parameter space that excludes everything but

dust.

While the ML search results using the simulations based ILC model are quite promising

for the standard simulations from the BK15 data release, we find that this model cannot

reasonably handle realizations of sky that contain different foreground composition than

the standard simulations. Due to the necessity of creating simulations spreading all of

parameter space, the simulations based ILC method becomes much more complicated once

we think of introducing newer data, including more foregorund components, exploring a wider

allowed range for Ad, or any other matter of modification. Further, this method requires the

existence of simulations that contain only noise or only foregrounds in addition to simulations

containing full sky data containing CMB+noise+foregrounds. Rather, it makes more sense

to continue the analysis with a more general model that can quickly be adapted to the

specific cases for which we take interest.
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4.5 Saha 1D r Likelihood Calculation

Rather than conducting a multivariate maximum likelihood search for the Saha model, I

do a one dimensional r likelihood calculation. To do this we want a model only explicitly

dependent on r, so replace the noise and foreground dependent term (S2) in equation (4.5)

with its expectation value ⟨S2⟩ where we marginalize over foreground parameter space.

⟨S2⟩ Calculation

We use the general expectation value calculation in equation (4.49) for ⟨S2⟩, first considering

an analysis with foregrounds containing only dust.

⟨S2⟩ =
∑

Ad,βd
S2(βd, Ad)P (Ad)P (bd)∑
Ad,βd

P (Ad)P (βd)
(4.49)

S2 is the Saha noise and foreground term, or the second term in equation (4.5), P (Ad) is

the prior on Ad, and P (βd) is the prior on βd given by equation (4.48).

As mentioned previously we don’t have a precise measurement on the dust amplitude and

need a prior to give us a reasonable range. Previously in the sims ILC model we had simply

constrained the search space of the ML search algorithm, however here we will consider

a second option. What we are calling the Ad prior is actually the likelihood curves of a

one dimensional Ad likelihood calculation done on the Planck 353 GHz dust maps. This

calculation is the H-L likelihood with simulation bandpowers coming from the standard 353

GHz simulations, and fiducial bandpowers coming from the BICEP/Keck multicomponent

model. We choose the Planck 353 GHz maps as opposed to BK150 even though they are

noisier because the CMB is negligible at such a high frequency. Because this frequency is

the turning point for βd, Ad and βd are essentially decoupled and there is no need to account

for any βd in the Ad prior. We have one Ad likelihood per realization (shown in figure 4.19

so there is a unique ⟨S2⟩ for each realization going into the one dimensional r likelihood
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Figure 4.19: Comparing mean of noise + dust + 2*noise × dust simulations in dashed black
to S2 in red and ⟨S2⟩ curves in dark grey. Note that the red and dashed black lines are the
same as in the center panel of figure 2.2, and the dark grey lines are ⟨S2⟩ calculated for each
realization. Planck 353 GHz auto spectrum likelihood as a function of a one dimensional
model with Ad as the only free parameter is plotted to the right. Note while curves are only
plotted out to Ad = 25, they are actually calculated out to Ad = 50.

calculation.

Figure 4.19 shows the ⟨S2⟩ curves as the dark grey lines compared with the model term

S2 in red, and the mean of ILC noise + dust auto spectra + 2 · noise × dust cross spectra

simulations in the dotted black line. When running the H-L likelihood, each realization will

have its own ⟨S2⟩ curve so that the cleaned power spectrum changes from realization to

realization.

Accounting for ⟨S2⟩ Uncertainty

There is some uncertainty in the ⟨S2⟩ term because of the noise and foreground just like in

the ILC power spectrum (⟨D̂Clean
ℓ ⟩) which we will account for with the variance of S2.

The uncertainty in using ⟨S2⟩ is accounted for with the calculation of the covariance of

S2. As mentioned in section 4.2, the H-L likelihood function requires a variable Mf , or the

bandpower covariance matrix of the ILC realizations. Just as there is an ⟨S2⟩ curve for each
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Figure 4.20: Covariance and variance of S2 compared with the bandpower covariance matrix
of ILC simulations, Mf . In the left-hand panel are plotted the diagonals of the Mf matrix
as the dashed red line, and the grey lines are the variance of S2 for each realization, with ℓ
values on the x-axis. In the center panel is the Mf matrix. To the right is the covariance
matrix of S2 for one realization.

realization, there is also a unique covariance matrix which is added to Mf each time the H-L

likelihood is calculated. The left panel in figure 4.20 compares the diagonal of Mf in red

with the variance of S2 in grey. The center panel shows the Mf matrix and to the right is

the covariance matrix of S2 for one simulation. Recall that the elements more than one off

of the diagonal of Mf are zeroed out because there is expected to be negligible correlation

between ℓ bins that are not adjacent. The covariance of S2 does have nonzero bins off the

diagonal, because we are making the assumption that dust follows a power law spectrum

with respect to ℓ.

Monte-Carlo Markov Chain ⟨S2⟩ Calculation

The method in section 4.5 requires calculating ⟨S2⟩ a grid of Ad and βd values, which can

quickly become time intensive once more parameters, such as As and βs are considered.

It works sufficiently for standard simulations assuming only dust foreground composition,

however once we intend to include synchrotron this method becomes infeasible. Instead,

we introduce a Monte-Carlo method in which we sample a parameter space covering the

foreground parameters given by their prior distributions.
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Figure 4.21: 23 GHz one dimensional As likelihood curves. 23 GHz is the pivot frequency
for synchrotron, and the likelihood calculated at this frequency for As provides a reasonable
region for which we can marginalize As.

