
Problem Set 3
Problems are worth one point each.

These problems give charge distributions and either ask you to use symmetry arguments to

predict the behavior of the electric field at certain locations, or to find the electric field at

various locations. In the former case, please state clearly the symmetries and their conse-

quences. In the latter case, use either Coulomb’s law (giving ~E as an integral over a charge

density) or the integrated form of Gauss’s law, whichever is easier, to find ~E.

Problem 1. In spherical coordinates, a charge distribution consisting of a point charge Q

at r = 0, a constant surface charge density σ0 on a spherical shell r = R, and a constant

(volume) charge density ρ0 in the interior of a thick spherical shell given by 3R < r < 3R+L.

Find ~E everywhere.

Solution: This problem has spherical symmetry. The (volume) charge density is

ρ(r) = Qδ3(~r) + σ0δ(r −R) + ρ0 ·

{
1 3R < r < 3R+ L

0 otherwise

We showed in lecture that for spherical symmetry

~E(~r) =
r̂

ε0r2

∫ r

0

dr′ (r′)2 ρ(r′),

but this formula is a bit delicate to use because of the point charge at the origin where spherical

coordinates are singular. One way to deal with this is to use superposition, ~E = ~EQ+ ~Erest,

and that ~EQ = Qr̂/(4πε0r
2) (Coulomb’s law for a point charge). Then the above formula gives

for the rest:

~Erest(~r) =
r̂

ε0r2

∫ r

0

dr′ (r′)2 · 0 = 0 if r < R

=
r̂

ε0r2

∫ r

0

dr′ (r′)2 σ0δ(r
′ −R) = r̂ σ0R

2

ε0r2
if R ≤ r < 3R

=
r̂ σ0R

2

ε0r2
+

r̂

ε0r2

∫ r

3R

dr′ (r′)2 ρ0 =
r̂ σ0R

2

ε0r2
+ ρ0

r̂(r3 − (3R)3)

3ε0r2
if 3R ≤ r < 3R+ L

=
r̂ σ0R

2

ε0r2
+ ρ0

r̂((3R+ L)3 − (3R)3)

3ε0r2
if 3R+ L ≤ r

~E is then given by adding the two, so

~E =
r̂

ε0r2
·


Q
4π r < R
Q
4π + σ0R

2 R ≤ r < 3R
Q
4π + σ0R

2 + ρ0
r3−(3R)3

3 3R ≤ r < 3R+ L
Q
4π + σ0R

2 + ρ0
(3R+L)3−(3R)3

3 3R+ L ≤ r

Problem 2. The problem 1 charge distribution, but with the surface and volume charge

densities varying as σ = σ0 cos2 θ and ρ = ρ0 cos2 θ in spherical coordinates. What can you

say about ~E at points on the z = 0 plane just based on symmetry?



Solution: Since the charge distributions are no longer constant, there is no longer spherical

symmetry. But since the distributions are independent of the azimuthal angle φ, the problem

has rotational symmetry around the z-axis which I’ll call ‘‘rotational symmetry’’. Since cos2 θ =

cos2(π−θ), the problem also has a symmetry under taking θ → π−θ. This corresponds in cartesian

coordinates to taking z → −z, leaving the x and y coordinates unchanged. I’ll call this

‘‘reflection symmetry’’.

The consequences of rotational symmetry are that ~E does not depend on φ and has no component

in the φ̂ direction, ~E(r, θ, φ) = Ã(r, θ)r̂+B̃(r, θ)θ̂ for some functions Ã and B̃. The z = 0 plane

corresponds to θ = π/2 and at this value of θ the unit vector θ̂ = −ẑ, so ~E(r, θ=π
2 , φ) = A(r)r̂+

B(r)ẑ where I’ve defined A(r)
.
= Ã(r, π2 ) and B(r)

.
= −B̃(r, π2 ).

Since the reflection symmetry fixes (ie, leaves unchanged) the z = 0 plane and reverses ẑ →
−ẑ, it follows that B(r) = 0, so we have

~E(r, θ=
π

2
, φ) = A(r)r̂.

(If you used cylindrical coordinates instead, this would read ~E(s, z=0, φ) = A(s)ŝ.)

Problem 3. In spherical coordinates, a charge distribution consisting of a surface charge

density σ = σ0 cos θ on a spherical shell r = R. Find ~E at the origin.

Solution: As in the last problem, there is a rotational symmetry around the z axis which

implies that at the origin ~E(0) = Aẑ for some constant A. The fact that it points only in

the ẑ direction follows from rotational symmetry since any component orthogonal to ẑ could

be rotated to its negative.

To compute A we need to integrate using Coulomb’s law in the form

~E(0) =
1

4πε0

∫
dτ ′

ρ(~r ′)~r
r 3

where, as per Griffith’s notation, ~r .
= ~r − ~r ′ = −~r ′, since ~r = 0. Since by symmetry the x̂

and ŷ components of ~E cancel, we can restrict to ~r = −z′ẑ in the numerator of the integrand.

