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Abstract

This work probes the efficacy of Generalized Morphological Compo-
nent Analysis (GMCA), a novel sparsity-based Bayesian component sep-
aration method, on CMB-Stage 4 (CMB-S4) simulated data, and creates
a GMCA module for large scale data analysis. The work was done in
Terminal, using Python in Jupyter notebooks and NERSC servers from
the Department of Energy. Source map and mixing matrix optimizations
were performed to minimize chi squared to separate the nine frequency
maps into foreground and CMB components. Results show strong corre-
lation between the CMB, dust, and synchrotron component maps given
as a result of the code, and the original simulation input maps. The maps
created in Python were compared visually to the simulation input maps,
and also quantitatively using correlation calculations. We find that our
GMCA module accurately and efficiently produces maps that show signifi-
cant correlation between the GMCA component maps, and the simulation
input maps.

1 Introduction

The Cosmic Microwave Background (CMB) is the relic radiation of polarized
light from the explosion that created the Universe called the Big Bang. The Big
Bang is the explosion that took the Universe from a hot, dense singularity to
the expanding, cooling Universe we see today. 380,000 years after the Big Bang,
sometimes called the surface of last scattering, the Universe became transparent
enough for light to move through, and the CMB was emitted. [6] The CMB has
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cooled to a chilly 2.725 kelvin, or about 3 degrees above absolute zero, and is
one of the most perfect examples of a blackbody known to science (a blackbody
is an object that absorbs all radiation falling on it). Since the Universe is
expanding and cooling presently, we know the Universe used to be smaller and
hotter, which means that the CMB signal we see today is significantly redshifted
(from UV and visible light to microwaves, more than any galaxy or quasar
ever seen).The CMB is almost uniform, but has slight temperature fluctuations
which can be pictured as slight hills and valleys. Inflation creates these scalar
perturbations, which form the large sclae galactic structure we see today. The
sky signal that we see with our telescopes has 3 main components: the CMB
itself, dust, and synchrotron (which we will henceforth refer to as foregrounds).
These foregrounds must be removed from the sky signal, as they contaminate
the CMB data, and create inaccurate power spectra which are what we aim
to study. The power spectra of the CMB is used to search for evidence of
primordial gravitational waves and learn about inflation, and is a very hot topic
in cosmology today.

1.1 The Big Bang

The theory of the Big Bang is the leading explanation of how our universe
began, and states that the universe began with a small, dense singularity, and
expanded over 14 billion years into the universe we see today, evident in Figure
1.

Figure 1. Expansion of the Universe

Since our telescopes and other astronomical instruments aren’t able to
see back to the very beginning of our universe (the Universe was opaque to light
before recombination), we learn most of what we know about the Big Bang using
mathematical models. However, the echo of the Big Bang can see seen directly
in one phenomenon, something we call the Cosmic Microwave Background or
CMB. In the first second of the universes life, the temperature was around 10
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billion degrees Fahrenheit. The environment was full of a variety of fundamental
particles, such as neutrons, electrons, and protons. These fundamental particles
either decayed or combined as the universe cooled. Even if you could travel back
in time and be present at this exact moment, you wouldn’t be able to see what
was happening. This is because the universe at that stage was not transparent
enough for light to move through. The free electrons would have caused the
photons of light to scatter, similar to how sunlight scatters off water droplets in
clouds. [7] After 380,000 years, the free electrons combined with atomic nuclei
to create neutral atoms, and light could finally shine through. This primordial
light is often referred to as the ’afterglow’ of the Big Bang, but in astrophysics,
we call it the CMB. [6] The CMB was officially discovered (by accident) in 1964
by two Bell Telephone Laboratory workers: Arno Penzias was a physicist, and
Robert Woodrow Wilson was a radio-astronomer. They first believed that the
anomaly in their equipment was due to debris in their detector, but with the
help of a team from Princeton University (led by Robert Dicke), they quickly
realized the anomaly was the CMB! They estimated the CMB had a tempera-
ture of 3.5 Kelvin, and won the Nobel Prize for their work in 1978. [7]