The Ad likelihood curves and βd prior are the same as those from section 4.5. Once

synchrotron is considered, the priors for As and βs are similar to those of the dust parameters.

Similarly to Ad, one dimensional likelihood curves are calculated for As for each realization

using the WMAP 23 GHz map, shown in figure 4.21. The βs prior distribution is a Gaussian

curve with µβs = −3.1 and σbetas = 0.3. The parameter space from which the samples are

drawn is the posterior calculated in equation (4.50). We consider the two cases of dust

only, or synchrotron "turned off", and foregrounds containing both dust and synchrotron, or

synchrotron "turned on". For synchrotron turned off we simply drop the As likelihood and

βs prior from this product.

posterior = P (βd) · P (βs) · L(Ad) · L(As) (4.50)
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Figure 4.22: We drew 2500 samples from a region of dust parameter space described by the
posterior P (βd) · L(Ad) for one of our realizations. If we were to histogram the points in the
βd direction we would recover a distribution close to that of P (βd), and in the Ad direction
would get a distribution close to that of the corresponding simulation Ad likelihood curve.

Once we have sampled this space we calculate S2 at each point and take the average

to get the values of ⟨S2⟩. We repeat this for each realization to get a total of 499 ⟨S2⟩

curves. The variance and covariances needed as described in section 4.5 are the variance and

covariance of the S2 values calculated at each of the samples. Figure 4.22 shows a scatter

plot of the samples for one realization chosen in a configuration in which the foregrounds

only contain dust.

Figure 4.23 shows the ⟨S2⟩ curves for each realization calculated using the MCMC method

for dust only foregrounds compared with the noise and foreground simulation average and S2

calculated for Ad = 3.75 and βd = 1.6. Figure 4.24 shows on the right a covariance matrix

from one of the realizations compared to the center panel with the grid-based covariance

matrix for the same realization. Plotted in the left panel are the variance curves for S2 with
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Figure 4.23: Comparing mean of noise + dust + 2*noise × dust simulations in dashed black
to S2 in red and ⟨S2⟩ curves in dark grey. Note that the red and dashed black lines are
the same as in the center panel of figure 4.9, and the dark grey lines are ⟨S2⟩ calculated for
each realization using the MCMC sampling method. Results are the same as grid calculation
shown in the left panel of figure 4.19.

the diagonal of Mf being shown as the dashed red line. We see that we obtain the same

results when comparing these plots to figures 4.19 and 4.20, and continue with the likelihood

calculations henceforth using the MCMC ⟨S2⟩.

4.6 Saha 1D r Likelihood Results Standard Sims

The Saha likelihood performed on standard simulations with free parameter r is plotted

in figure 4.25 for both synchrotron turned off in the top row and on in the bottom row.

The grey curves in the left hand panels are the 499 likelihoods while the black curve is the

product of the grey. The center panels are the black curves from the left panels, zoomed

in on the x-axis, with a blue vertical line plotted at r = 0. The right hand panels are the
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Figure 4.24: Covariance and variance of S2 calculated with the MCMC sampling method
compared with the bandpower covariance matrix of ILC simulations, Mf . In the left-hand
panel are plotted the diagonals of the Mf matrix as the dashed red line, and the grey lines
are the variance of S2 for each realization, with ℓ values on the x-axis. In the center panel is
the Mf matrix. To the right is the covariance matrix of S2 for the same realization plotted
in figure 4.20.

histogrammed peaks of the grey curves from the left hand plots. Here we can see for both

synchrotron included and left out that σr = 0.025, a bit larger than σr = 0.020 from the

BK15 ML search results [34], however the bias on r is negligible, µr = −0.005. We note

that while the shapes change very slightly for synchrotron turned on versus off, the statistics

of the maximum likelihood search are virtually identical for the two cases. Table 4.4 shows

the ML search results for the BK15 analysis for standard sims (labeled "Gauss" in the top

row) and altdust simulations. The second column shows the results in the format σr, µr/σr,

where we can interpret for the standard sims that µr/σr = 0.1σ and therefore µr = 0.002, a

result similar in magnitude to our Saha ML search result.

4.7 Saha 1D r Likelihood Results Altdust Sims

The altdust simulations were run through the ILC Saha likelihood analysis as a test of the

robustness of the ILC Saha model. One change was implemented in this likelihood study

compared to that of the standard simulations where the βd prior center was adjusted for
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BK15 ML Results
Model σr, r̄/σr

Gauss 0.020, +0.1σ
1682x1683 0.028, +0.1σ
1688x1689 0.02, +0.2σ
1691x1692 0.026, +0.2σ
1693x1694 0.03, +0.4σ

Table 4.4: BK15 standard and aldust maximum likelihood search results for parameter r.
The ML search performed to obtain these results used the same βd prior used in our ILC
analysis, finding tighter constraints on r with the standard Gaussian dust simulations in the
top row as compared wtih the altdust simulations in the following rows.

Figure 4.25: r likelihood results for standard simulations. The grey lines are the individual
simulations where the curves are normalized to integrate to 1, and the black curve is the
product of the grey curves. The center panel shows the close up of the black curve from the
left panel with r = 0 plotted in blue. The right panel shows the distribution of the r values
at which the maximum likelihoods occur. The top row shows results for no synchrotron, and
bottom shows results for synchrotron turned on. While there are slight differences in shape,
statistics of the maximum likelihood searches are equivalent.
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the different types of altdust simulations. Because the altdust foreground models are so

different, we want the priors allow for a search in the appropriate parameter space. The Ad

and As likelihoods take this into account by nature of their calculation, and we choose the

center of the βd prior from a previous internal MLsearch on altdust simulations from Ref.

