Lecture 7
3.3 Separation of variables

- Systematic method for finding series solutions of Laplace' equation when the boundary conditions are on surfaces described by constant values of coordinates in some coordinate system:

Cartesian: boundaries at $x=$ constant or $y=$ constant or $z=$ constant:

So, good in "rectangular" domains. Note that $x_{i}, y_{i}, 2_{i}$ could be $\pm \infty$.

Cylindrical: buds © $s=$ cons, $\phi=\operatorname{cosin} t, z=$ cases

Spherical: 6drs e $r=$ cost, $\theta=$ cons, $\phi=$ count

- Idea: look for solutions of $\nabla^{2} V=0$ such that:
cartesian $\quad V(x, y, z)=X(x) \cdot Y(y) \cdot Z(z)$
cyeind. $\quad V(s, \phi, z)=S^{\prime}(s) \cdot \Phi(\phi) \cdot Z(z)$
sphere. $\quad V(r, \theta, \phi)=R(r) \cdot \Theta(\theta) \cdot \Phi(\phi)$
Then find that $\nabla^{2} V=0 \Rightarrow 3$ separate ordinary differential equs for the factor functions (X, Y, Z) etc., each depending on a real constant $\left(k_{x}^{2}, k_{y}^{2}, k_{z}^{2}\right)$

These ordinard differential egus can be solved once \& for all \& get a family of "special functions" e.g.

* Cartesian:

$$
X_{k} \sim e^{ \pm i k x} \text { or } e^{ \pm k x} \approx \begin{cases}\sin (h x) & \sinh (k x) \\ \cos (h x) & \cosh (k x)\end{cases}
$$

\& Same for Y_{k}, Z_{k}.
Cylindrical:

$$
\begin{aligned}
& S_{k} \sim \text { Bessel functions } J_{k}, Y_{k} \\
& \Phi_{k} \sim e^{ \pm i k \phi} \text { n } e^{ \pm k \phi} \\
& Z_{k} \sim e^{ \pm i k z} \text { or } e^{ \pm k z}
\end{aligned}
$$

* Spherical:

$$
R_{k} \sim r^{l_{t}}, r^{\ell-} \ell_{ \pm}=\frac{-1 \pm \sqrt{1+4 k^{2}}}{2}
$$

$\Theta_{\varepsilon} \sim$ (associated) Legendre polynomials $P_{e}^{m}(\cos \theta)$

$$
\Phi_{k} \sim e^{ \pm i k \phi} \text { or } e^{ \pm k \phi}
$$

(* Well just concentrate on cartesian 4 spherical in this course.)

- "Special functions" have very nice properties orthogonality \& Crmpletenen
If $N_{k}(x)$ is a set of special functions, then, heuristically,
orthogonality:

$$
\begin{equation*}
\int d x N_{k}(x) N_{k^{\prime}}(x)=\delta_{k, k} \tag{ON}
\end{equation*}
$$

completeness:

$$
\sum_{k} N_{k}(x) N_{k}\left(x^{\prime}\right)=g\left(x-x^{\prime}\right)
$$

(c) \Rightarrow Cluny function $f(x)$ can be written as a linear combination of the D_{k} (x):

$$
\begin{align*}
f(x) & =\int d x^{\prime} f\left(x^{\prime}\right) \delta\left(x-x^{\prime}\right) \tag{co}\\
& =\int d x^{\prime} f\left(x^{\prime}\right) \sum_{k} N_{k}(x) N_{k}\left(x^{\prime}\right) \\
& =\sum_{k} N_{k}(x) \cdot \underbrace{\int d y^{\prime} f\left(x^{\prime}\right) N_{k}\left(x^{\prime}\right)}_{\dot{=} C_{k}}
\end{align*}
$$

$$
=\sum_{k} c_{k} N_{k}(x)
$$

(On) \Rightarrow The coefficients c_{k} are deterusiud uniquely

$$
\begin{align*}
\int d x & f(x) N_{k}(x)=\int d x\left(\sum_{k^{\prime}} c_{k^{\prime}} N_{k^{\prime}}(x)\right) N_{k}(x) \\
& =\sum_{k^{\prime}} C_{k^{\prime}} \int d x N_{k^{\prime}}(x) N_{k}(x) \\
& =\sum_{k^{\prime}} C_{k^{\prime}} \delta_{k k^{\prime}} \tag{6}\\
& =C_{k} . V
\end{align*}
$$

