
Problem Set 6
Each problem is worth the points indicated.

Problem 1. (3 points) Find the potential in an empty 2-dimensional region (i.e., ignore

the 3rd, z, coordinate) described by s1 ≤ s ≤ s2 and 0 ≤ φ ≤ π where (s, φ) are polar

coordinates in the x-y plane and s0 and s1 are positive constants. The potential is given on

the boundaries as V = 0 at s = s1 and s = s2, V = V0 at φ = 0, and V = Vπ at φ = π,

where V0 and Vπ are given constants.

Solution: In (s, φ) polar coordinates in the plane, Laplace’s equation is
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With the separation of variables ansatz V = A(s)B(φ) this becomes, after multiplying by s2

and dividing by AB,
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where in the last step I used that s d/ds = d/d ln s. Since this is a sum of terms which depend

on different variables, it can only be satisfied if the terms are individually constant, so
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for some real constant k2. (This means that k can be real or imaginary.) The general solutions

of these differential equations are

A = a sin(k ln s) + b cos(k ln s), B = c sinh(kφ) + d cosh(kφ),

where a, b, c, d are undetermined constants. So the general solution for V of the Laplace

equation can be written as the sum

V (s, φ) =
∑
k

[ak sin(k ln s) + bk cos(k ln s)] · [ck sinh(kφ) + dk cosh(kφ)] , (1)

where the sum is over some as-yet-undetermined set of real or imaginary values of k.

Impose the s = si boundary conditions first. At s = s1 we have from (1)

0 = V (s1, φ) =
∑
k

[ak sin(k ln s1) + bk cos(k ln s1)] · [ck sinh(kφ) + dk cosh(kφ)] .

Note that an overall factor in the first factor can be absorbed in the second factor by a redefinition

of the a, b, c, d constants. Since the sinh(kφ) and cosh(kφ) functions are independent for all

k, the only way this sum can vanish for all φ is if the coefficients vanish. Thus ak sin(k ln s1)+

bk cos(k ln s1) = 0 for all k, implying ak/bk = − cos(k ln s1)/ sin(k ln s1). So, after redefining

the ck and dk coefficients suitably, the general solution for V can be written

V (s, φ) =
∑
k

[sin(k ln s) cos(k ln s1)− cos(k ln s) sin(k ln s1)] · [ck sinh(kφ) + dk cosh(kφ)] ,

=
∑
k

sin(k(ln s− ln s1)) [ck sinh(kφ) + dk cosh(kφ)] =
∑
k

sin(k ln(s/s1)) [ck sinh(kφ) + dk cosh(kφ)] ,



where in the last two steps I used a trig identity and then a log identity to simplify the

expression. Now impose the s = s2 boundary condition to get

0 = V (s2, φ) =
∑
k

sin(k ln(s2/s1)) [ck sinh(kφ) + dk cosh(kφ)] .

Since the sinh(kφ) and cosh(kφ) functions are independent for all k, the only way this sum can

vanish for all φ is if the coefficients vanish. Thus sin(k ln(s2/s1)) = 0, implying k = nπ/ ln(s2/s1),

for n ∈ Z, and the general solution for V can be written

V (s, φ) =

∞∑
n=1

sin(nπ ln(s/s1)/L) [cn sinh(nπφ/L) + dn cosh(nπφ/L)] , where L
.
= ln(s2/s1). (2)

I only included the sum over positive n since the negative n terms are not independent.

Now impose the φ = 0, π boundary conditions. At φ = 0 we have

V0 = V (s, 0) =
∞∑
n=1

sin(nπ ln(s/s1)/L)dn. (3)

We solve for the dn by integrating both sides of (3) against (2/L)
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0
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and using the orthogonality of the sine functions
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Now do the same with the φ = π boundary condition to get

Vπ = V (s, π) =
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]
.

Using the same sine function orthogonality gives
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(4) and (5) imply
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.

