Lecture fa Worked problem

- A cube of side L with one face at potential $V=V_{0}$ and the rest at potential $V=0$. What is $V(\vec{r})$ inside the cure?
- Solution by separation of variables
(1) Pick coordinate system:

Since the boundary conditions are on orthogonal planes, use Cartesian coordinotes.

(2) Write Laplace equ

$$
0=\nabla^{2} V=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) V(x, y, z)
$$

(3) Make sey'o'variables ausatz

$$
\begin{aligned}
& V(x, y, z)=A(x) B(y) G^{\prime}(z) \\
\therefore & O=A^{\prime \prime} B C+A B^{\prime \prime} C+A B C^{\prime \prime}
\end{aligned}
$$

where ' = derivative with respect to the argument of the fuactiva. Thus, e.g., $A^{\prime} \doteq \frac{d A}{d x}, \quad B^{\prime} \doteq \frac{d B}{d y}$, etc.
(4) Manipulate so eqn is a sum of terms depending on a single variable each: $\div A B C \Rightarrow$

$$
0=\frac{A^{(\prime}(x)}{A(x)}+\frac{B^{\prime \prime}(y)}{B(y)}+\frac{C^{\prime \prime}(z)}{C(z)}
$$

This can only be satisfied
if each term is a constant. Therefore:

$$
\begin{align*}
& \frac{A^{\prime \prime}(x)}{A(x)}=-k_{A}^{2} \\
& \frac{B^{\prime \prime}(y)}{B(y)}=-k_{B}^{2} \\
& \frac{C^{\prime \prime}(z)}{C(z)}=-k_{C}^{2}
\end{align*}
$$

with $k_{A}^{2}+k_{B}^{2}+k_{C}^{2}=0$
Here - k_{i}^{2} are real constants, so k_{i} can be real or ingainary.
(5) Solve O.D.E.S

$$
\begin{aligned}
& A=a \sin \left(k_{A} x\right)+\tilde{a} \cos \left(k_{A} x\right) \\
& B=b \sin \left(k_{B} y\right)+\tilde{b} \cos \left(k_{B} x\right) \\
& C=c \sin \left(k_{c} z\right)+\tau \cos \left(k_{C} z\right)
\end{aligned}
$$

when a, \tilde{a}, \ldots are vadeferminal
constants. For k_{i} real, a, arete are real. For k_{i} imaginary, a, b, c are imaginary $4 \tilde{a}^{\tilde{a}}, b^{\tilde{b}}, \varepsilon^{2}$ ort red.
(6) Write general solution for V

$$
\begin{aligned}
V(x, y, z)= & \sum_{k_{A} k_{B} k_{C}}\left(a_{k_{A}} \sin \left(k_{A} x\right)+\tilde{a}_{k_{d}} \cos \left(k_{e_{A}} x\right)\right) \\
& \cdot\left(b_{k_{B}} \sin \left(k_{B} y\right)+\tilde{b}_{k_{B}} \cos \left(k_{R} y\right)\right) \\
& \cdot\left(c_{k_{C}} \sin \left(k_{c} z\right)+\widetilde{c}_{k_{C}} \cos \left(k_{c}, z\right)\right)
\end{aligned}
$$

Uuknaons: set of allowed craal or imaginary) ($\left.l_{x_{B}}, k_{n}, k_{c}\right\}$, and values of $a_{k_{s}}$... coefficients.
(7) Apply bosudons conditions
(Fa) Apply $V=0$ b.c.'s firs L. So:

$$
V(x=0, y, z)=0
$$

$$
\begin{aligned}
\Rightarrow 0=\sum_{k^{\prime}!} \tilde{a}_{k A} & \left(b_{k_{s}} \sin \left(k_{\xi}\right)+\tilde{b}_{k_{m}} \cos \left(k_{B y} l\right)\right) \\
& \left(c_{k_{c}} \sin \left(k_{c} z\right)+\tilde{c}_{k_{c}} \cos \left(k_{c}(z)\right)\right.
\end{aligned}
$$

for all $(y, z) \Rightarrow \tilde{a}_{k_{A} A}=0 \quad \forall_{k_{A}}$

$$
\begin{aligned}
& V\left(x=L_{1}, y, z\right)=0: \\
& \Rightarrow O=\sum_{k^{\prime} s} a_{k_{A}} \sin \left(k_{A} L\right) \\
& \cdot\left(b_{k_{s}} \sin \left(k_{\xi}\right)+\tilde{b}_{k_{k}} \cos \left(k_{B Y}\right)\right) . \\
& \\
& \cdot\left(c_{k_{c}} \sin \left(k_{c} z\right)+\tilde{c}_{k_{c}} \cos \left(k_{c}(z)\right)\right.
\end{aligned}
$$

far all $(y, z) \Rightarrow k_{A} L=n \pi \quad n \in \mathbb{Z}$

$$
\Rightarrow k_{A}=\frac{n \pi}{L} \quad n \in\{1,2,3 \cdots\}
$$

- For $n=0$ term vanishes, so can be dropped Row n sum.
- For $a<0$, give same (or b sign) ar $n>0$, so can also be dropped as redundant.
- Unknown $a_{k A}$ coifficients can be reabsorlugd inte the $b_{k_{t}} \ldots$ coefficients.
(zb) z b.c.'s: Just lilee x b.c.'s \Rightarrow

$$
\begin{aligned}
& z=0 \quad b \cdot c . \Rightarrow \frac{\tilde{c}_{k L}=0 \quad \forall k L}{} \\
& z=L \quad \text { b.c. }
\end{aligned} \frac{k_{c}=\frac{m \pi}{L} \quad m \in\{1,2,3, \cdots\}}{} .
$$