In spherical coordinates dτ ′ = (r′)2dr′ sin θ′ dθ′ dφ′, z′ = r′ cos θ′, and r = | − ~r ′| = r′. Plugging

this all into Coulomb’s law we get

~E(0) =
1

4πε0

∫ ∫ ∫
(r′)2dr′ sin θ′ dθ′ dφ′

ρ(r′, θ′) (−r′ cos θ′)ẑ
(r′)3

= − ẑσ0
2ε0

∫ ∞
0

δ(r′ −R) dr′
∫ 1

−1
duu2 = − ẑσ0

2ε0
· 1 · u

3

3

∣∣∣∣1
−1

= − ẑσ0
3ε0

.

In the second step I did the φ′ integral, inserted ρ(r′, θ′) = σ0 cos θ
′δ(r′−R), and changed variables

to u = cos θ′.

Problem 4. The circle z = 0 and s = R carrying a linear charge density λ = λ0 cosφ in

cylindrical coordinates. What can you say about ~E at points on the x-axis just based on

symmetry?

Solution: This problem has a reflection symmetry under z → −z (keeping x and y fixed) and

a separate reflection symmetry under y → −y (keeping x and z fixed). The y reflection is

because cosφ = cos(−φ) and φ→ −φ maps y → −y and x→ x since x = s cosφ and y = s sinφ.

The ~E field on the x-axis is ~E(xx̂) = Ex(x)x̂+Ey(x)ŷ+Ez(x)ẑ, in cartesian coordinates. But



since the x-axis is unchanged under the two reflections, we must have Ey = Ez = 0. Thus

~E(xx̂) = Ex(x)x̂ for some function Ex.

(This can also be written in cylindrical coordinates, though it will look a bit more complicated

since the x axis is z = 0 and φ = 0 (for positive x) or φ = π (for negative x) and s = |x|.
Also x̂ = ±ŝ. Thus ~E(s, φ=0, z=0) = A(s)ŝ and ~E(s, φ=π, z=0) = B(s)ŝ is the consequence of

the symmetry in these coordinates.)

Problem 5. The problem 4 charge distribution. Find ~E at the point ~r = 2Rẑ.

Solution: By Coulomb’s law for a line charge distribution

~E(2Rẑ) =
1

4πε0

∫
d`′

λ(~r ′)~r
r 3 =

1

4πε0

∫ 2π

0

Rdφ′
λ0 cosφ

′(2Rẑ −Rŝ′)
53/2R3

,

where in the second step I used that the differential arc length is d`′ = Rdφ′, ~r = ~r−~r ′ =
2Rẑ−Rŝ′, and so r =

√
~r · ~r =

√
4R2 +R2 =

√
5R; here I used that ẑ·ŝ′ = 0. From the y-reflection

symmetry ~E(2Rẑ) can have no ŷ component. So, since ŝ′ = cosφ′x̂ + sinφ′ŷ, we can drop the ŷ

component in the numerator of the integrand (ie, it will cancel by symmetry), so we have

~E(2Rẑ) =
λ0

4 · 53/2πRε0

∫ 2π

0

dφ′ cosφ′(2ẑ − cosφ′x̂) =
λ0

4 · 53/2πRε0
{0 · ẑ − π · x̂} = − λ0x̂

4 · 53/2Rε0
,

where I used that
∫ 2π

0
dφ′ cosφ′ = 0 and

∫ 2π

0
dφ′ cos2 φ′ = π.

Problem 6. A line segment given by x = y = 0 and −L < z < L carrying linear charge

density λ = λ0 z/L. What can you say about ~E at points on the z = 0 plane just based on

symmetry?

Solution: This problem has rotational symmetry about the z-axis. (It is not symmetric under

z → −z reflections, since λ changes sign.) So, in cylindrical coordinates ~E at z = 0 (the

x-y plane) is independent of φ and can point in the ŝ and ẑ directions. So ~E(sŝ) = Es(s)ŝ+

Ez(s)ẑ for some functions Es(s) and Ez(s).

Problem 7. The problem 6 charge distribution. Find ~E at all points on the z-axis.

Solution: By Coulomb’s law for a line charge distribution

~E(zẑ) =
1

4πε0

∫
d`′

λ(~r ′)~r
r 3 =

1

4πε0

∫ L

−L
dz′

λ0(z
′/L)(zẑ − z′ẑ)
|z − z′|3

=
λ0ẑ

4πLε0

∫ L

−L
dz′

z′(z − z′)
|z − z′|3

,

where in the second step I used that the differential path length is d`′ = dz′, ~r = ~r − ~r ′ =
zẑ − z′ẑ, and so r =

√
~r · ~r = |z − z′|. Split it into three cases: (i) z > L, (ii) L > z >

−L, and (iii) z < −L. In case (i) |z− z′| = z− z′ for all z′ in the integration region, so

~E(i)(zẑ) =
λ0ẑ

4πLε0

∫ L

−L
dz′

z′

(z − z′)2
=

λ0ẑ

4πLε0

∫ L/z

−L/z
dζ

ζ

(1− ζ)2
=

λ0ẑ

4πLε0

{
2Lz

z2 − L2
+ ln

(
z + L

z − L

)}
,

where in the second step I changed variables to ζ = z′/z, and in the 3rd step I looked up the

integral. (It is also sometimes written in terms of arctanh using that arctanh(a) = 1
2 log

1+a
1−a.)