There have been several missions which have set out to probe the CMB.
NASA’s Cosmic Background Explorer (COBE) satellite, created maps of the sky
in the 1990’s. There have been other missions which followed in the footseps
of COBE, such as NASA’s Wilkinson Microwave Anisotropy Probe (WMAP),
and the European Space Agency’s Planck satellite. [4] The observations from
the ESA Planck satellite first came in 2013, mapped the CMB in unprecedented
detail, and revealed that the universe was actually older than we had estimated;
13.82 billion years old versus the previous estimate of 13.7 billion years. The
observations of the sky signal from these three satellites is shown in Figure 2.
The images from each satellite look slightly different, which is due to the varying
angular resolution of these crafts.

Figure 2. All-Sky signal as seen by COBE, WMAP, and Planck -
Works to highlight the increasing angular resolution that comes with advances
in technology
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Although the data from these missions helped answer many astrophys-
ical questions, it also raised some new ones. One prediction of the Big Bang
Theory is that the CMB should be mostly uniform, no matter where you look.
However, the data from Planck showed that the Southern Hemisphere of the
map appeared slightly warmer than the Northern Hemisphere. The CMB also
gives astronomers insight into the composition of the early universe, and helped
give rise to the ideas of dark matter and dark energy. We find that only 5% of
the universe is made of ordinary matter, such as planets, galaxies, and stars. [6]

Astronomers now have a pretty good idea of what happened in the
early universe, but are constantly seeking proof of the rapid inflation that oc-
curred. The theory postulates that in the first second of its life, the universe
ballooned in size faster than the speed of light (which doesn’t violate Einstein’s
speed limit, since the speed limit applies to objects inside the universe, not to
the expansion of the universe itself). In 2014, using a telescope in the South
Pole of Antarctica called Background Imaging of Cosmic Extragalactic Polar-
ization (BICEP2), astronomers found evidence of what seemed to be primordial
gravitational waves in the CMB, using particularly the B modes, but it was later
determined to be excess signal from galactic dust (which is why foreground sep-
aration is so important). The B modes are where astronomers typically search
for evidence of primordial gravitational waves, which are another prediction of
Inflation Theory but are hard to detect directly. Gravitational waves have pre-
viously been confirmed using the movements and collisions of black holes a few
tens of masses larger than our sun using the Laser Interferometer Gravitational-
Wave Observatory (LIGO) in 2016. As the sensitivity of LIGO increases, we
should see black hole gravitational wave events much more frequently. [6]

Since the universe is still expanding, it also expands faster as it grows
bigger. Depending on what dark energy turns out to be and a few other unknown
questions about the Universe, it is one prediction that eventually, no other
galaxies will be visible from earth, or any vantage point inside the galaxy. We
can see the distant galaxies moving away from us, but they are moving faster
with time. This means that if you wait long enough, distant galaxies will be
receding at the speed of light, and their light will never have enough time to
reach us. There are also scientists who pose theories of a multiverse - the idea
that our universe is just one of many, with other universes existing side by
side, like bubbles. People who believe these kinds of theories think that in
the first major part of inflation, different parts of space-time grew at different
rates, which could have carved out different sections (universes) with potentially
different laws of physics. [6]

1.2 Cosmic Microwave Background (CMB)

The CMB shows us a snapshot of what the Universe looked like in its extremely
early days. It can show us how matter was distributed throughout the Universe,
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which is very useful information to cosmologists today. The CMB is polarized,
which describes the orientation of the light waves perpendicular to the wave
vector, whereas unpolarized light has no particular orientation. The CMB is
linearly polarized due to Thompson scattering of photons off free electrons in
the surface of last scattering. In the CMB, we have Q polarization and U
polarization, also called Stoke’s parameters. The CMB is made of E and B
modes, where E mode polarization is parallel and perpendicular to the direction
of the wave vector, and B mode polarization at 45-degree angles to the wave
vector, relative to a choice of coordinates. This can seen in Figure 3.

