
Problem Set 4
Problems are worth one point each.

Problem 1. If you are given the electric potential only along the z-axis — i.e., your are

given only V (x=0, y=0 , z) — what can you deduce about the electric field from ~E = −~∇V ?

Solution: Since ~E = −~∇V = −ẑ∂zV − ŷ∂yV − x̂∂xV and we do not have enough information to

compute the ∂y and ∂x derivatives of V , we can only deduce the ẑ-component of ~E along the

z-axis.

Problem 2. An insulating sphere of radius R has charge density ρ = ρ0(r/R)2 where ρ0 is

a constant and r is the distance from the center of the sphere. What is the total electrostatic

energy of this charge distribution?

Solution: From spherical symmetry and Gauss’s law,

~E(~r) = E(r)r̂ =
r̂

ε0r2

∫ r

0
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ρ0r̂
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∫
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Alternatively, you can solve for V inside the sphere,

V (r) =
1

4πε0

∫
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∫ R
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=
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=
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Problem 3. A neutral metal spherical shell of inner radius a and outer radius b has a

point charge Q placed at its center (so in the empty central cavity). Where, how large, and

in what direction are the electrostatic pressures on the metal?



Solution: The charge induces a total surface charge −Q on the inner surface and, by neutrality

of the metal, a total surface charge +Q on the outer surface. By spherical symmetry the surfaces

charges are uniform, so the inner surface charge density is σa = −Q/(4πa2) and the outer surface

charge density is σb = +Q/(4πb2). The unit out-of-the-metal normal at the inner surface is

−r̂ and the unit outward normal at the outer surface is +r̂. So the pressure at every point

on the inner surface is ~fa = −r̂σ2
a/(2ε0) = −r̂Q2/(32π2a4ε0) and at every point on the outer

surface is ~fb = +r̂σ2
b/(2ε0) = +r̂Q2/(32π2b4ε0).

The next four questions are about a flat insulating circular ring of inner radius R and outer

radius R + L, lying in the z = 0 plane and centered at the origin. It has surface charge

density σ(s) in cylindrical coordinates. Since σ(s) is not given explicitly, the answers to

questions 4–6 will be given as some integral expressions involving σ(s). In problems 6 and

7 we will simplify things by taking the leading contribution in the limit where R � L, as

described below problem 5.

Problem 4. What is the total charge, Q, of the ring?

Solution: ρ = σ(s) δ(z), so

Q =

∫
dτ ρ =

∫ ∞
0

ds s

∫ ∞
−∞
dz

∫ 2π

0

dφσ(s) δ(z) = 2π

∫ R+L

R

ds s σ(s).

Problem 5. Show that the electric potential on the ring is given by the integral expression

V (s) =
1

4πε0

∫ R+L

R

ds′ s′ σ(s′)

∫ 2π

0

dφ′√
s2 + (s′)2 − 2ss′ cosφ′

, (1)

if you take the potential to vanish at infinity.

Solution: Use the integral formula for V (~r) with ~r = sx̂,

V (~r) =
1

4πε0

∫
dτ ′

ρ(~r ′)

|~r − ~r ′|
=

1

4πε0

∫ ∞
0

ds′ s′
∫ ∞
−∞
dz′
∫ 2π

0

dφ′
σ(s′)δ(z′)√
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=
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4πε0
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R

ds′ s′ σ(s′)

∫ 2π

0

dφ′√
s2 + (s′)2 − 2ss′ cosφ′

where in the second step I used that |~r−~r ′| =
√
s2 + (s′)2 − 2~r · ~r ′ and ~r ·~r ′ = (sx̂) ·(s′ŝ′) = ss′(x̂ ·

ŝ′) = ss′ cosφ′.

If you did the angular integral in eqn. (1) exactly you would find an answer in terms the spe-

cial function, K, called the complete elliptic integral of the first kind. To avoid complications,

in the next two problems, use the following approximation to the angular integral∫ 2π

0

dφ′√
s2 + (s′)2 − 2ss′ cosφ′

≈ 1

R
ln

8
√

2R

|s− s′|
, (2)

which is the leading term in an expansion in L/R� 1.



Problem 6. What is the total electrostatic energy of this charged ring?

Solution: The total energy is

W =
1

2

∫
dτ ρ(~r)V (~r) =
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∫ ∞
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ds s

∫ ∞
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dz
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R
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,

where in the last step I used the result from problem 4 for the total charge.

Problem 7. For fixed total charge Q, give a qualitative argument (or, for a real challenge,

a quantitative argument) that the charge distribution σ(s) which minimizes the energy has

the charge spread smoothly over the ring, as opposed to the charge being concentrated on

the edges of the ring.