[44] (with results shown in table 4.3). The results for the βs maximum likelihood search are

similar for all altdust models and remains the same for all standard and altdust simulations.

Figures 4.26 through 4.29 show likelihood curves and ML distributions for the different

altdust models, where we have done calculations both including and excluding synchrotron

component. A summary of the ILC altdust r likelihood results is compiled in table 4.5, and

in the second left column are the values µβd
for each altdust model. We keep the width of

the βd prior the same for all simulations, where σβd
= 0.11.

We see in figure 4.26 the results for the 1682×1683 simulations, with a βd prior centered

at 1.56, a full 0.36σ shift from the nominal µβd
= 1.6. We see in the center panels for both

synchrotron excluded (top) and included (bottom) that the product of all normalized grey

curves in the left panel is centered quite far from r = 0, where this point is not even included

in the full curve. σr remains the same for either case, however including synchrotron moves

the mean of the ML distribution closer to zero by a factor of 2. This decrease is expected,

as we know that these simulations include synchrotron. The wider σr than the standard

simulations (σr = 0.025) may be due to the fact that AME is included in these simulations,

where our analysis does not consider this component.

Figure 4.27 shows the results for altdust model 1688×1689, which we recall has correlated

dust and synchrotron of non-Gaussian shape. The βd prior for this calculation is µβd
= 1.53.

We find a narrower σr = 0.025 compared to the 1682×1683 model, though again the product

of the r likelihood curves is centered far from r = 0, which may be due to the length of the

likelihood curves stretching out to higher r.

Figure 4.28 shows the results for the altdust model 1691×1692, which model βd as a
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Figure 4.26: r likelihood results for 1682×1683 altdust simulations. The grey lines are the
individual simulations where the curves are normalized to integrate to 1, and the black curve
is the product of the grey curves. The center panel shows the close up of the black curve
from the left panel with r = 0 plotted in red. The right panel shows the distribution of
the r values at which the maximum likelihoods occur. The top row shows results for no
synchrotron, and bottom shows results for synchrotron turned on.
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Figure 4.27: r likelihood results for 1688×1689 altdust simulations. The grey lines are the
individual simulations where the curves are normalized to integrate to 1, and the black curve
is the product of the grey curves. The center panel shows the close up of the black curve
from the left panel with r = 0 plotted in blue. The right panel shows the distribution of
the r values at which the maximum likelihoods occur. The top row shows results for no
synchrotron, and bottom shows results for synchrotron turned on.
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Figure 4.28: r likelihood results for 1691×1692 altdust simulations. The grey lines are the
individual simulations where the curves are normalized to integrate to 1, and the black curve
is the product of the grey curves. The center panel shows the close up of the black curve
from the left panel with r = 0 plotted in blue. The right panel shows the distribution of
the r values at which the maximum likelihoods occur. The top row shows results for no
synchrotron, and bottom shows results for synchrotron turned on.

spatially variable parameter. The βd prior is centered at µβd
= 1.62, quite close to the

nominal value βd = 1.6 that is in the standard dust simulations. The results for these

simulations are quite biased, where µr = 0.5σ whether synchrotron is included or not. This

may have something to do with the complicated modeling of dust in the simulations, and

it could be that placing a tight βd constraint (even if it is possibly centered closer to the

true value of βd in the simulations). The product of the grey curves is quite far from r = 0,

evident even when looking at the curve for full range of r in the left hand panels.

Figure 4.29 shows the results for the 1693×1694 simulations, where the foregrounds are

a complicated SED. The likelihood curves are all normalized so that the area under each
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Figure 4.29: r likelihood results for 1693×1694 altdust simulations. The grey lines are the
individual simulations where the curves are normalized to integrate to 1, and the black curve
is the product of the grey curves. The center panel shows the close up of the black curve
from the left panel with r = 0 plotted in blue. The right panel shows the distribution of
the r values at which the maximum likelihoods occur. The top row shows results for no
synchrotron, and bottom shows results for synchrotron turned on.

curve is unity. We can see the heights of the curves vary quite a bit, telling us the widths

of the likelihood curves vary from realization to realization. We can see the product of the

curves is nowhere near r = 0, and our ML results for r are quite biased with σr = 0.034 (or

σr = 0.035 for synchrotron included).

The statistics of these maximum likelihood searches generally show better results (lower

σr or less bias) should synchrotron be included in the calculation, which is unsurprising

considering all altdust models have a synchrotron component. With the exception of the

1691×1692 model, we obtain a consistent level of sensitivity to r with a similar level of σr

and bias regardless of the modeling of the foreground components. Comparing to the BK15

120



CHAPTER 4. LIKELIHOOD ANALYSIS 4.8. VARYING βd

ILC Altdust Models ML Results
σr, r̄/σr

Model βd Prior Center Sync off Sync on
1682x1683 1.56 0.032, +0.3σ 0.032, +0.2σ
1688x1689 1.53 0.025, +0.4σ 0.025, +0.2σ
1691x1692 1.62 0.031, +0.5σ 0.031, +0.5σ
1693x1694 1.45 0.034, +0.4σ 0.035, +0.3σ

Table 4.5: ILC altdust models ML search results. In the second left column are listed the
values at which the βd prior is centered for each model, the second right column shows our
ML search results for r assuming no synchrotron is in the models, and in the right column
are results from calculations including synchrotron component in foregrounds. While σr is
not generally affected whether synchrotron is included or not, the results for synchrotron
inclusion yield slightly less biased results, an unsurprising result considering all altdust sim-
ulations have synchrotron included.