Figure 3. Polarization across a horizontal wave vector, ~k where it is
clear that E mode polarization is parallel or perpendicular to ~k, and B mode
polarization is rotated 45◦ with respect to ~k. [1]

Studying the polarization of the CMB can give cosmologists drastic
insight into Inflation and how the Universe began. The most important thing
to note about CMB polarization is that it can be described as a combination of
E and B Modes. We can learn about Inflation by studying particularly the B
modes of the CMB, because curved signatures in the CMB are evidence for these
inflationary gravitational waves. This curled signature can only be caused by
gravitational waves produced by Inflation, so if they are seen in the CMB signal,
we find proof of their existence. A prediction of Inflation is that a background of
gravitational waves would be produced. These gravitational waves are too faint
to be directly detected today, but they can be observed through this signature
on the CMB B modes. Since the universe is constantly expanding, the CMB
signal we see has been redshifted. During the big bang the CMB was emitted
as visible and UV light, but has been redshifted significantly, so that we now
observe it in the microwave portion of the electromagnetic spectrum.

1.3 Synchrotron Emission

One of the main foregrounds which affects the CMB data is bright at low fre-
quencies, and is called Synchrotron. Synchrotron radiation is emitted by rel-
ativistic electrons (traveling near light-speed) that travel on spiraling paths in
the galaxy’s magnetic field. [1]
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Figure 4. Synchrotron Emission: Energetic charged particles that are
spiraling in galactic magnetic fields, - very bright at low frequencies

1.4 Galactic Dust

Galactic dust is the name given to microscopic bits of matter that are floating
in interstellar space. Light from surrounding stars heats up these particles, and
causes the dust to glow in the microwave portion of the electromagnetic spec-
trum. The average temperature of the dust hovers around 20 kelvin, meaning
its blackbody spectrum peaks at frequencies higher than the CMB, which is
why the dust is brightest at high frequencies. [1]

Figure 5. Small particles of mainly silicate and carbonaceous grains
floating in the interstellar medium, which are very bright at high frequencies

1.5 Motivation

The goal of our project is to have a workable module of code that will be able
to run a GMCA analysis on sets of frequency input maps, which will accurately
separate the CMB from galactic foregrounds present in the maps.
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2 GMCA Methods

2.1 GMCA

So, now we are going to get into the actual process I used to separate these
components, which is called Generalized Morphological Component Analysis,
or GMCA. GMCA is a sparsity-based Bayesian component separation method,
which means that it relies on the fact that our signal is described by a small
number of independent components. By small number, we mean the number
of independent signals is smaller than the number of frequency maps. We have
9 frequency maps, so this technique only works as long as we can describe the
signal with some number of components that is less than 9, and we happen to
be using 3. [3] GMCA is an example of a semi blind source separation method.
A completely blind source separation method makes no assumptions about any-
thing before analyzing data. GMCA is partially blind, but we still make the
assumption that there are 3 sky components, the CMB, dust, and synchrotron,
and we assume that the signal in these maps can be described by a small number
of independent components. The main goal of GMCA is to estimate the source
components and their emission laws from our data. In our case. The source
components are the maps of the CMB, dust, and synchrotron, and the emission
laws are encoded in the mixing matrix. Remember that we said the mixing
matrix tells us how each component shows up at different frequencies, this is
what we mean by the emission laws of the components. A helpful visualization
tool for the emission laws of the components is shown below, in Figure 6. We
can see in this image that the best frequency for observing clean CMB data is
around 90 GHz.
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Figure 6. Emission Laws of sky components - The mixing matrix tells
us how each component shows up at different frequencies - Highlights the syn-
chrotron being bright at low frequencies, and dust being bright at high frequencies.