Case (iii) is very similar, but with |z − z′| = z′ − z, so

~E(iii)(zẑ) = −
λ0ẑ

4πLε0

∫ L

−L
dz′

z′

(z − z′)2
=

λ0ẑ

4πLε0

∫ L/|z|

−L/|z|
dζ

ζ

(1− ζ)2
=

λ0ẑ

4πLε0

{
2L|z|
z2 − L2

+ ln

(
|z|+ L

|z| − L

)}
= − λ0ẑ

4πLε0

{
2Lz

z2 − L2
+ ln

(
z + L

z − L

)}
,

where in the second step I changed variables to ζ = z′/z and switched the limits of the integration

(that’s why the overall minus sign disappears), and the in last step I used that |z| = −z.
Case (ii) is where the point is in the interior of the line charge, so you might expect the

electric field to diverge. Indeed, since the indefinite integral
∫
dζ ζ(1−ζ)−2 = (1−ζ)−1+

ln(ζ − 1), it diverges if ζ = 1 is inside the region of integration. Thus we can write the

final answer as

~E(zẑ) =
λ0ẑ

4πLε0

{
2Lz

z2 − L2
+ ln

(
z + L

z − L

)}
·


+1 if z > L

∞ if L > z > −L
−1 if − L > z

.

Problem 8. A charge distribution consisting of a uniform surface charge density σ0
everywhere on the z = 0 plane plus a volume charge density ρ = ρ0z/L for L ≤ z ≤ 2L for

all x and y, where ρ0 is a constant. Find ~E everywhere.

Solution: This problem has planar symmetry, so using the solution found from Gauss’s law

in the lectures,

~E(~r) =
ẑ

ε0

∫ z

−∞
dz′ρ(z′) + ~E(−∞ẑ),

where I have chosen the arbitrary additive constant electric field to be its value at infinity

instead of at ~r = 0 since we are putting a surface charge density right at z = 0. Using

that

ρ(z′) = σ0δ(z
′) + ρ0

z′

L
·

{
1 if L < z < 2L,

0 otherwise,

and splitting the integral into regions, you immediately get

~E(~r)− ~E−∞ =
ẑ

ε0
·


0 if z < 0,

σ0 if 0 < z < L,

σ0 + ρ0
z2−L2

2L if L < z < 2L,

σ0 + ρ0
3L
2 if 2L < z.

The arbitrary constant ~E−∞ cannot be determined from the problem.

Problem 9. Two parallel lines given by z = 0 and y = ±L/2 (for all x) carry uniform

linear charge densities ±λ0, respectively (i.e., the signs are correlated). Find ~E at the origin.

Solution: The solution for the electric field ~E′ of a uniform line charge λ0 on the z axis

is by Gauss’s law (cylindrical symmetry) ~E′ = ŝ
ε0s

∫ s
0
ds′ s′ ρ(s′) = λ0ŝ/(2πε0s) in cylindrical coordinates.

At points along the y axis ŝ/s = ŷ/y, so

~E′(yŷ) =
λ0ŷ

2πε0y
. (1) zaxis



Now shift this solution along the y-axis so the line lies at y = L/2. This is equivalent

to shifting y → y − L/2, so

~E0(yŷ) =
λ0ŷ

πε0(2y − L)
.

Similarly, if we shift the line instead to −L/2 and change λ0 → −λ0 we have

~E−1(yŷ) = −
λ0ŷ

πε0(2y + L)
.

The electric field at y = 0 for the problem at hand is then the sum of these two, giving

~E(0) = ~E0(0) + ~E−1(0) =
λ0ŷ

πε0(2 · 0− L)
− λ0ŷ

πε0(2 · 0 + L)
= − 2λ0ŷ

πε0L
.

Problem 10. A charge distribution similar to that of problem 9, but now with an infinite

number of parallel lines intersecting the y-axis at y = (n + 1
2
)L for all integers n carrying

constant linear charge densities (−1)nλ0. Find ~E at the origin.

Solution: This is very similar to the last problem. Start from the solution for the electric

field, ~E′, of a line charge λ0 placed along the z-axis at points on the y-axis given in (
zaxis
1)

above, then shift y → y−(n+ 1
2 )L and λ0 → (−)nλ0 and evaluate at y = 0 to get the contribution

at the origin of the line at y = (n+ 1
2 )L:

~En(0) =
(−)nλ0ŷ

2πε0(−(n+ 1
2 )L)

.

Now sum these all up to get

~E(0) =

∞∑
n=−∞

~En(0) = −
∞∑

n=−∞

(−)nλ0ŷ
πε0(2n+ 1)L

= − λ0ŷ

πε0L

∞∑
n=−∞

(−)n

2n+ 1
= − λ0ŷ

πε0L
· π
2
= − λ0ŷ

2ε0L
,

where in the fourth step I looked up the infinite sum.