- Just like expanding any vector in a basis $\vec{v}=\sum_{k} v_{k} \vec{e}_{k}$ basis vectors
(ON) $\leftrightarrow \vec{e}_{k} \cdot \vec{e}_{k^{\prime}}=\delta_{k k^{\prime}}$
(c) $\leftrightarrow \sum_{k} \vec{e}_{k} \vec{e}_{k}^{\top}=I \sim$ identity matrix

Familiar examples:

- If $N_{k}(x) \leftrightarrow e^{i n} \prod_{k^{n}}^{i n} \sum_{n-} n \in \mathbb{Z} \quad$ (integer)

ON: $\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi e^{i n \phi} e^{-i m \phi}=\delta_{n, m}$
(coo): $\sum_{n} e^{i n \phi} e^{-i n \phi^{\prime}}=2 \pi \delta\left(\phi-\phi^{\prime}\right)$

$$
\Rightarrow\left\{\begin{aligned}
f(\phi) & =\sum_{n} c_{n} e^{i n \phi} \\
c_{n} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi \\
f(\phi) & e^{-i n \phi}
\end{aligned}\right.
$$

"Fourier series" for periodic functions

- If $N_{k}(x) \leftrightarrow e^{i k x} \quad k \in \mathbb{R} \quad$ (reals)
(ON) $\frac{1}{2 \pi} \int_{-\infty}^{\infty} d x e^{i l e x} e^{-i k^{\prime} x}=\delta\left(k-k^{\prime}\right)$
(c) $\frac{1}{2 \pi} \int_{-\infty}^{\infty} d k e^{i k x} e^{-i k x 1}=\delta\left(x-x^{\prime}\right)$

$$
\Rightarrow\left\{\begin{array}{l}
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d k \tilde{f}(k) e^{i k x} \\
\tilde{f}(k)=\int_{-\infty}^{\infty} d x f(x) e^{-i k x}
\end{array}\right.
$$

$=$ "Fourier transform"

- These examples make it clear that the precise set of special functions used depends on the boundaries
E.g. if boondmics are at $x=x_{0} \& x=x_{1}$ and x_{0}, x_{1} an finite, then get Fourier series; but if x_{0} and/or $x_{1}= \pm \infty$ then get Fourier transform.

Cartesian coordinates

$$
\begin{aligned}
& \nabla^{2} V=0 \quad \forall(x, y, z) \doteq X(x) Y(y) Z(z) \\
0= & \left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)(X(x) Y(y) Z(z)) \\
= & \left(\partial_{x}^{2} X\right) Y Z+X\left(\partial_{y}^{2} Y\right) Z+X Y\left(\partial_{z}^{2} Z\right) \\
0= & \frac{\partial_{x}^{2} X}{X}+\frac{\partial_{y}^{2} Y}{Y}+\frac{\partial_{z}^{2} Z}{Z} \\
\Rightarrow & \frac{\partial_{x}^{2} X}{X}=-k_{x}^{2} \quad \frac{\partial_{y}^{2} Y}{Y}=-k_{y}^{2} \quad \frac{\partial_{z}^{2} Z}{Z}=-k_{z}^{2} \quad * \\
\omega & k_{x}^{2}, k_{y}^{2}, k_{z}^{2} \text { constants } \\
& k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=0 .
\end{aligned}
$$

$*^{*}$ implies not all of $k_{x}^{2}, b_{y}^{2}, k_{z}^{2}$ can he positive!

Solutions to $*: \quad \partial_{x}^{2} X(x)=-k^{2} X(x)$

$$
\begin{aligned}
\Rightarrow X(x) & =\tilde{A} \cos k x+\tilde{B} \text { sink } \\
& =A e^{i k x}+B e^{-i k x} \\
\Rightarrow X(x) & =\tilde{A} \cosh (k x)+\tilde{B} \sinh (k x) \\
& =A e^{k x}+B e^{-k x} \quad \begin{array}{l}
\text { if } k^{2}>0 \\
\left(\infty k^{2}=-k^{2}<0\right)
\end{array}
\end{aligned}
$$

Valves $k_{x}^{2}, k_{y}^{2}, k_{z}^{2}$ can ter be ane determined by the boundary conditions.
E.g., do a 2-d exaumple (i.e, ignore z):

$$
f_{i}(x), g_{i}(y)
$$ an specified functions

(0) Reduce to four problems like:

$$
\nabla^{2} V=0<V=X \cdot Y \Rightarrow \partial_{x}^{2} X=-b^{b^{2}} X<\partial_{g}^{k_{2}^{2}} Y=+k^{-b_{2}^{2}} Y
$$