\& vulenown $C_{k_{c}}$ coefficicuts con be reabsorbed int $b_{k R}, \tilde{F}_{k k}$ coufficizats.
(7c) "Regroup": With above results, our solution is

$$
\begin{aligned}
V(x, y, z)= & \sum_{n, m=1}^{\infty} \sin \left(\frac{n \pi x}{2}\right) \sin \left(\frac{m \pi z}{2}\right) \\
& \cdot\left(b_{n, m} \sin \left(k_{B} y\right)+\tilde{b}_{n, m} \cos \left(k_{B} y\right)\right)
\end{aligned}
$$

But by $* * \quad K_{B}=\frac{i \pi}{L} \cdot \sqrt{n^{2}+m^{2}} \leftarrow$ imagincry!

$$
\Rightarrow \int \sin \left(k_{B} y\right) \propto \sinh \left(\frac{\pi}{2} \sqrt{n^{2}+m^{2}} y\right)
$$

$$
2 \cos \left(k_{B} y\right) \propto \cosh \left(\frac{\pi}{L} \sqrt{n^{2}+m^{2}} y\right)
$$

\therefore our solution can be waitten as

$$
\begin{aligned}
& V(x, y, t)=\sum_{n, m=1}^{\infty} \sin \left(\frac{n \pi x}{2}\right) \sin \left(\frac{m \pi z}{L}\right) \cdot \\
& \quad \cdot\left(B_{n, m} \sinh \left(\frac{\pi}{4} \sqrt{n^{2}+m^{2}} y\right)+\widetilde{B}_{n, m} \cosh \left(\frac{\pi}{L} \sqrt{n^{2}+m^{2}} y\right)\right\}
\end{aligned}
$$

(7c) Impose y L.C.'s

$$
\begin{aligned}
& y=0: \quad 0=V(x, y=0, z) \Rightarrow \\
& 0=\sum_{n, m} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n \pi z}{L}\right) \widetilde{B}_{n m} \quad \forall x, z \\
& \Rightarrow \widetilde{B}_{n, m}=0 \forall u, m \\
& y=L: \quad V_{0}=V(x, y=L, z) \Rightarrow \\
& V_{0}=\sum_{n, m} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n \pi x}{L}\right) B_{n m} \sinh \left(\pi \sqrt{n^{2}+m^{2}}\right) .
\end{aligned}
$$

(6) Invert last B.C. Δ to find coetfs,

- Use ortho gouality of $x-4 z$ - special funchras:

$$
\frac{2}{L} \int_{0}^{L} d x \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n^{\prime} \pi x}{L}\right)=\delta_{n, n^{\prime}}
$$

Δ similarly fes z.

$$
\begin{aligned}
& =\text { Compufe } \frac{2}{L} \int_{0}^{L} d x \sin \left(\frac{n^{\prime} \pi x}{L}\right) \frac{2}{L} \int_{0}^{L} d z \sin \left(\frac{m^{\prime} \pi z}{L}\right) \otimes \frac{4}{L^{2}} \int_{0}^{L} d_{0}^{L} \int_{0}^{L} d z \sin \left(\frac{n^{\prime} \pi x}{L}\right) \sin \left(\frac{m^{\prime} \pi z}{c}\right)_{0} \\
& \Rightarrow \text { Left-hand side }=\frac{4}{L^{2}} \cdot \frac{L}{n^{\prime} \pi}\left(l-(-)^{n^{\prime}}\right) \cdot \frac{L}{m^{\prime} \pi}\left(1-(-)^{m^{\prime}}\right) \cdot V_{0} \\
& \quad= \begin{cases}\frac{16 V_{0}}{\pi^{2} n^{\prime} m^{\prime}} & \text { if } n^{\prime}+m^{\prime} \text { odd } \\
0 & \text { ofterwise. }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \text { Riglet-hand side }=\sum_{n, m} B_{n, m} \sinh \left(\pi \sqrt{n^{2}+m^{2}}\right) \delta_{n n^{\prime}} S_{m n^{\prime}} \\
& =B_{n^{\prime} m^{\prime} \sinh \left(\pi \sqrt{\left(n^{\prime}\right)^{2}+\left(m^{\prime}\right)^{2}}\right) .} \begin{array}{rr}
16 \cdot V_{0} & \text { if } n 4 m \\
B_{n m}=\left\{\begin{array}{lr}
\frac{1}{\pi^{2} n m \sinh \left(\pi \sqrt{n^{2}+m^{2}}\right)} & \text { otherwix. } \\
0 &
\end{array}\right.
\end{array} .
\end{aligned}
$$

(9) Plug coefficients into general solution to find final answer:

$$
V(x, y, z)=\sum_{\substack{n, m=1 \\ 0,1}}^{\infty} \frac{16 V_{0} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi z}{2}\right) \sinh \left(\sqrt{m^{m} m^{2}} \frac{\pi y}{L}\right)}{\pi^{2} n m \sinh \left(\pi \sqrt{n^{2}+m^{2}}\right)}
$$

