
Problem Set 8
Each problem is worth the number of points shown.

Problem 1. (2 points) A rigid square wire loop of side L is centered on the origin

in the z = 0 plane with its sides parallel to the x or y axes. It carries a current I in the

counterclockwise direction when looked at from the positive z-axis. It is in a magnetic field
~B = B0 (x/L)3 ẑ. What is the net magnetic force on the loop?

Solution: Use the Lorentz force law in the form for wires: ~F = I
∮
d~̀× ~B. The sides parallel

to the x axis (so at y = ±L/2) contribute net zero force since the bottom side gives a term

proportional to x̂×ẑ = −ŷ at each point, while the top side gives a term proportional to (−x̂)×ẑ =
+ŷ at each point, and the rest of the integrand is the same since ~B is independent of y, so

the force on the two sides cancel. The sides parallel to the y axis (at x = ±L/2) contribute

~F = I

∫ L/2
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dy(ŷ×ẑ)B0(x/L)
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∫ L/2

−L/2
dy(−ŷ×ẑ)B0(x/L)
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= Ix̂B0(1/2)
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∫ L/2

−L/2
dy + I(−x̂)B0(−1/2)3

∫ L/2

−L/2
dy = x̂ I B0 L/4.

Problem 2. (2 points) A solid sphere of radius R with an imbedded charge density

ρ = ρ0 (r/R)3 spins counterclockwise around the z axis (as seen from the +ẑ direction) with

angular velocity ω. What is the current density ~J(r, θ, φ) everywhere in space?

Solution: The current density is ~J(~r) = ρ(~r)~v(~r) where ~v is the velocity of the charge at

the point ~r. Since the sphere is rotating at angular velocity ω around the z axis, the velocity

of a point is dωφ̂ where d is the perpendicular distance of the point from the z axis. If the

spherical coordinates of the point are (r, θ, φ), then d = r sin θ. The velocity points in the

+φ̂ direction because counterclockwise around the z axis as seen from the +ẑ direction corresponds

to increasing azimuthal angle φ in spherical coordinates. So ~v(r, θ, φ) = ωr sin θ φ̂, and ~J =

ρ~v = ωρ0(r
4/R3) sin θ φ̂.

Problem 3. (2 points) A loop of wire in the z = 0 plane consisting of radial segments

connected by circular arcs of opening angle 2π/3 with dimensions as shown in the figure

carries counterclockwise current I. What is ~B at the origin?
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Solution: Use the Biot-Savart law in the form for wires: ~B(~r) = (µ0/4π)I
∮
d~̀′×r̂ /r 2. The

radial segments of the loop have ~r parallel (or anti-parallel) to d~̀′, so the cross product

in the integrand vanishes, and these segments give 0. The angular segments give, using that



~r .
= ~r − ~r′ = −~r′, and using polar coordinates (s, φ) in the x-y plane so that ~r′ = sŝ,

~B(0) =
µ0I

4π

∫ 2π/3

0

R2dφφ̂×(−ŝ)(R2)
−2 +

µ0I

4π

∫ 2π/3

0

R1dφ(−φ̂)×(−ŝ)(R1)
−2

=
µ0Iẑ

4πR2

∫ 2π/3

0

dφ− µ0Iẑ

4πR1

∫ 2π/3

0

dφ =
µ0Iẑ
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Problem 4. (2 points) Two infinite parallel straight dielectric lines each carrying

constant linear charge density λ point in the +ẑ direction, are separated by a distance d,

and are moving together with velocity vẑ. At what velocity v does the total Lorentz force

per unit length between the two lines vanish? Write this critical v in terms of c, the speed

of light (as well as d and λ). If λ = 1 C/m and d = 1m, what is v/c?

Solution: Place line one at the origin and line two at d x̂ in the x-y plane. By Gauss’s

law ---
∮
S
δ~a· ~E = Qenc/ε0 --- the electric field due to line one at the position of line two

is ~E = x̂λ/(2πε0d). So the electric Lorentz force per unit length, ~fE
.
= λ~E, this line exerts

on the other is ~fE = x̂λ2/(2πε0d), a repulsion. A moving wire carries current I = λ~v = x̂λv,

so by Ampere’s law ---
∮
C
d~̀· ~B = µ0Ienc --- creates a magnetic field at the position of line

two is ~B = ŷµ0λv/(2πd). So the magnetic Lorentz force per unit length, ~fB
.
= λ~v× ~B, this

line exerts on the other is ~fB = −x̂λ2v2µ0/(2πd), an attraction. Thus these two forces are

opposite, and cancel if 0 = ~fE + ~fB = x̂λ2/(2πε0d)− x̂λ2v2µ0/(2πd) = x̂λ2/(2πε0d) (1− v2ε0µ0). So

the forces cancel when v2 = (ε0µ0)
−1, independent of λ and d! Recall that (by definition)

(ε0µ0)
−1 .

= c2. Thus the forces balance only when v = c. Since, by special relativity, velocities

of massive objects are always smaller than the speed of light, we see that the magnetic attraction

is always weaker than the electric repulsion. When λ = 1 C/m and d = 1 m, the critical velocity

is still v/c = 1, since it is independent of the values of λ and d.

Problem 5. (2 points) An infinite cable of circular cross section with radius R is

aligned along the z axis. It carries a current density ~J = J0 (s/R)2ẑ (expressed in cylindrical

coordinates). What is ~B everywhere inside and outside the cable?