(1) Choose $k^{2} \geqslant 0$:

$$
\Rightarrow\left\{\begin{array}{l}
X_{k}=A_{k} \cos (k y)+B_{k} \sin (k x) \\
Y_{k}=C_{k} e^{k y}+D_{k} e^{-k y}
\end{array}\right.
$$

(2) Impose $y=0,6$ boundary conditious:

$$
\begin{aligned}
& V(x, 0)=V(x, b)=0 \quad \forall_{x} \Rightarrow Y_{k}(0)=Y_{k}(b)=0 \quad \forall k \geqslant 0 \\
& \Rightarrow C_{k}+D_{k}=0=C_{k} e^{k b}+D_{k} e^{-k b} \\
& \Rightarrow D_{k}=-C_{k}+e^{k b}-e^{-k b}=0 \\
& \Rightarrow e^{2 k b}=1 \Rightarrow k=0 \Rightarrow Y_{0}=\text { cost !? }
\end{aligned}
$$

(3) So try $\begin{aligned} & l^{2} \leq 0: \\ & -k^{2}\end{aligned}\left\{\begin{array}{l}X_{k}=A_{k} e^{k x}+B_{k} e^{-k x} \\ Y_{k}=C_{k} \cos k y+D_{k} \sin k y\end{array} \quad(k \geqslant 0)\right.$
\& $Y_{k}(0)=Y_{k}(b)=0 \quad \forall k \geqslant 0 \Rightarrow$

$$
\begin{aligned}
& C_{k}=0=C_{k} \cos k b+D_{k} \sin k b \\
& \Rightarrow \sin k b=0
\end{aligned}
$$

(4) Solve bounding condition to get infinite sues of solutions:

$$
\begin{aligned}
& \Rightarrow k=\frac{\pi n}{b}, n \in \mathbb{Z}_{\geqslant 0} \text { and } D_{k}=1 \leftarrow! \\
& \Rightarrow\left\{\begin{array}{l}
X_{n}=A_{n} e^{\frac{\pi}{b} n x}+B_{n} e^{-\frac{\pi}{L} n x} \\
Y_{n}=\sin \left(\frac{\pi}{6} n y\right) \quad n \geqslant 1 \leftarrow!
\end{array}\right.
\end{aligned}
$$

$$
\therefore V=\sum_{n=1}^{\infty}\left(A_{n} e^{\frac{\pi}{b} n x}+B_{n} e^{-\frac{\pi}{6} n x}\right) \sin \left(\frac{\pi}{b} n y\right)
$$

(5) Impose $x=0$, a boundary couditions:

$$
\begin{aligned}
& V(0, y)=0 \Rightarrow V=\sum_{n=1}^{\infty}\left(A_{n}+B_{n}\right) \sin \left(\frac{\pi}{6} n y\right) \equiv 0 \\
& \Rightarrow\left(\text { congletenen } \quad A_{n}+B_{n}=0 \quad \forall n \geqslant 1\right. \\
& \therefore V=2 \sum_{n=1}^{\infty} A_{n} \sinh \left(\frac{\pi}{6} n x\right) \sin \left(\frac{\pi}{6} n y\right) \\
& V(a, y)=g_{a}(y)=2 \sum_{n=1}^{\infty} A_{n} \sinh \left(\frac{\pi n a}{6}\right) \sin \left(\frac{\pi}{6} n y\right)
\end{aligned}
$$

(6) Use orthogouality if special functions to compote A_{n}

$$
\begin{aligned}
& \int_{0}^{b} d y \sin \left(\frac{\pi}{2} n y\right) \sin \left(\frac{\pi}{b} m y\right) \quad \stackrel{?}{\propto} \delta_{n, m} \\
& \quad=11=\frac{b}{2} \delta_{n, m} \\
& {\left[C^{n=m} \int_{0}^{b} d y \sin ^{2}\left(\frac{\pi}{b} n y\right)=\int_{0}^{b} d y \frac{1-\cos \left(\frac{2 \pi n}{2} y\right)}{2}=\frac{b}{2}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{b} d y g_{a}(y) \sin \left(\frac{\pi}{b} m y\right) \\
& =2 \sum_{n=1}^{\infty} A_{n} \sinh \left(\frac{\pi n a}{b}\right) \int_{0}^{b} d y \sin \left(\frac{\pi}{b} n y\right) \sin \left(\frac{\pi}{b} m y\right) \\
& =2 \sum_{n=1}^{\infty} A_{n} \sinh \left(\frac{\pi n a}{b}\right) \frac{b}{2} \delta_{n, m} \\
& =b A_{m} \sinh \left(\frac{\pi m a}{b}\right) \\
& \Rightarrow A_{m}=\frac{1}{b \sinh \left(\frac{\pi m a}{b}\right)} \int_{0}^{b} d y g_{a}(y) \sin \left(\frac{\pi m y}{b}\right)
\end{aligned}
$$

Solved!