Solution: In the expression for the energy from the last problem, the first term is a constant,

so we only need to minimize the second term, which is proportional to the double integral

I[σ] := −
∫ R+L

R

ds

∫ R+L

R

ds′ s σ(s) s′ σ(s′) ln
|s− s′|
R

,

subject to the constraint that Q = 2π
∫
ds s σ is kept constant. To decide whether minimizing

this term will favor the charge being spread smoothly over the ring versus being concentrated

on the ring edges, let’s compare the size of I[σ] when σ(s) is taken to be a constant, to when

σ(s) ∝ δ(s−R). In the first case σ ≈ Q/(2πL), so

I[σ=const.] ≈ − Q2

4π2L2

∫ R+L

R

ds

∫ R+L

R

ds′ s s′ ln
|s− s′|
R

≈ −Q
2R2

4π2L2
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R

ds
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R

ds′ ln
|s− s′|
R
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2R2
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R

ds

∫ R+L

R

ds′ ln
|s− s′|
R

=
Q2R2

4π2L2
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R
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[
L(1 + lnR)− (s−R) ln(s−R)− (R+ L− s) ln(R+ L− s)

]
=
Q2R2

4π2
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2
− ln

L

R

]
,

where in the second step I approximated ss′ ≈ R2 inside the integral to simplify it, which

is justified in the L� R limit. Thus we see that I[σ=const.] remains finite, though it does

grow logarithmically as L/R→ 0.

Now compare to the case where the charge is concentrated at an edge, σ(s) = Q/(2πR) δ(s−R),

I[σ=δ-fnc] ≈ − Q2

4π2R2

∫ R+L

R

ds

∫ R+L

R

ds′ s s′ δ(s−R) δ(s′ −R) ln
|s− s′|
R

= − Q2

4π2R2

∫ R+L

R

ds sR δ(s−R) ln
|s−R|
R

= − Q
2

4π2
ln
|s−R|
R

∣∣∣
s=R

= +∞.

So we see the energy diverges as the charge gets concentrated at the edges. Thus we conclude

that, most likely, the minimum energy configuration favors the charge being spread out over

the ring.



The next three problems explore the break-down of metal conductors in which electric fields

on the surface of the conductor get so strong that they pull conduction electrons out of the

metal. This is governed by the “work function” (which is, despite its name, a constant), Φ,

of the metal, and a separation distance d. Φ is simply the minimum energy necessary to

pull a single conduction electron a distance d off the surface of the metal. d is the minimum

distance where the electron attraction to the metal can be neglected in typical situations.

Both Φ and d are measured properties of a given metal.

Problem 8. What is the minimum magnitude and direction of a static surface electric field

needed to pull electrons out of a metal with work function Φ. Give your answer in terms of

the electron charge, −e, and d. (Don’t put in numbers yet.)

Solution: An electric field ~E = En̂ normal to the surface of the metal (n̂ is the unit normal

vector pointing out of the metal) would do work W = (−e)
∫ d
0
d~l · ~E ≈ −eEd while moving an

electron of charge −e a distance d from the surface. (This is the opposite sign compared to

the work used to move a charge in a given electric field as computed in the lecture: there

is was the work exerted against the electric force, and here it is the work done by the electric

field.) The minimum energy needed to do this is Φ, so we need at least an electric field ~E =

−Φn̂/(ed) to pull the electron out of the metal. The field thus points into the metal.

Problem 9. What is the magnitude and sign of the minimum charge, Q, which when put

on a solid metal sphere of radius R and work function Φ will cause electrons to leave the

surface of the metal?

Solution: A charge Q on a metal sphere will spread uniformly over its surface, by spherical

symmetry. Thus the surface charge density will be σ = Q/(4πR2), and so the surface electric

field will be ~E = (σ/ε0)n̂ = Qn̂/(4πε0R
2). Thus, from the last problem, we need a charge Q =

−4πε0ΦR2/(ed) to start pushing electrons off the sphere.

Problem 10. Now put some typical numbers into the last problem: take R = 1cm,

Φ = 5eV, d = 5nm, and use the measured value of the electron charge. What is Q is

Coulombs? How many electrons need to be added to the sphere to achieve this break-down

charge?

Solution: Using ε0 = 9×10−12 C2/Nm2, Φ = 5eV = 5×1.6×10−19J = 8×10−19Nm, R = 1cm = 10−2m,

e = 1.6× 10−19C, and d = 5nm = 5× 10−9m, we have

Q = −4π · 9 · 10−12 · 8 · 10−19 · 10−2·2

1.6 · 10−19 · 5 · 10−9
C ≈ 10−5C.

This is Q/e = 10−5/(1.6 × 10−19) ≈ 6 × 1013 electrons. In a typical metal, there are about

1023 conduction electrons per cm3, so in a 1cm sphere there will be approximately 4×1023 conduction

electrons. Therefore we only need to add one extra conduction electron for every 1010 already

in the neutral metal to create a field large enough to start pulling electrons off the metal!