ML search results in table 4.4, we see that our analysis yields again a slightly larger σr but

are of the same magnitude.

4.8 Saha 1D r Likelihood Varying βd Prior Properties

A further study we tested was analyzing what happens to the ML search results on standard

simulations given varying conditions on the βd center. Thus far, we have shown results should

the βd prior be a Gaussian distribution centered at 1.6 with width of 0.1. We have obtained

acceptable results with this constraint on βd so far for our standard simulations because the

were made with a βd value of 1.6. For the real sky, however, we do not necessarily know the

true value, with increasing observations and more data over the years we may find that this

value is in fact not the best fit for the sky. Because of this we are interested in obtaining

robust ML search results that do not rely on a tight constraint on βd.

We tested out three separate changes to this prior (leaving all the βs prior and Ad and

As likelihoods the same):

1. Varying the center of the βd prior, keeping width fixed to 0.11
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2. Varying the width of the βd prior, keeping the center fixed to 1.6.

3. Varying the center of the βd prior, keeping width fixed to 1.

Notice items 1 and 3 are very similar, however in case 3 we expand the width of the prior

by a factor of 10. These studies are done for synchrotron both included and ignored. Tables

4.7 - 4.8 show the results for these cases, which are further discussed below.

Case 1

The βd width is fixed to 0.11, the same width used in all ML search methods done thus far.

The center of the prior distribution ranged from 1.45 to 1.7. In table 4.7 are the results

for the varying values of the βd centers, with synchrotron turned off in the center column

and synchrotron turned on to the right. We note that the case where the βd center is 1.6 is

the same calculation as the previous standard simulations ML search, and we use this as a

comparison to for the behavior of the other βd center values.

Focusing first on the case where we have synchrotron turned off, we notice that the value

of σr is virtually undisturbed as we shift the center of the βd prior to the left and to the

right of it’s nominal position. We notice a change in the bias µr/σr, shifting more negative

as we move the βd prior to the left, and becoming positive as we shift the prior to the right.

Unexpectedly the largest this bias becomes is when µβd
= 1.45, a value outside of what

is predicted by Planck which likely skews our results. Overall, the values of this bias are

incosequential given the size of σr. We see similar results when we turn synchrotron, and

can conclude that moving the βd prior around does not significantly affect our ML search

results.

Case 2

Here we discuss the case of fixing the βd prior center to the nominal value of 1.6, but change

the width of this prior to values ranging from 0.5 to 1. Comparing first the results for

synchrotron both turned off and turned on, we do not see a significant difference. The bias
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MLSearch Varying βd Prior Center, Width = 0.11
σr, r̄/σr

βd Center Sync Off Sync On
1.45 0.026, -0.5σ 0.027, -0.6σ
1.5 0.026, -0.3σ 0.026, -0.5σ
1.55 0.026, -0.2σ 0.026, -0.3σ
1.6 0.025, -0.2σ 0.025, -0.2σ
1.65 0.025, +0.1σ 0.025, -0.0σ
1.7 0.025, +0.2σ 0.025, +0.1σ

Table 4.6: ILC MLSearch results for varying βd prior centers and width = 0.11 for standard
simulations. In the left column are listed the range of βd prior centers, the center column
lists results for r ML search with no synchrotron included in calculation, and the left column
shows results for synchrotron included. We see for either case the value of σr is not greatly
affected by the position of hte βd prior, however the bias on the results tends to be smaller
close to the true value of βd = 1.6 in the simulations. The bias on the results when βd is
close to this value does not change much whether synchrotron is included in the calculation
or not.

is slightly higher for synchrotron turned on which is unsurprising given the fact that the

standard simulations are created assuming no synchrotron, however these values are not

unacceptable. The value of σr varies quite slightly given the wide range on the width of

the βd prior. We can conclude here that a large width on the βd prior will not significantly

affect our results. We recall the discussion in section 4.4 that due to the narrow constraint

on βd that it is not a true free parameter. The findings from this case allow us to loosen the

constraint on βd which means that we may make less assumptions about it.

Case 3

In this final case we test the ML search behavior given a width prior with σβd
= 1, varying

the position of its center from 1.45 to 1.7, the same range done in the first case. We would

expect that given our conclusions from cases 1 and 2 that this case should not significantly

affect our ML search results. Looking to table 4.8 we see that this is indeed the case. For

foregrounds with synchrotron turned off we see virtually no change in ML search results

given the position of the βd prior. We do slightly lose some sensitivity as σr goes up to

0.027 compared to our first Saha ML search result of σr = 0.025, however our results remain
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MLSearch Varying βd Prior Width, Center = 1.6
σr, r̄/σr

βd Width Sync Off Sync On
0.05 0.025, -0.1σ 0.025, -0.2σ
0.11 0.025, -0.2σ 0.025, -0.2σ
0.15 0.025, -0.0σ 0.026, -0.2σ
0.2 0.026, -0.1σ 0.026, -0.2σ
0.5 0.027, -0.1σ 0.027, -0.2σ
1 0.027, -0.1σ 0.027, -0.2σ

Table 4.7: ILC MLSearch results for βd prior varying width and center = 1.6 for standard
simulations. In the left column are listed the range of σbetad , the center column lists results
for r ML search with no synchrotron included in calculation, and the left column shows
results for synchrotron included. We see that widening the βd prior by a factor of 20 only
causes us to lose 8% sensitivity on r, with unbiased results for all cases. We see no change
in the values of σr whether synchrotron is included or not, however have more biased results
when synchrotron is inlcuded.

unbiased. Again unsurprisingly our results are slightly biased when synchrotron is turned

on, because we allow the ML search to be done in a parameter space that we know that the

simulations do not occupy.