Plugging this and (4) into (2) gives, after a little algebra, the final answer

V (s, φ) =

∞∑
n=1 odd

sin

(
nπ

L
ln

s

s1

)[
4Vπ − 4V0 cosh(nπ

2/L)

nπ sinh(nπ2/L)
sinh

(nπ
L
φ
)
+

4V0
nπ

cosh
(nπ
L
φ
)]
,

=

∞∑
n=1 odd

4

nπ

1

sinh(nπ2/L)
sin

(
nπ

L
ln

s

s1

)[
[Vπ − V0 cosh(nπ2/L)] sinh

(nπ
L
φ
)
+ [V0 sinh(nπ

2/L)] cosh
(nπ
L
φ
)]
,

=

∞∑
n=1 odd

4

nπ

1

sinh(nπ2/L)
sin

(
nπ

L
ln

s

s1

)[
Vπ sinh

(nπ
L
φ
)
+ V0 sinh

(nπ
L

(π − φ)
)]
,



where in the first step I used that 1−(−)n is 0 for n even and 2 for n odd, in the last step

I used a (hyperbolic) trig identity, and recall that L is my shorthand for ln(s2/s1).

Problem 2. (1 point) Find the potential in a rectangular parallelepiped (a 3d rectangular

box, also known as a rectangular cuboid) of sides of lengths a, b, and c. The potential is set

to V = V1 on one of the faces with sides b and c, and is zero on the remaining five faces.

Solution: This is very similar to the cube problem done in the notes. As in that problem,

set up the problem with an a, b, and c edge along the positive x, y, and z axis, respectively,

and so the V = V1 face is at x = a. Then separation of variables will give (hyperbolic)

sines and cosines in each variable, and imposing the y = 0, b and z = 0, c boundary conditions

where V = 0 will impose that only sines remain for those terms, giving

V (x, y, z) =
∑
n,m∈Z

sin(nπy/b) sin(mπz/c) [An,m sinh(kn,mx) +Bn,m cosh(kn,mx)] ,

where k2n,m = (nπ/b)2 + (mπ/c)2, or,

kn,m = π

√
n2

b2
+
m2

c2
. (6)

Imposing the x = 0 boundary condition where V = 0, implies Bn,m = 0, so

V (x, y, z) =
∑
n,m∈Z

sin(nπy/b) sin(mπz/c)An,m sinh(kn,mx). (7)

Finally, the x = a boundary condition gives

V1 =
∑
n,m∈Z

sin(nπy/b) sin(mπz/c)An,m sinh(kn,ma).

The coefficients are determined by using the orthogonality of the sine functions to give

An,m sinh(kn,ma) =
4V1
bc

bc

nmπ2
[1− (−)n][1− (−)m].

Plugging that into (7) gives the final answer
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where kn,m is defined in (6).

Problem 3. (3 points) Find the potential in an empty region described by a ≤ r ≤ b in

3-dimensional spherical coordinates, where a and b are positive constants. The potential is

held at zero on both the r = a and r = b positive-z hemispheres, is held at V = Va on the

r = a negative-z hemisphere, and is held at V = Vb on the r = b negative-z hemisphere. You

do not need to give closed-form algebraic expressions for the coefficients of the separation-

of-variables series solution, but you do need to give suitable integral expressions for them.

Solution: Use separation of variables in spherical coordinates. Since the problem has rotational

symmetry around the z-axis and the boundaries are complete spheres, we can use our general

result

V (r, θ) =

∞∑
`=0

[A`r
` +B`r

−`−1]P`(cos θ). (8)



The boundary conditions are V (a, θ) = VaH(θ) and V (b, θ) = VbH(θ) where I have defined the function

H(θ)
.
=

{
0 0 ≤ θ ≤ π

2

1 π
2 < θ ≤ π

.

Imposing the r = a boundary condition gives

VaH(θ) =
∑
`

[A`a
` +B`a

−`−1]P`(cos θ).