GMCA is a component separation method that relies heavily on blind
source separation or BSS. BSS is an effective mathematical method to analyze
data that is modeled as a combination of components, though blind algorithms
will never be as statistically powerful as algorithms that include assumptions
about the data. Each observation is modeled as the linear combination of the
same sources, plus some noise term. The goal of BSS is to estimate both the
mixing matrix, and the source components. This can yield problems, which
can be solved with the addition of priors, either about the source components
or the mixing matrix. Based on the concept of morphological diversity, the
GMCA algorithm allows for the separation of sources which are sparse, and has
been shown to perform very well when processing noisy data. There are several
applications of GMCA in the data analysis field, including for hyper-spectral
analysis, an imaging technique which processes information from frequencies all
across the electromagnetic spectrum. In this case, the number of observations
can be extremely large, and GMCA is able to further exploit sparsity of the
sources, as well as sparsity of the mixing matrix. The GMCA algorithm assumes
that all the data follows a linear mixture that is described by a mixing matrix.
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For the purpose of CMB estimation from microwave data, GMCA has improved
to perform the separation of sources allowing deep cosmological research. This
model has proven to be especially efficient when separating sky components
from CMB data gathered from the Planck satellite. [5]
In GMCA, the observed sky signal is modeled as a linear mixture of statistically
significant and independent components. Then the observations made with a
detector are then a noisy linear mixture of n independent sources. This linear
mixture model is more conveniently written

X = AS + N (1)

where X is the m× t data matrix (where the rows are the observed data maps),
A is the m × n mixing matrix, S is the n × t source maps matrix (where the
rows are the different sources cmb, synchrotron, and dust, and N is the m × t
noise matrix. Generally in GMCA, both the sources S and their emission laws
(mixing matrix) A are partially or completely unknown. GMCA then aims to
estimate S and A from X. This is typical Blind Source Separation (BSS). [2]

Next we will outline the details of Bayesian Statistics, and how they
are used in GMCA.GMCA is a sparsity-based Bayesian component separation
method, meaning it relies on bayesian statistics to analyze different components
of the data. Bayesian statistics is a system that describes uncertainties using the
mathematical language of probabilities. Typical bayesian statistical methods
start with existing prior beliefs, and update them using data to give posterior
beliefs. [9] In our research, we added a bayesian prior to our component map
optimization, which replaced our chi squared function with a posterior function,
which took an additional input, the scale parameter mu (µ), and calculated a
total posterior instead of a total chi squared. We added this prior because the
results of our original map optimization for the dust map looked odd. Minimiz-
ing the chi squared is equivalent to minimizing the log likelihood of a function.
In bayesian statistics, we have a likelihood which is the comparison of the model
and our data, but we can introduce a posterior from Bayes’ theorem, which is
essentially the likelihood multiplied by a prior, where the prior is just some prior
knowledge about the problem at hand (could be data from another experiment,
etc), but in our case, we have a sparsity-based prior. This means that we are
putting in our prediction of what the solution should look like as our prior. So
if the posterior is the likelihood multiplied by the prior, then instead of max-
imizing the likelihood, we decide to maximize the posterior. Since we talked
about log likelihoods previously, we can also discuss a log posterior. We are
trying to maximize a function, which is the same as maximizing the log of that
function, and logs are generally easier to work with since our calculations may
span many orders of magnitude. This means that the log posterior is the log
likelihood multiplied by the log of the prior.