Saha results for altdust sims varying βd prior

In table 4.9 we see ML search results on altdust simulations where synchrotron is present

and the βd prior has width σβd
= 1. In the center column are the results when we allow the

center of the prior to vary in the same way was was done in table 4.5, and in the right column

are ML search results when our βd prior is always centered at 1.6. We see immediately that

our σr values do not change whether we allow the βd prior to move or not, and comparing

these results to the right column in talbe 4.5 also tells us that we do not have to pay a price

when loosening the constraints on βd.
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MLSearch Varying βd Prior Center, Width = 1
σr, r̄/σr

βd Center Sync Off Sync On
1.45 0.027, -0.1σ 0.027, -0.3σ
1.5 0.027, -0.1σ 0.027, -0.3σ
1.55 0.027, -0.1σ 0.027, -0.2σ
1.6 0.027, -0.1σ 0.027, -0.2σ
1.65 0.027, -0.1σ 0.027, -0.2σ
1.7 0.027, -0.0σ 0.028, -0.2σ

Table 4.8: MLSearch results for βd prior varying centers and σbd = 1 for standard simulations.
In the left column are listed the range of βd prior centers, the center column lists results for
r ML search with no synchrotron included in calculation, and the left column shows results
for synchrotron included. We see that with a wide βd prior the center position does not
affect the results. Our synchrotron excluded results are unbiased versus the biased results
when we included synchrotron in calculations.

MLSearch Wide βd Prior σβd
= 1

σr, r̄/σr

βd Altdust Model Moving µβd
µβd

= 1.6
1682x1683 0.030, -0.4σ 0.030, -0.5σ
1688x1689 0.025, +0.2σ 0.025, +0.2σ
1691x1692 0.031, -0.1σ 0.031, -0.1σ
1693x1693 0.034, +0.2σ 0.034, +0.2σ

Table 4.9: ILC altdust MLSearch results for wide βd prior. In the right column are results
when we keep µβd

= 1.6 for all models, and the center column shows results where each
model has its own µβd

, the same centers as in the second left column of table 4.5. We see
that fixing µβd

for all models does not change our results, a welcome outcome because when
analyzing real data we wish to make the least amount of assumptions possible.
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4.8.1 Saha results for 5D posterior

Thus far we have studied several variations on the r likelihood ML search in the way that

we calculate ⟨S2⟩. We have varied the shape and position of the βd prior that is used in the

posterior from which we sample to calculate ⟨S2⟩, and we have calculated r likelihood curves

both with synchrotron inclusion and without synchrotron. We have found that although our

standard Gaussian dust simulations were created without synchrotron present, our ML search

results including synchrotron are the same as when we assume foregrounds only containing

dust. We have also found that including synchrotron improves our ML search results for the

altdust simulations.

As a reminder, the way in which we have included synchrotron in our calculations is

through the posterior from which we sample for the ⟨S2⟩, calculated in equation (4.50).

While this yields acceptable ML search results, it is not exactly correct, as the way that we

multiply the one dimensional Ad and As likelihoods together treats the dust and synchrotron

as independent signals.

In reality, there is some correlation between these two foreground components evidenced

by data from Planck due to the fact that both elements are experiencing the same Milky

Way magnetic field. We are able to include this correlation by introducing a new parameter,

ϵ, which describes the dust and synchrotron correlation. This parameter can take any value

between -1 and 1, and we can constrain the foregrounds with a five dimensional likelihood

calculation with the free parameters Ad, βd, As, βs, and ϵ, and multiply by our same βd and

βs priors to obtain a posterior from which to sample for ⟨S2⟩.

We calculate this five dimensional likelihood by looking at the cross-correlation between

maps of high and low frequencies. We continue to use the WMAP 23 GHz and Planck 353

GHz maps, and again use the H-L likelihood formula. Our new 5 dimensional posterior is

then
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Figure 4.30: On the right are the r likelihood curves for ⟨S2⟩ calculated with the 5D posterior
described in equation 4.51. The grey lines are the individual simulations where the curves
are normalized to integrate to 1, and the black curve is the product of the grey curves. The
center panel shows the close up of the black curve from the left panel with r = 0 plotted in
red. The right panel shows the distribution of the r values at which the maximum likelihoods
occur.

P5D = P (βd) · P (βs) · L(Ad, βd, As, βs, ϵ) (4.51)

where P (βd) and P (βs) are the same βd and βs priors we have been utilizing, and L is our

five dimensional likelihood constraining synchrotron, dust, and their correlation. We rerun

our r ML search on standard and altdust simulations using this posterior with the wide βd

prior where σβd
= 1. The results for the standard simulations run through this configuration

are shown in figure 4.30, and the altdust simulation results are listed in table 4.10.