Integrating both sides of this equation against 1
2 (2m+1)

∫ π
0
sin θdθ Pm(cos θ) and using orthogonality

of the Legendre polynomials --- 1
2 (2m+ 1)

∫ π
0
sin θdθ Pm(cos θ)P`(cos θ) = δm,` --- gives

A`a
` +B`a
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where I’ve defined the integrals
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.
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2
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2

∫ 0

−1
duP`(u), (10)

where in the last step I changed integration variables to u = cos θ. The same steps for the

r = b boundary gives

A`b
` +B`b

−`−1 = VbH`. (11)

Solving (9) and (11) for A` and B` gives

A` =
b`+1Vb − a`+1Va
b2`+1 − a2`+1

H`, B` = (ab)`+1 b`Va − a`Vb
b2`+1 − a2`+1

H`. (12)

So the general solution is (8) with coefficients given by (12) where the H` are the number given

by the integrals (10).

Problem 4. (1 point) The same as problem 3, but now with a point charge, q added at

the origin.

Solution: The solution is exactly the same as in problem 3. Since the point charge is not

in the region between the two spheres and since the boundary conditions on that region are

the same, the solution is the same.

Problem 5. (2 points) Prove the equivalence of the two forms of the electric field of a pure

dipole given in the lecture, ~Edip(r, θ) = p
[
2 cos θ r̂ + sin θ θ̂

]
/(4πε0r

3) = [3(~p · r̂)r̂ − ~p] /(4πε0r3).

Solution: The first expression is in spherical coordinates with ~p pointing along the positive

z-axis. So ~p = pẑ. So, we want to rewrite ẑ in terms of the spherical unit vectors r̂, θ̂,

and φ̂. This is something you can just look up, or derive it by inverting eqn. (1.64) of Griffiths

as

cos θ r̂ − sin θ θ̂ = cos θ (sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ)− sin θ (cos θ cosφ x̂+ cos θ sinφ ŷ − sin θ ẑ) = ẑ.

Plug this into the numerator of the second expression for ~Edip to find

3(~p · r̂)r̂ − ~p = 3p(ẑ · r̂)r̂ − pẑ = 3p
[(

cos θ r̂ − sin θ θ̂
)
· r̂
]
r̂ − p

(
cos θ r̂ − sin θ θ̂

)
= 3p cos θ r̂ − p cos θ r̂ + p sin θ θ̂ = p(2 cos θ r̂ + sin θ θ̂),



where in the 3rd step I use orthonormality of the spherical unit vectors.

Problem 6. (1 point) Show that the quadrupole moment tensor (M2)ij
.
= Qij is traceless.

(Traceless means that considered as a matrix, its trace is zero.)

Solution: The quadrupole moment, M2(r̂), and the quadrupole moment tensor Qij, were defined

in the lecture to be

M2(r̂)
.
=

∫
dτ ′ (r′)2ρ(~r ′)P2(cos θ

′), M2(r̂)
.
=

3∑
i,j=1

r̂ir̂jQij , (13)

where the second equation defines Qij implicitly in terms of M2(r̂). Recall that θ′ in the integral

expression for M2(r̂) is defined to be the angle between ~r ′ and ~r. This means that cos θ′ =

r̂ · r̂′. Plugging that and the expression for P2 into the integral expression gives

M2(r̂) =

∫
dτ ′ (r′)2ρ(~r ′)

1

2

(
3(r̂ · r̂′)2 − 1

)
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(
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)
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1

2
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(
3(
∑
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)
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2
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′
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2
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(
3r̂′ir̂

′
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,

where in the second step I used 1 = r̂·r̂ to make the expression quadratic in r̂ so it has the

form of the second equation in (13), in the third step I wrote out the dot products in an arbitrary

Cartesian coordinate system, in the fourth step I rewrote the terms so that each was proportional

to r̂ir̂j which I pulled out of the integral in the last step. Comparing to the second equation

in (13) we thus find that the quadrupole moment tensor components are given by the integrals

Qij =
1

2

∫
dτ ′ (r′)2ρ(~r ′)

(
3r̂′ir̂

′
j − δi,j

)
.