We add these priors to data analysis methods for one main reason. We
don’t want our optimization functions chasing after noise fluctuations in our
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data. Our prior says that we still have a likelihood for our data, which is still
trying to find an agreement between the model and the data, but the prior is,
with all other things being equal, pushing the numbers in the model to have the
smallest value possible. Finding the minimal maps that work as source maps
helped with the dust map issue we were facing, because theoretically, the dust
and CMB maps could cancel each other out and give an inaccurate solution. The
added prior will penalize solutions like that, which could have been the reason
our dust map appeared to be so similar to the CMB map before we added the
prior. Adding the prior fixed the issue with our dust map, and showed much
less correlation with the CMB map (which is more reasonable). [2]

2.2 GMCA Module

When performing GMCA for my WISE project, I wrote code in a Jupyter
Notebook, and had to run each analysis on a new frequency map from scratch.
This makes for very slow data analysis, and it would be almost impossible
to analyze many frequency maps in a reasonable amount of time. There is
a solution though: we can create a ’GMCA module’ where I wrote the main
components of the GMCA code, and with a little bit of set up and variable
defining, calling the GMCA module will run the whole analysis on any and as
many maps as we desire. This means that instead of having 200+ cells where
I import all the necessary maps, define the mixing matrix and inverse noise
variance, and then do a GMCA analysis by hand, I can just import the GMCA
module, wait 15 minutes for the analysis to run, and then check my component
maps that the code creates. It is a much more efficient way to do large scale
data analysis, and creating this module was the main part of this project.

3 Implementation of GMCA

3.1 Python

The first optimization we perform when using GMCA is to optimize our source
components. We wanted a code that would look like a kind of black box to
someone looking at the code without knowing exactly what was done. They
should see that if they give my code a model, a set of data, a mixing matrix,
and inverse noise variances per pixel, the function will spit out a chi squared. To
do this, we wrote a code that has those 4 parameters: 1. the model, which is an
array of the coefficients for the CMB, dust, and synchrotron maps – originally
pixel space coefficients. 2. the data, which is an array of the Q and U maps
at the 9 different observing frequencies. 3. the mixing matrix. and 4. and the
inverse noise variance which tells us how much noise is in each pixel of our maps.
These maps are NSIDE = 512 healpix maps, which essentially means they are
maps of a very small piece of the sky. The code will then try various source
component maps and find the one which minimizes our chi squared value. The
inverse noise variance is calculated based on the amount of noise present in each
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pixel. The key part of this step is that the mixing matrix is a static input, the
code for which was pre-written and sent to me by my advisor, and the source
maps are allowed to vary. This is the parameter which changes in the next step.

Now we are going to talk about the second step of GMCA, which is
optimizing the mixing matrix. As I mentioned before, this step is a little different
from the last one. The process is generally the same, but instead of taking the
mixing matrix as an input and varying the source maps to minimize chi squared,
we instead use the source component maps we received from the result of the
optimization in the last step as the static input, and allow the mixing matrix
to vary to minimize chi squared. The end goal of GMCA is to make this an
iterative process, where the result of the previous optimization is used as the
input for the next optimization. This allows for very accurate data analysis.
To create the gmca.py module, I wrote the backbone of the gmca code that I
wrote for an earlier research project in a module in my computer’s terminal.
This allows me to simply import the module when doing data analysis in a
Jupyter notebook after setting up some simple variables. For example, Figure
7 shows setting up these variables, and the Figure 8 shows the code where I
call the gmca module to run on these defined variables. This is less than 10
lines of code, compared to over 300 in my original gmca analysis. This means I
can perform GMCA on larger data sets of cmb-s4 data, or any data set of the
correct size.

Figure 7. Defining variables in order to call GMCA.py

Figure 8. Calling GMCA.py module to run on the variables set up in
Figure 7.

3.2 Simulation Input Maps

The best way to separate these foregrounds from the cmb data is with multi-
frequency observations. Since we know that synchrotron is bright at low fre-
quencies and dust is bright at high frequencies, we can take measurements of
the sky at low, medium, and high frequencies and use the variation in the data
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to separate the components. For example, I have 9 sets of observing frequencies,
starting at 20 GHz which will be synchrotron dominated, going up to 95GHz
which will be the best place to observe the CMB (because it is too high for
synchrotron to dominate and too low for dust to dominate), and then up to
270GHz which will be dust dominated. The frequency input maps used for
these simulations were 20GHz, 30GHz, 40 GHz, 85GHz, 95GHz, 145 GHz, 155
GHz, 220 GHz, and 270 GHz.