We can see in the standard simulation maximum likelihood search that the results remain

unbiased, with µr = −0.032σ. When performing the maximum likelihood search on altdust

simulations we find comparable σr, however the results (barring that of the 1691×1692

model) are quite biased with µr on the order of 30% to 40% of σr.
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Altdust MLSearch 5D Posterior Sampling Distribution
βd Altdust Model σr, r̄/σr

1682x1683 0.031, -0.4σ
1688x1689 0.026, +0.4σ
1691x1692 0.031, -0.0σ
1693x1693 0.035, +0.3σ

Table 4.10: ILC altdust MLSearch results for 5D sampling posterior distribution. Our results
do not change considerably when compared with those in table 4.9, telling us we do not loose
significant sensitivity when loosening the constraints on our foreground parameter space.
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Chapter 5

ILC Likelihood for Real Data

In the previous chapter we tested the effects of varying the manner in which ⟨S2⟩ was

calculated, ending with the method of marginalizing the sampling foreground parameter

space with a 5D posterior distribution. In this chapter I will show our ML search results

using this variation of the Saha model for the two cases of a narrow βd prior where σβd
= 0.11,

and the wide βd prior where σβd
= 1. I will directly compare these results to those from the

BICEP/Keck 2015 analysis. The altdust simulations previously discussed will be left out of

this discussion because while they proved a useful metric of the robustness of our ILC model,

the standard simulations are a better representative of the real data.

5.1 Real Data ILC Power Spectrum

We first calculate an ILC power spectrum using the real data frequency maps, and plot this

in figure 5.1 as a black line with the familiar grey envelope of simulations, and the mean of

sims plotted in blue. We see that the real data is well within the grey envelope, telling us it

is consistent with our simulations. Once we have this power spectrum, we can then use it to

calculate a likelihood curve.
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Figure 5.1: Full sky standard ILC power spectra. The grey lines are the familiar ILC
simulations created with the standard frequency simulations containing Gaussian dust, the
blue line is the average of the simulations, and the black line is the result of putting the real
data frequency maps through the ILC process.

5.2 Real Data Likelihood

We recall that the Saha ILC model calculation depends on the term ⟨S2⟩, which is calculated

with an ensemble of samples drawn from a posterior distribution composed from a 5D like-

lihood providing a reasonable foreground parameter space. This likelihood is calculated for

each realization with the WMAP 23 GHz and Planck 353 GHz bandpowers and their cross

spectra, such that each realization that goes through the HL likelihood calculation has it’s

own ⟨S2⟩ curve. For our real data likelihood calculation, we keep the same process, however

calculate this 5D foreground likelihood using the real foreground data from the BK15 data

release.

We multiply this likelihood by the same βd and βs priors from equation (4.51), and choose

to analyze separately the results with a wide βd prior versus a narrow βd prior. Our reasoning

for including a wide prior is that it allows us to consider a wider area of βd space were we to

think that the historical value of 1.6 were incorrect. We recall for example that in section
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4.4, our altdust results were quite biased which we postulated was partially due to the tight

βd prior influencing results giving us a value much different than the true value in the input

frequency simulations.

While all of our simulation results in this chapter will be calculated with βd priors centered

about βd = 1.6, recent Planck results [45] have found that the best fit value for βd may

actually be closer to βd = 1.53. Our standard simulations were created with a true value of

βd = 1.6, so we will continue to analyze them with a prior centered at this value. However

we will also see what happens to the real data likelihood curve with a model where ⟨S2⟩ is

calculated with a narrow βd prior centered about βd = 1.53.

We see in figures 5.2 and 5.3 the ML search results shown in previous sections, with the

addition of a curve calculated from real data. The plots in the left panels show the grey

envelope of simulation r likelihoods, and a black curve showing the likelihood curve of the

real data. We see that the simulation curves calculated with a wide prior have longer tales

than the simulation curves calculated with a narrow prior, however the shape of the real

data curve does not seem to change significantly with the prior width.

The right hand panels in figures 5.2 and 5.3 show the distribution of the r values at

which the likelihoods reach their maximum. In both plots the red line comes from the BK15

analysis giving a maximum likelihood for the real data at rML,BK15 = 0.02. The black lines

are the maximum likelihood position for our ILC analysis, where for a narrow βd prior we

get a value of rML,narrow = −0.005 and for a wide prior is rML,wide = −0.018.

Figure 5.4 shows the real data likelihood curves from figures 5.2 and 5.3, with the addition

of a likelihood curve calculated with the βd prior centered about βd = 1.53 with width

σβd
= 0.11. When comparing the values of r for the maxima of each of the curves, we

find that for the wide βd prior centered at βd = 1.6 plotted in black, rML = −0.022, which

is quite close to the value when using the narrow prior centered at βd = 1.53 plotted in

blue, where we get rML = −0.018. The curve calculated with a narrow βd prior centered at
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Figure 5.2: Maximum likelihood search results from our ILC analysis using standard simula-
tions, where the ⟨S2⟩ term in the Saha model used in the HL likelihood is calculated with a
βd prior with width σβd

= 0.11. Left: r likelihood curves where the grey lines are calculated
with the 499 simulations, and the black curve is calculated with real data. Right: the r
values at which the likelihood curves peak. The black line is the value from the real data
put through the ILC analysis, and the red line is the BK15 result.

Figure 5.3: Maximum likelihood search results from our ILC analysis using standard simu-
lations, where the ⟨S2⟩ term in the Saha model used in the HL likelihood is calculated with
a βd prior with width σβd

= 1. Left: r likelihood curves where the grey lines are calculated
with the 499 simulations, and the black curve is calculated with real data. Right: the r
values at which the likelihood curves peak. The black line is the value from the real data
put through the ILC analysis, and the red line is the BK15 result.
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Figure 5.4: Real data likelihood curves. The black line shows the r likelihood curve where
the ⟨S2⟩ term was calculated with a wide βd prior centered at 1.6, the dashed red shows the
curve where ⟨S2⟩ was calculated with a narrow βd prior centered at 1.6, and the blue dotted
line shows the curve where ⟨S2⟩ was calculated with a narrow βd prior centered at 1.5.