We now want to show that this matrix is traceless:

TrQ =

3∑
i=1

Qii =

3∑
i=1

1

2

∫
dτ ′ (r′)2ρ(~r ′) (3r̂′ir̂

′
i − δi,i) =

1

2

∫
dτ ′ (r′)2ρ(~r ′)

(
3

[
3∑
i=1

r̂′ir̂
′
i

]
−

[
3∑
i=1

1

])

=
1

2

∫
dτ ′ (r′)2ρ(~r ′) (3r̂′ · r̂′ − 3) =

1

2

∫
dτ ′ (r′)2ρ(~r ′) (3− 3) = 0.

The first equality is the definition of the trace, the 3rd uses that δi,i = 1, the 4th uses

the definition of the dot product, the 5th uses 1 = r̂′ · r̂′.

Problem 7. (1 point) What is the dipole moment of six point charges of charge q placed

at the centers of the faces of a cube of side L? [Hint: trick question!]

Solution: There is no answer: since no origin has been specified and since the monopole

moment is non-zero, the dipole moment can have any value you like depending on where you choose

the origin of your coordinate system.

Problem 8. (3 points) Find all multipole moments of a sphere of radius R with

surface charge density σ(θ) = σ0 cos3 θ, in spherical coordinates. Sum the resulting multipole

expansion series to obtain the potential everywhere outside the sphere in closed form.



Solution: This is very similar to the multipole problem with spherical charge distribution

worked in the notes, but with σ0 cos θ replaced by σ0 cos
3 θ. So using those results with this

substitution we have

M` = σ0R
`+2

∫ π

0

sin θ′ dθ′
∫ 2π

0

dφ′ cos3 θ P`(cos θ
′),

cos θ = cosα cos θ′ − sinα sin θ′ cosφ′,

where α is the polar angle of the field vector ~r. Now
∫ 2π

0
dφ′ cosn φ′ = 0 for n odd, so we only

need to keep the even powers of cosφ′, giving

M` = σ0R
`+2

∫ π

0

sin θ′ dθ′
∫ 2π

0

dφ′ (cosα cos θ′)
[
(cosα cos θ′)2 + 3(sinα sin θ′ cosφ′)2

]
P`(cos θ

′),

= πσ0R
`+2 cosα

∫ π

0

sin θ′ dθ′ cos θ′
[
2 cos2 α cos2 θ′ + 3 sin2 α sin2 θ′

]
P`(cos θ

′),

= πσ0R
`+2 cosα

∫ π

0

sin θ′ dθ′ cos θ′
[
(2 cos2 α− 3 sin2 α) cos2 θ′ + 3 sin2 α

]
P`(cos θ

′),

= πσ0R
`+2 cosα

∫ π

0

sin θ′ dθ′
[
(5 cos3 α− 3 cosα) cos3 θ′ − (3 cos3 α− 3 cosα) cos θ′

]
P`(cos θ

′),

where in the 2nd step I used that the φ′ integral of cos2 φ′ is π, in the 3rd and 4th steps I

used a trig identities and collected terms. Since P1(cos) = cos and P3(cos) =
1
2 (5 cos

3−3 cos),
it follows that cos3 = 1

5 (2P3+3P1). Plugging this in to the above expression for both cos θ′

and cosα gives

M` = πσ0R
`+2

∫ π

0

sin θ′ dθ′
[
2P3(cosα)

1

5
(2P3(cos θ

′) + 3P1(cos θ
′))

−
(3
5
[2P3(cosα) + 3P1(cosα)]− 3P1(cosα)

)
P1(cos θ

′)
]
P`(cos θ

′),

=
2π

5
σ0R

`+2

∫ π

0

sin θ′ dθ′
[
2P3(cosα)P3(cos θ

′)P`(cos θ
′) + 3P1(cosα)P1(cos θ

′)P`(cos θ
′)
]
,

=
2π

5
σ0R

`+2 2

2`+ 1

[
2P3(cosα)δ3,` + 3P1(cosα)δ1,`

]
=

4π

5
σ0R

`+2
[2
7
P3(cosα)δ3,` + P1(cosα)δ1,`

]
.

Therefore the multipole expansion is

V (r, α) =
1

4πε0

∑
`

M`

r`+1
=

σ0
5ε0

P1(cosα)
R3

r2
+

2σ0
35ε0

P3(cosα)
R5

r4
.