As I mentioned, I am using simulated maps of a “relatively quiet” area
of the sky called the Southern Hole. These maps contain CMB, synchrotron,
dust, and simulated instrument noise. These component maps are combined
with a mixing matrix, which tells us how each component shows up at each
frequency. These simulations are for the new state of the art CMB detector,
which has reduced instrument noise when compared to current instruments. A
normal question here is, why are we analyzing these simulations in the first
place? The answer to that is to essentially practice separating the components
and see how accurately we can do so. Therefore, when the telescopes are actually
built, the component separation framework is already in place. CMB-S4 will
also be designed to cross critical thresholds in testing inflation, determining the
number and masses of neutrinos, constraining possible new light relic particles,
providing precise constraints on the nature of dark energy, and testing general
relativity on large scales.

4 Results

4.1 Output of GMCA Module

Here, you can see the results of running my gmca.py module on the just the
CMB component of one frequency map (95 GHz, which as discussed above, is the
cleanest frequency for observing the CMB as the dust doesn’t take a big effect
yet, and the synchrotron doesn’t heavily effect frequencies this high - sort of a
perfect medium), as showing the result of the full analysis would mean having
over 50 images to compare. On the left, we have the results of GMCA: We
have the CMB temperature map on top, the Q polarization map in the middle,
and the U polarization map on the bottom. On the right, we have the CMB
T, Q, and U, input map. We can see that these images are extremely similar,
meaning our analysis was successful. Now getting GMCA to work wasn’t the
goal of my project, the goal was to create a GMCA module that anyone can use
to run on any data sets, but this comparison shows us we have done just that.
Slight differences in the two maps can be accounted for, since there was added
instrument noise in these simulated maps.
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Figure 9. Results of GMCA analysis - Left: CMB temperature map on
top, the Q polarization map in the middle, and the U polarization map on the
bottom. Right: CMB T Q and U input map.

Visual correlation is evident in all the maps, which is a good sign.
This means the models that the code came up with matches fairly well to the
original frequency maps whose makeup we know. Although they look good,
they are not perfect matches, and there are a couple explanations for this. We
expect there to be remnant CMB signal in each of the dust and synchrotron
maps, evident from the correlation functions calculated later in this section. An-
other issue we expect to contaminate our data is the simulated instrument noise.

We also performed a quantitative analysis on our maps, by doing a
correlation calculation on our recreated maps, as compared to the original sim-
ulated input maps. The correlation coefficient of a set of data is a statistical
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measure of the strength of the relationship between two variables. The value of
a correlation coefficient ranges from -1 to 1, with -1 showing a perfect negative
correlation, +1 showing perfect positive correlation, and a value of 0 shows no
linear relationship between the two variables. Shown in Figures 10, 11, and 12
are correlations calculated for the CMB, dust, and synchrotron maps respec-
tively, compared to the original input maps. We see that for the CMB E modes,
it stays right around 1 which is good. The B modes aren’t as high, but we know
why this is. The E modes are very bright, and thus have a high signal to noise
ratio and are easy to pick out. The B modes are faint and have a lower signal
to noise ratio, and don’t stand out as much. The correlations for dust and syn-
chrotron are also shown below. There isn’t much difference in the correlation
of the E and B modes of the synchrotron and dust maps, because the CMB
has a much larger asymmetry between the E and B modes than dust or syn-
chrotron. For the CMB, we have a big E mode map which we can reconstruct
very accurately, but the B modes have so much more noise that they are harder
to construct. We can see that there is good correlation between the E modes,
which is due to them being very bright, meaning there is lots of signal present.
There is less correlation between the B modes, because they are very faint, and
therefore have a higher signal-to-noise ratio. When it comes to the foregrounds,
(dust and synchrotron), there is only a mild asymmetry between the E and B
modes. This means that the GMCA reconstruction works equally well for the
E and B modes, so the graphs show similar plots for E and B modes.