βd = 1.6 plotted in red has a different shape when compared to the other two curves, and

has rML = −0.008. The plot on the left shows these curves on a linear y-axis, and on the

right are the same curves plotted on a log y-axis. The fact that the red curve is the most

different of the three plotted shows that how we marginalize over the foreground parameters

influences the value of r that our analysis finds. More specifically, the allowed region for the

βd parameter has influence on where we find our best fit for r.

Figure 5.5 shows scatter plots for the ML results for simulations put throught the ILC

analysis (calculated with a narrow βd prior in the left panel and a wide βd prior in the right)

compared to the BK15 results. The black dot on each plot shows the value of rML obtained

from the real data. We see a clear correlation between the ILC analysis and the BK15

analysis results, even if they do not give quite the same result. We see stronger correlation

when using a narrow βd prior than a wide one, however neither method gives large outliers.

On both panels is plotted the real rML result when calculated with a narrow βd prior centered

at βd = 1.53, and we can see confirmation to figure 5.4 that the maximum r likelihood value
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Figure 5.5: Scatter plots showing the maximum likelihood r values from our ILC analysis
compared those found from the BK15 analysis. The left plot has ⟨S2⟩ calculated with a
narrow βd prior, and the right panel is calculated with a wide βd prior. The grey points in
these plots are results from simulations, the black dot is the real data result, and the blue
dot is the real result where the βd prior is centered at βd = 1.53.

is closer to the calculation with a wide βd prior than a narrow centered at βd = 1.6.

Another way of directly comparing our ILC analysis results realization by realization to

the BK15 analysis results is plotted in Fig. 5.6. This one is a bit more complicated to

interpret than the results from Fig. 5.5. The x-axis on these plots shows the difference in

rML values obtained for each realization between each analysis, where we subtract the ILC

analysis rML,ILC value from the BK15 rML,BK15. On the y-axis is plotted the best fit values

for βd from the BK15 analysis. Again the grey points show simulation results, and the solid

black dot is the real data. We can see a bit of correlation which is more prominent in the

calculations with a narrow βd prior. This tells us that the realizations where the BK15 ML

search finds a low βd are realizations where the ILC analysis finds a lower r value than the

BK15 analysis. This could mean that the BK15 ML search tends to finds a low βd when it

finds high r. The data in each case falls within the spread of simulations, however is in the

higher end of rML,BK15 − rML,ILC . We have again in blue plotted the real data rML result

for narrow βd centered at βd = 1.53 on both plots.
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Figure 5.6: Scatter plots showing relationship between difference in BK15 and ILC analysis
r ML results, and the BK15 βd results. On the left are the points comparing BK15 to the
narrow βd prior ILC results, and on the right are the points comparing BK15 to the wide βd

prior ILC results. On both plots the blue dot is the real result where the βd prior is centered
at βd = 1.53

5.3 Zero-to-Peak Ratio

We can calculate the ratio between the likelihood at r = 0 and r = rML, or the zero-to-peak

ratio L0/Lpeak, as another way to analyse the distribution the rML. We only look at the

posterior curves for r > 0, and because we know that a significant portion of the r posteriors

peak at negative r, since we are cutting off that portion of parameter space we expect a

significant portion of our L0/Lpeak values to be equal to 1. We calculate L0/Lpeak for all

realizations, and plot the CDF of these ratios in red in the right panels of figures 5.7 and

5.8. The black line is the simple analytic ansatz 1
2
(1− f(−1logL0/Lpeak)) where f is the χ2

CDF for one degree of freedom. This line is what we would expect should the widths of the

individual likelihood curves were a good representation of the scatter of their peaks. The

left panels have replotted the likelihood curves normalized by their maxima for positive r,

with the real data plotted in black. Figure 5.9 shows these same plots from the BK15 paper.

We see that the BK15 analysis found a positive maximum value for rML in the real data,
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and have plotted in the dashed black line where this occurs on their L0/Lpeak plot. They find

that 19% of the simulations run through their analysis have a zero-to-peak ratio less than

the real data, meaning that these realizations show more evidence for a positive value for r

when the true value is in fact zero (we recall that the simulations are created with r = 0).

53% of their simulations have zero-to-peak ratio of 1, meaning that these simulations have

a maximum likelihood value occurring at r ≤ 0.

Our ILC analysis shows that 40% (44% for a wide βd prior) of our simulations have

zero-to-peak ratio less than the real data, which we recall is equal to 1 because we find that

the real data likelihood curve peaks at negative r. Ideally our CDF would agree with the

analytic ansatz, which the results of BK15 does quite well, however we find quite the gap

between our CDF and this ansatz, indicating that the peaks of our likelihoods are more

tightly clustered towards r = 0 than we might expect by looking at the individual likelihood

curves. In other words, the likelihood curves are a bit wider than we would expect by looking

at the cluster of peaks.

