
Problem Set 2
Problems are worth one point each.

Find the charge density (charge per unit volume) ρ(~r) for the following charge distributions.

In each case pick a convenient coordinate system and describe it clearly. (Hint: most ρ(~r)’s

will involve delta functions.)

Problem 1. Eight point charges each of charge q at the vertices of a cube of side L.

Solution: Set up the cube in Cartesian coordinates with one vertex at the origin and three

edges along the x-, y-, and z-axes. Then the vertices of the cube are at ~r1 = 0, ~r2 = Lx̂,

~r3 = Lŷ, ~r4 = Lẑ, ~r5 = Lx̂ + Lŷ, ~r6 = Lŷ + Lẑ, ~r7 = Lx̂ + Lẑ, ~r8 = Lx̂ + Lŷ + Lẑ. With these

definitions, the charge density is

ρ(~r) = q

8∑
i=1

δ3(~r − ~ri).

Problem 3. A charge q uniformly distributed over a circular arc of radius R and length

πR/3.

Solution: Use cylindrical coordinates with the center of the circular arc at the origin, the

arc in the x-y plane --- i.e., at z = 0 --- and one end of the arc on the positive x-axis

--- i.e., at φ = 0. Since the arc has radius R and length Rπ/3, it subtends an angle ∆φ =

π/3. Then the arc is described by the equations z = 0, s = R, and 0 ≤ φ ≤ π/3. The linear

charge density (charge per unit length) along the arc is λ = q/(πR/3) since the arc has length

πR/3. Since the arc is localized at specific values of z and s, the charge density will be

proportional to delta functions with support at those values. Thus the charge density is

ρ(~r) =

{
λ δ(z − 0) δ(s−R) for 0 ≤ φ ≤ π

3

0 otherwise

=
3q

πR
δ(z) δ(s−R) ·

{
1 for 0 ≤ φ ≤ π

3

0 otherwise
.

Problem 5. A charge q uniformly distributed over the surface of a sphere of radius R.

Solution: Use spherical coordinates and center the sphere on the origin. Then the sphere

is described by the equation r = R (for all θ, φ). The area of the sphere is 4πR2, so the

surface charge density (charge per unit area) is σ = q/(4πR2). Since the sphere is localized

at a specific value of r, the charge density will be proportional to a delta function with

support at that value. Thus the charge density is

ρ(~r) = σ δ(r −R) =
q

4πR2
δ(r −R).

Problem 7. A charge q uniformly distributed throughout a (three-dimensional) circular

cylinder of length L and radius R.



Solution: Use cylindrical coordinates with the cylinder axis along the z-axis and the bottom

of the cylinder at z = 0. Then the interior of the cylinder is given by the equations 0 ≤
z ≤ L and s ≤ R for all φ. The volume of the cylinder is πR2L so the charge density in

the interior is ρ0 = q/(πR2L). Thus the charge density is

ρ(~r) =

{
ρ0 for 0 ≤ z ≤ L and s ≤ R
0 otherwise

=
q

πR2L
·

{
1 for 0 ≤ z ≤ L and s ≤ R
0 otherwise

.

Problem 9. A charge uniformly distributed over a (planar) logarithmic spiral from the

origin out to a radius R with polar slope 1 (i.e., which intersects the circle of radius R at an

angle of π/4). The linear charge density (charge per unit length) is λ.

Solution: Use cylindrical coordinates with the spiral x-y plane --- i.e., at z = 0 --- and

the center of the spiral at the origin. Also, put the end of the spiral (by rotating it in

the x-y plane, if necessary) at s = R on the positive x-axis --- i.e., at φ = 0. According

to Wikipedia, a logarithmic spiral in the x-y plane has equation s = aekφ where (s, φ) are the

polar coordinates in the plane and a and k are some real constants. Since at φ = 0 we want

s = R, we have a = R. The spiral starts at φ = 0 and spirals in to the origin as φ → ∞.

So points on the spiral are given by

~r = s(φ)ŝ+ z(φ)ẑ = Rekφŝ for −∞ < φ ≤ 0

= Rekφ(cosφ x̂+ sinφ ŷ),

where in the second line I’ve rewritten ŝ in terms of the Cartesian unit vectors x̂ and ŷ.

We still have to determine the k parameter in the spiral. It is determined by the requirement

in the problem that the spiral intersects the s = R circle at an angle α = π/4. We can determine

this angle in terms of k by computing the dot product of the tangent vector to the spiral with

the tangent vector to the circle where they intersect (at φ = 0). The tangent vector to the

spiral as a function of φ is

~t(φ)
.
=
d~r(φ)

dφ
= Rekφ [(k cosφ− sinφ) x̂+ (k sinφ+ cosφ) ŷ] .

To compute this derivative we needed to convert from the cylindrical ŝ unit vector to the Cartesian

x̂ and ŷ unit vectors since the ŝ vector depends on φ. So at φ = 0 where the spiral intersects

the s = R circle, the tangent vector is ~t(0) = R(k x̂+ŷ). The unit tangent to the circle at

this point is ŷ, so the angle α between them is given by cosα = ~t(0)·ŷ/(|~t(0)| |ŷ|) = R/(R
√
k2 + 1).

Setting α = π/4 gives 1 = 1/
√
k2 + 1, or k = 1. Thus, the equations for the spiral are z =

0 and s = Reφ for −∞ < φ ≤ 0. φ going to negative infinity reflects the fact that the

spiral winds an infinite number of times as it spirals into the origin.

Since the linear charge density is given as the constant λ, the charge density is therefore

ρ(~r) ∝ λ δ(z) δ(s−Reφ) for −∞ < φ ≤ 0, and 0 otherwise.