Solution: Since the problem has rotational symmetry around the z axis and translational symmetry

along the z direction, ~B must be of the form ~B = Bs(s)ŝ+Bφ(s)φ̂+Bz(s)ẑ. But from the Biot-Savart

law, the magnetic field at any point must be perpendicular to ~J ∝ ẑ, so can only have components

in the ŝ and φ̂ directions. Thus Bz(s) = 0. Also, the problem is symmetric under the reflection

z → −z. By the Biot-Savart law, ~B ∝ ~J (i.e., depends linearly on ~J) so if you reverse

the direction of ~J the ŝ component of ~B would change sign. Thus Bs(s) = 0, and we learn that
~B = B(s)φ̂. Now use Ampere’s law in integral form ---

∮
C
~B · d~̀= µ0Ienc --- with C a circle

of radius constant s at z = 0. Then
∮
C
~B · d~̀= 2πsB(s) and

Ienc =

∫ s

0

s′ds′
∫ 2π

0

dφ′ ~J · ẑ =

{∫ s
0
s′ds′

∫ 2π

0
dφ′J0(s

′/R)2 = πJ0
2R2 s

4 s < R∫ R
0
s′ds′

∫ 2π

0
dφ′J0(s

′/R)2 = πJ0
2 R2 s > R

.

So

~B =
µ0J0φ̂

4

{
s3/R2 s < R

R2/s s > R
.



Problem 6. (3 points) Two infinite concentric solenoids of radii R1 < R2 are aligned

along the z axis. The inner solenoid consists of a wire wrapped n1 times per unit length

carrying current I1 counterclockwise (as seen from the +ẑ direction), and the outer solenoid

is wrapped n2 times per unit length with clockwise current I2. What are the surface current

densities, ~K1 and ~K2, of the two solenoids in cylindrical coordinates? What is ~B everywhere?

Solution: If the wire is wrapped on the inner solenoid n1 times per unit length, the total

current flowing around the cylinder per unit length is I1n1. Since it is flowing counterclockwise

as seen from the +ẑ direction, it is flowing in the φ̂ direction. Thus ~K1 = I1n1φ̂. A similar

argument gives ~K2 = −I2n2φ̂. The total magnetic field is just the sum of the magnetic fields

due to each solenoid separately. Griffiths (example 5.9) shows us, using Ampere’s law, that

the magnetic field of an infinite solenoid aligned along the z axis wrapped by n turns per

unit length of a wire carrying current I counterclockwise is µ0nIẑ inside the solenoid and

0 outside. So in our case we have

~B = µ0ẑ


n1I1 − n2I2 s < R1

n2I2 R1 < s < R2

0 R2 < s

.

Problem 7. (2 points) What is the most general possible vector potential in Coulomb

gauge that describes a given uniform magnetic field ~B? In other words, what is the most

general ~A(~r) satisfying ~∇ · ~A = 0 and ~∇× ~A = ~B? [Hint: These are linear first-order PDEs

with constant coefficients, so you can assume that ~A(~r) is linear in ~r. The general solution

will have 8 undetermined coefficients.]

Solution: Write in cartesian coordinates, ~r =
∑
i xix̂i,

~B =
∑
iBix̂i, and ~A(~r) =

∑
iAi(~r)x̂i,

where Bi are constants and sums over i, j, k, etc are understood to run from 1 to 3. Taking

the hint we write Ai(~r) = αi+
∑
j βijxj in terms of 12 undetermined coefficients αi, βij. Impose

the Lorentz gauge condition,

0 = ~∇ · ~A =
∑
k

∂Ak
∂xk

=
∑
j,k

βkj
∂xj
∂xk

=
∑
j,k

βkjδj,k =
∑
k

βkk. (1)

If we think of βij as a 3×3 matrix, this says that it is traceless. Next impose the curl equation

Bi = (~∇× ~A)i =
∑
j,k

εijk
∂Ak
∂xj

=
∑
j,k

εijk
∑
`

βk`δ`,j =
∑
j,k

εijkβkj , (2)

where εijk is the usual rank-3 unit antisymmetric tensor which appears in the definition of

the cross product. Any 3×3 matrix can be written uniquely as a sum of a symmetric part and

an antisymmetric part, βij = βAij + βSij where βAij
.
= 1

2 (βij − βji) and βSij =
1
2 (βij + βji). Note that

βAij has 3 independent coefficients and βSij has 6. Write them as

βS =

βS11 βS12 βS13
βS12 βS22 βS23
βS13 βS23 βS33

 , βA =

 0 βA12 βA13
−βA12 0 βA23
−βA13 −βA23 0

 .



Now
∑
j,k εijkβ

S
kj = 0 since εijk is antisymmetric on jk while βSjk is symmetric on the pair, so

the sum automatically vanishes. This means that the curl equation (2) puts no restriction on

the 6 βS coefficients. But the traceless condition (1) does, implying that βS has only 5 independent

coefficients:

βS =

βS11 βS12 βS13
βS12 βS22 βS23
βS13 βS23 −βS11 − βS22

 . (3)

By contrast, the 3 independent coefficients of βA are fixed by the curl equation (2). For

example

B1 =
∑
jk

ε1jkβ
A
kj = βA32 − βA23 = −2βA23,

and similarly for the other two. This implies

βA =
1

2

 0 −B3 B2

B3 0 −B1

−B2 B1 0

 . (4)

Putting this all together, the most general solution for ~A is

Ai = αi +
∑
j

(βSij + βAij)xj

with the αi arbitrary and βS and βA given in (3) and (4). Finally, note that
∑
j β

A
ijxj =

− 1
2

∑
jk εijkxjBk = − 1

2 (~r× ~B)i so we can also write the general solution for ~A as

~A = −1

2
~r× ~B + ~α+

∑
ij

xiβ
S
ij x̂j

where ~α
.
=
∑
i αix̂i and βS is given in (3).