Example: Spherical coordinates
Region:

$$
\left\{\begin{array}{l}
r_{1}<r<r_{2} \\
\forall \theta, \varphi
\end{array}\right\}
$$

$V(r, \theta, y)$ between the 2 spheres?

$$
\begin{aligned}
& V\left(r=r_{1}, \theta, \varphi\right)=0 \\
& V\left(r=r_{2}, \theta, \varphi\right)=g_{2}(\theta, \varphi) \text { specified }
\end{aligned}
$$

$$
\begin{align*}
& V=R(r) \Theta(\theta) \Phi(q) \\
& O=\nabla^{2} V=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} V}{\partial \varphi^{2}} \\
& \begin{array}{l}
\Rightarrow \partial_{r}\left(r^{2} \partial_{r} R\right) \Theta \Phi+\frac{\partial_{\theta}\left(\sin \theta \partial_{\theta} \Theta \theta\right)}{\sin \theta} R \Phi+\frac{R \Theta}{\sin ^{2} \theta} \partial_{\varphi}^{2} \Phi
\end{array} \\
& \Rightarrow \quad \frac{\partial_{r}\left(r^{2} \partial_{r} R\right)}{R}+\frac{\partial_{\theta}\left(\sin \theta \partial_{\theta} \Theta\right)}{\Theta \sin \theta}+\frac{\partial_{\varphi}^{2} \Phi}{\sin ^{2} \theta \Phi} \\
& \Rightarrow \frac{\partial_{r}\left(r^{2} \partial_{r} R\right)=\lambda R}{\Theta} \& \frac{\partial_{\theta}\left(\sin \theta \partial_{\theta} \theta\right)}{\Theta \sin \theta}+\frac{\partial_{\varphi}^{2} \Phi}{\sin ^{2} \theta \Phi}=-\lambda, \lambda \in \mathbb{R} \\
& {\underset{x}{\sin ^{2} \theta}:}^{\frac{\sin \theta \partial_{\theta}\left(\sin \theta \partial_{\theta} \Theta\right)}{\Theta}}+\lambda \sin ^{2} \theta+\frac{\partial_{\phi}^{2} \Phi}{\underbrace{\Phi}_{ \pm-m^{2}}}=0 \\
& \Rightarrow \partial_{\rho}^{2} \Phi=-m^{2} \Phi \quad, m^{2} \in \mathbb{R} \\
& \& \\
& \sin \theta \partial_{\theta}\left(\sin \theta \partial_{\theta} \Theta\right)+\lambda \sin ^{2} \theta \Theta=m^{2} \Theta \tag{6}
\end{align*}
$$

- Look at (9) epn first \Rightarrow

$$
\Rightarrow\left\{\begin{array}{lll}
\Phi_{m}=e^{i m \varphi} & m \in \mathbb{R} & \text { (ansuning } \left.m^{2}>0\right) \\
\Phi_{\mu}=e^{\mu \varphi} & \mu \in \mathbb{R} & \left(\prime \quad m^{2}=-\mu^{2}<0\right)
\end{array}\right.
$$

What are boundany condifions on $\Phi_{m, \mu}$?

Periodicity in $\varphi: \quad \varphi \sim \varphi+2 \pi \Rightarrow$

$$
\Phi_{m, \mu}(\varphi+2 \pi)=\Phi_{m, \mu}(\varphi)
$$

There is no solution (except $\mu=0$) for $\Phi_{\mu} . X$ For Φ_{m} get

$$
e^{2 \pi i m}=1 \Rightarrow m \in \mathbb{Z} .
$$

- Look at Θ eqn now.

$$
\sin \theta \partial_{\theta}\left(\sin \theta \partial_{\theta} \Theta\right)+\lambda \sin ^{2} \theta \Theta=m^{2} \Theta
$$

What are boundary conditions?
At $\theta=0, \pi$ want $\Theta(\theta)$ to be regular

$$
\Rightarrow \cdots \quad \lambda=\ell(l+1) \text { with } l \in \mathbb{Z} \geqslant|m|
$$

Solutions of Θ eqn ane then the associated Legendre polynomide" $P_{l}^{m}(\cos \theta, \sin \theta) \ldots$

- Fir this course we will stick to situations where only $m=0$ contributes.