I put ‘‘∝’’ (‘‘proportional to’’) because, unlike the other examples where the delta functions

set the coordinates to constant values, in this case it imposes a non-linear relation between

s and φ, and it is less clear what the correct overall normalization of the density must be.



I claim the correct normalization factor for the charge density is

ρ(~r) =
√

2λ δ(z) δ(s−Reφ) for −∞ < φ ≤ 0, and 0 otherwise.

We will check this in problem 10.

The remaining problems ask you to integrate over all space the charge densities, ρ(~r), found

in the previous problems to get the total charge

qtot
.
=

∫
dτ ρ(~r).

(The total charges in all but problem 9 are given in the statement of the problems: in

those cases the exercise is to set up and do the integral in your chosen coordinate system —

showing your work, of course! — to check that you recover the correct answer. In fact, you

may want to do each of these problems at the same time as its corresponding problem above

to determine the correct normalization of ρ(~r).)

Problem 2. Compute qtot for problem 1.

Solution:

qtot
.
=

∫
dτ ρ(~r) =

∫
dτq

8∑
i=1

δ3(~r − ~ri) = q

8∑
i=1

∫
dτδ3(~r − ~ri) = q

8∑
i=1

1 = 8q.

Problem 4. Compute qtot for problem 3.

Solution:

qtot
.
=

∫
dτ ρ(~r) =

∫ ∞
0

sds

∫ ∞
−∞

dz

∫ π/3

0

dφ
3q

πR
δ(z) δ(s−R) =

3q

πR
·R · 1 · π

3
= q.

In the 2nd step I used the volume element in cylindrical coordinates with a limit on the φ

integration coming from the charge distribution given in problem 3, and in the 3rd step I used

the delta-function integration rule.

Problem 6. Compute qtot for problem 5.

Solution:

qtot
.
=

∫
dτ ρ(~r) =

∫ ∞
0

r2dr

∫ π

0

sin θ dθ

∫ 2π

0

dφ
q

4πR2
δ(r −R) =

q

4πR2
·R2 · 2 · 2π = q.

Problem 8. Compute qtot for problem 7.

Solution:

qtot
.
=

∫
dτ ρ(~r) =

∫ R

0

sds

∫ L

0

dz

∫ 2π

0

dφ
q

πR2L
=

q

πR2L
· R

2

2
· L · 2π = q.



Problem 10. Compute qtot for problem 9.

Solution:

qtot
.
=

∫
dτ ρ(~r) =

∫ 0

−∞
dφ

∫ ∞
−∞
dz

∫ ∞
0

sds
√

2λ δ(z) δ(s−Reφ) =

∫ 0

−∞
dφ
√

2λ · 1 ·Reφ =
√

2λR eφ
∣∣∣0
−∞

=
√

2λR.

To check that this is the right value, note that the total charge is given by qtot = λL where

L is the length of the spiral. We compute the length of the spiral by integrating its infinitesimal

arc length from −∞ < φ ≤ 0. The infinitesimal arc length is

d`
.
= |d~l| = |~t(φ)| dφ = Reφ

√
(cosφ− sinφ)2 + ((cosφ+ sinφ)2 dφ

= Reφ
√

2 cos2 φ+ 2 sin2 φ dφ =
√

2Reφ dφ,

where I used the result from problem 9 for the tangent vector with k = 1. Then the total

arc length of the spiral is

L
.
=

∫
d` =

∫ 0

−∞
dφ
√

2Reφ =
√

2Reφ
∣∣∣0
−∞

=
√

2R(1− 0) =
√

2R.

Thus qtot = λL =
√

2λR.

[Where did the factor of
√

2 come from, and how could we have predicted it from first principles

(and not just checked it after the fact)? The factor comes from the fact that the line charge

does not lie on a curve which is given by constant coordinate values in an orthonormal coordinate

system (like cartesian, spherical, or cylindrical coordinates). If a line charge is on a general

curve given by some parameterized equations ~r = ~f(t) where the components of ~f are some given

functions of t which parameterizes the points of the curve, and the line charge density is

given by some function λ(t) of the parameter, then the (volume) charge density is

ρ(~r) =

∫
dt

∣∣∣∣∣d~fdt
∣∣∣∣∣ λ(t) δ3(~r − ~f(t)).

This follows because the 3-dimensional delta function localizes the charge density to the points

of the curve, and the measure dt |d~f/dt| = |d~r| = d` is the differential arc length, so λ(t)d`

is the differential charge.

The above formula, though it looks very different in form from what we found in problem 9,

is, in fact, the same. To see this, write the curve for the logarithmic spiral as ~r(t)
.
= (s(t), φ(t), z(t)) =

(Ret, t, 0) in cylindrical coordinates. Thus we are using the cylindrical azimuthal angle coordinate

as the t parameter. Then d~r/dt = ŝ(ds/dt)+φ̂s(dφ/dt)+ẑ(dz/dt) = ŝ Ret+φ̂s, so |d~r/dt| =
√
R2e2t + s2.

Also, λ is constant. Plugging into the above formula and using the expression for δ3 in cylindrical

coordinates gives

ρ(~r) =

∫ 0

−∞
dt
√
R2e2t + s2 λ

1

s
δ(s−Ret)δ(φ− t)δ(z)

=

{√
R2e2t + (Ret)2 λ 1

Ret δ(s−Re
t)δ(z) =

√
2λ δ(s−Ret)δ(z) if −∞ < φ < 0

0 otherwise

giving the result of problem 9.]