5.4 Highest Density Posterior Interval

While it is very important to consider data maximum likelihood results, we can also find

further information when looking at the highest posterior density interval, which is the

narrowest interval for some given confidence interval. We have calculated this for the 68%

confidence interval, and the regions calculated for narrow (with priors centered at βd = 1.6

and βd = 1.53) and wide βd priors is shown in figure 5.10 in the left, right, and center panels

respectively. The posteriors plotted are the real data likelihood curves normalized such that

the area under each curve is 1. The orange shaded regions show the 68% HPD interval, and

we can see that the width of the regions for the various calculations is fairly similar, though

shifted more negative for the center and right panels as compared with the left panel. The

HPD calculated from the narrow prior curve centered at βd = 1.53 is r = −0.008+0.034
−0.025, from
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Figure 5.7: Zero-to-peak results when calculated with a narrow βd prior. Left: r likelihoods
normalized by their maximum likelihood values for the region r ≥ 0, where grey lines show
simulations and the black line is the real data result. Right: CDF of the zero-to-peak ratio
(value of the likelihood at r = 0 divided by it’s maximum value) in red, and the simple
analytic ansatz 1

2
(1 − f(−2logL0/Lpeak)) plotted in black, where f is the χ2 CDF for one

degree of freedom.

Figure 5.8: Zero-to-peak results when calculated with a wide βd prior. Left: r likelihoods
normalized by their maximum likelihood values for the region r ≥ 0, where grey lines show
simulations and the black line is the real data result. Right: CDF of the zero-to-peak ratio
(value of the likelihood at r = 0 divided by it’s maximum value) in red, and the simple
analytic ansatz 1

2
(1 − f(−2logL0/Lpeak)) plotted in black, where f is the χ2 CDF for one

degree of freedom.
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Figure 5.9: Zero-to-peak results from the BK15 analysis. Left: r likelihoods normalized by
their maximum likelihood values for the region r ≥ 0, where grey lines show simulations and
the black line is the real data result. Right: CDF of the zero-to-peak ratio (value of the
likelihood at r = 0 divided by it’s maximum value) in red, and the simple analytic ansatz
1
2
(1− f(−2logL0/Lpeak)) plotted in black, where f is the χ2 CDF for one degree of freedom.

the wide prior curve in the center is r = −0.022+0.042
−0.027, and for the narrow prior centered at

βd = 1.53 on the right is r = −0.018+0.036
−0.028 as compared with the interval quoted in the BK15

paper which is r = 0.02+0.021
−0.018.

5.5 95% Upper Limit

Another interval we can calculate is the 95% upper limit, which tells us at 95% confidence

that the value of r lies below some value. For this calculation we consider only the positive

region of our r likelihood curve, and integrate from zero out to the value of r for which 95%

of the curve is contained. We calculate this interval for each simulation and histogram the

results, shown in figure 5.11 with the narrow βd prior results in the center, and the wide prior

results on the right. The red line on each is the BK15 95% upper limit at r = 0.07, and the

black line is the upper limit we calculate from real data. The blue dashed line is the upper
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Figure 5.10: r posteriors calculated from the ILC analysis, where the curves are the likelihood
curves normalized to integrate to 1. The orange shaded region shows the region of the 68%
Highest Posterior Density Interval. The left panel shows results calculated with a narrow βd

prior, and the right side shows results calculated with a wide βd prior.

limit for the data calculated with a narrow βd prior centered at βd = 1.53. We see that the

distribution is centered at a higher value for the wide prior results versus the narrow prior,

which is unsurprising considering the tales of these likelihood curves are longer as seen in

figure 5.3. In the left panel are plotted the r posterior curves for the real data calculated

with the different βd priors, where the area under the likelihood curves is normalized to 1

for r > 0. The results for the real data put through our ILC analysis are quite close between

different prior calculations, again with the wide prior result being slightly higher. The shapes

of the normalized priors in the left hand plot are quite close, and we can see why our 95%

upper limit calculations are close regardless of the βd prior chosen. We find for both narrow

βd prior options that r < 0.1 at 95% confidence, and for the wide βd prior that r < 0.11 at

95% confidence.

5.6 Conclusions

The results presented here are based off of a study on the BICEP/Keck 2015 data release.

The BK15 analysis found a constraint r < 0.07 at 95% confidence, and after running a

maximum likelihood search found unbiased results and σ(r) = 0.020. Our ILC analysis
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Figure 5.11: Distribution of the 95% upper limits of the r posteriors, where the region
considered is r ≥ 0. The left plot shows the posteriors for the data where the various βd

priors have been used. The center plot shows results for a narrow βd prior, and the right
shows results for a wide βd prior. The blue dotted line in each plot shows the real data result
for a narrow βd prior centered at βd = 1.53. The distributions contain results for the 499
simulated posterior curves, the red line is the BK15 95% upper limit calculated from real
data, and the black line is the ILC analysis result from real data.

performed on the same data found the reasonable, yet looser constraint r < 0.1 at 95%

confidence, and a maximum likelihood search found unbiased results and in the worst case

σ(r) = 0.031.

The ILC analysis takes a much different approach to the data than the BK15 standard

approach, making simple assumptions about the foreground content in the sky maps and

marginalizing over the foreground parameter space in order to end up with a one dimensional

r likelihood calculation, as opposed to the multiparameter search done in BK15. While our

results are a bit less constraining than those of the BK15 analysis, their existence within the

same magnitude of the BK15 results is quite promising.

The methods detailed in this paper could be modified to be able to support the data from

the BICEP/Keck 2018 data release, which has data from the BICEP3 telescope in addition

to the BICEP2 and Keck Array data. The BICEP3 telescope covers a larger area of sky than

the BICEP2 style receivers, complicating the combination of maps performed in the ILC. In

addition to the continued observations of the current BICEP3 and BICEP/Array telescopes,

the CMB community is actively planning the CMB-S4 experiment, a Stage 4 ground-based
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experiment which will collect more data from the CMB for the purposes of studying inflation,

dark matter, and a host of other exciting fields. A map based ILC analysis alternative is

being explored with the goal of performing the analysis on CMB-S4 data.
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