This means on $l_{y} \bar{\Phi}_{0}(\varphi)=1$ is allowed, which means we are restricting to problems where there is no φ-dependence, i.e. there is rotation symmetry around the z-axis.

So, we have to modify our problem to have boundary condition:

$$
V\left(r=r_{2}, \theta, \varphi\right)=g_{2}(\theta)
$$

« no pidepuclan.

- When $m=0$, the solutions of the eqn regular at $\theta=0, \pi$ an the "Legendre polynomials"

$$
\begin{aligned}
T_{l}(\theta) & =P_{l}(\cos \theta) \quad l \in \mathbb{Z} \geqslant 0 \\
u \quad P_{l}(x) & \doteq \frac{1}{2^{l} \cdot l!}\left(\frac{d}{d x}\right)^{l}\left(x^{2}-1\right)^{l}
\end{aligned}
$$

(See table 3.1 in Griffith s for list of first few P_{e} 's.?

Properties of $P_{l}(x):$

$$
\begin{aligned}
& P_{l}(1)=1 \\
& P_{l}(-x)=(-)^{l} P_{l}(x) \\
& \int_{-1}^{1} d x P_{m}(x) P_{n}(x)=\delta_{m, n} \cdot \frac{2}{2 n+1} \\
& \int_{0}^{\pi} \sin \theta d \theta P_{m}(\cos \theta) P_{n}(\cos \theta) \\
& \sum_{l=0}^{\infty} \frac{2 l+1}{2} P_{l}(x) P_{l}\left(x^{\prime}\right)=\delta\left(x-x^{\prime}\right)
\end{aligned}
$$

- Now look at (\overparen{C} equ:

$$
\partial_{r}\left(r^{2} \partial_{r} R\right)=l(l+1) R
$$

Notice that is invariant vader rescaling $r \rightarrow \alpha r$, so glen solutions

$$
R \sim r^{a}
$$

Plug in $\Rightarrow \cdots a(a+1)=l(l+1)$

$$
\Rightarrow a=l \quad \text { or } \quad a=-l-1
$$

So general R_{l} solution is

$$
R_{l}(r)=A_{l} r^{l}+B_{l} r^{-l-1}
$$

- Putting this all together, we have

$$
V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+B_{l} r^{-l-1}\right) P_{l}(\cos \theta)
$$

T only good if (1) no φ-dependence, \& (2) whole $0 \leq \theta \leq \pi$ range!

- Apply $r=r_{1}$ \& $r=r_{2}$ boundary conditions:

$$
V\left(r_{1}, \theta\right)=0=\sum_{l=0}^{\infty}\left(A_{l} r_{1}^{l}+B_{l} r_{1}^{-l-1}\right) P_{l}(\cos \theta)
$$

Completeven of P_{l} 's \Rightarrow
(1) $A_{l} r_{1}^{l}+B_{l} r_{1}^{-l-1}=0 \quad \forall l \geqslant 0$

$$
V\left(r_{2}, \theta\right)=g_{2}(\theta)=\sum_{l=0}^{\infty}\left(A_{l} r_{2}^{l}+B_{l} r_{2}^{-l-1}\right) P_{l}(\cos)
$$

use orthogonality of $P_{l}{ }^{\prime} s$:

$$
\begin{align*}
& \int_{0}^{\pi} \sin \theta d \theta g_{2}(\theta) P_{n}(\cos \theta) \\
& =\sum_{l=0}^{\infty}\left(A_{l} r_{2}^{l}+B_{l} r_{2}^{-l-1}\right) \cdot \\
& \quad \cdot \int_{0}^{\pi} \sin \theta d \theta P_{l}(\cos \theta) P_{n}(\cos \theta) \\
& = \\
& =\sum_{l=0}^{\infty}\left(A_{l} r_{2}^{l}+B_{l} r_{2}^{-l-1}\right) \cdot \frac{2 \delta_{l, n}}{2 n+1} \tag{2}\\
& =\frac{2}{2 n+1}\left(A_{n} r_{2}^{n}+B_{n} r_{2}^{-n-1}\right)
\end{align*}
$$

(1) $\&(6) \Rightarrow$ determirie $A_{l} B_{l} \quad \forall l$.

