Petroleum production

Joel Collett

- Extraction
- Processing and separation
- Energy requirements

Extraction

Primary recovery: Uses the oil reservoir's natural pressure

Extracts 5-15% of total oil.

(a) Primary extraction of oil

Extraction

Secondary recovery:

Uses fluid or gas injection to increase oil well pressure.

After primary and secondary recovery, 35-45% of oil has been extracted.

(b) Secondary extraction of oil

Extraction

Enhanced recovery

Changes oil mobility using heat or chemical treatment

Processing

Jamnagar oil refinery, Gujurat, India

Distillation into fractions

Fractions

Name	Number of Carbon Atoms	Boiling Point (°C)	Uses
Refinery Gas	3 or 4	below 30	Bottled Gas (propane or butane).
Gasoline	7 to 9	100 to 150	Fuel for car engines.
Naphtha	6 to 11	70 to 200	Solvents and used in gasoline.
Kerosene (paraffin)	11 to 18	200 to 300	Fuel for aircraft and stoves.
Diesel Oil	11 to 18	200 to 300	Fuel for road vehicles and trains.
Lubricating Oil	18 to 25	300 to 400	Lubricant for engines and machines.
Fuel Oil	20 to 27	350 to 450	Fuel for ships and heating.
Greases and Wax	25 to 30	400 to 500	Lubricants and candles.
Bitumen	above <mark>35</mark>	above 500	Road surface and roofing.

Cracking

Reducing chain length of hydrocarbons using heat and catalysts

- Thermal Cracking
- Steam Cracking
- Catalytic Cracking
- Hydrocracking

Generally employ solid acidic alumina silicate catalysts (zeolites)

Reforming

Catalyzed formation of aromatics and branched alkanes more suitable for gasoline blends

+ 4 H₂

 CH_3

Catalyzed by platinum and rhenium chlorides or zeolites

H₃C

Alkylate

Creates high octane branched alkanes using acid catalysts (sulphuric, HF etc.)

Sulphur removal

Merox process

 $RSH + NaOH \longrightarrow NaSR + H_2O$

 $\begin{array}{cccc} H_2S + NaOH & \longrightarrow & Na_2S + H_2O \\ Na_2S + H_2S & \longrightarrow & NaHS (Sodium Hydrosulfide) \end{array}$

 $NaSH + O_2$ _____ $Na_2S_2O_3$ (Sodium thiosulfate)

 $2NaSR + \frac{1}{2}O_2 + H_2O - 2NaOH + RSSR$

Sulphur removal Hydrosulfurization

Energy Efficiency of Production

Table 5. Refining Energy Efficiencies for Individual Petroleum Products

	Overall Petroleum Refinery Efficiency		
	90.1% (with all products	86.4% (with less desirable products	
	included)	excluded)	
Gasoline	87.7%	83.3%	
Diesel	90.3%	86.7%	
LPG	94.3%	92.1%	
Residual oil	94.3%	92.1%	
Naphtha	94.3%	92.1%	

$$33 \frac{kWh}{gal \ gasoline} \times \frac{1}{83.3\%} = 39.6 \frac{kWh}{gal}$$
$$34 \frac{kWh}{gal \ diesel} \times \frac{1}{86.7\%} = 39.2 \frac{kWh}{gal}$$

CTR/ANL Wang, M "Estimation of Energy Efficiencies of U.S. Petroleum refineries" Mar, 2008