Figure 10. Correlation coefficient plot for CMB
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Figure 11. Correlation coefficient plot for dust

Figure 12. Correlation coefficient plot for Synchrotron

4.2 Challenges and Next Steps

As with any data analysis method, we faced a few challenges while using GMCA.
One of the biggest issues came when we were optimizing the source maps with
the mixing matrix as the input. The problem was the sheer number of param-
eters in our functions. The number of parameters was so high because it is
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determined by the number of maps we have which is 3, multiplied by the num-
ber of pixels in each map. So, when we used 22,000 pixels in our map, we ended
up having over 68,000 parameters. This used an absurd amount of RAM on
my laptop, and never had enough local memory to run successfully. This also
created a run time issue: even when the code did finish and said it was unsuc-
cessful, it took over 48 hours sometimes. We combated these issues by using a
supercomputer at UC Berkeley called NERSC, which is run by the Department
of Energy. This allowed my optimizations to run successfully, and the longest
one took just over 2 hours. Another challenge we faced was confidence about
our overall goodness of fit. We expect our chi squared value to be similar to the
number of degrees of freedom, which for us was around 480,000. Our smallest
chi squared value was 18 million. This could be due to how we characterized the
inverse noise variance, which would largely skew our data if it is even partially
incorrect. The fact that visually, our component maps look good, but we have
a poor chi squared value could be due to the fact that there is a relatively low
signal to noise ratio in the maps, but these noise terms blow up in the calcu-
lation of chi squared. Lastly, the modular form of GMCA.py made it difficult
to troubleshoot errors in my code. The line where I call the GMCA.py module
would fail, but it was very difficult to go through and determine why.

In terms of future work that could be done in this area, we could fur-
ther analyze our results, and try to determine what other uncertainties may be
present. A phenomenon known as E/B leakage, which refers to the artificial
B-mode signal coming from the leakage of E-mode signal when part of the sky
is unavailable or excluded, could be occurring, and skewing our data. [8] A
colleague of mine designed a machine learning algorithm to detect and correct
for E/B mode leakage, an algorithm which could be run on my maps to look
for potential E/B mode leakage. Correction of such leakage is one of the pre-
conditions for detecting primordial gravitational waves via the CMB B-mode
signal, so it is a very important thing to bear in mind. More generally, there
is a new component separation technique called Hierarchical GMCA which was
first published in March of this year. HGMCA lets us drop the assumption that
the sky has 3 main components, and instead lets the data tell us how many
components there are. [10] This allows for the analysis to be fully blind, which
makes the results more accurate (less assumptions being made about the data
makes for more accurate final results). New component separation techniques
will continue to be developed and perfected, in preparation for when CMB-S4
comes online and we have real data to perform our analysis on, instead of sim-
ulated signal.

Our correlation calculations showed very good results for the CMB E
modes, correlations less than 1 for the CMB B modes, which is expected, due
to the higher signal to noise ratio for the B modes. The dust and synchrotron
correlations were also less than 1, but we still think our GMCA iteration was
successful. Component separation is extremely difficult, and even harder to get
perfect results. We were very happy with the strong results for the recreations.
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In short, we wanted to create a module that could clean large sets of CMB data
from foreground contaminants using a method called Generalized Morphological
Component Analysis, with the goal of probing the B mode polarization power
spectra to learn about primordial gravitational waves and inflation. Our results
show that we were successful, and now have a module which can run GMCA on a
variety of data sets. The future in this field is very exciting!! New techniques for
component separation will continue to be developed, which will ultimately aid
in the search for primordial gravitational waves from the B mode polarization
of the CMB.
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