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3 I Laplace's equation

Potential satisfies Poisson's equation
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If you know girl a solution as
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with VIX o

We want to show that this is

the only solution with V6 o

Key is to consider first the equation
without charges

D2 V O Laplace's
equation

Then the above solution is simply V0



We want to show that this the only
solution with Vix o

We will prove first that Veil is the

average of its values over a cany sphere

of radius R centered on F
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In the limit R 30 by Taylor expansion
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Different from Griffith's argument his is

incorrect Can you spot his mistake



This means that VCE can have no

local maxima or minima e g
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Therefore the extreme values of Vert must
occur on the boundaries

Firstuniquencestheorea The solution to

Laplace's eqn in some volume he is

uniquely determined if U is specified
on the boundary surface 8 22
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So U V2 satisfies Laplace's equi so

can have no local maxima or minima

except on J But V Va 15 0 so
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we must have
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V O everywhere

Now consider putting in charges get so
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Fix girl and boundary values V g
Then V is unique

Proof Assume V U2 are 2 solutions
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2aduniquenesstheoren In a region R
surrounded by conductors with specified total

Les Qi on each conductor and withal
specified additional fixed charge density feel
the electron field is uniquely determined
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imply

i
cannot be held in stable equilibrium
by electrostatic forces alone

Proof see problem set



3.2 Method of images

The above uniqueness theorems tell us

that if we can just find one solution

then we are done They do not tell
us be to find a solution

If we are given a fixed charge
distribution get then the solution
with Vix o is given by
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But in a problem with conductors we only
know the total charge Qi on the

conductors and not the static surface

charge distributions T.cat on each

conductor The 2nd uniqueness then

tells us there is a unique answer

How to find it



In a few very special cases there is
a trick the method of images that

allows us to get the solution

2 cases where it works are for an

infinite conducting plane and for
a conducting sphere I will
discuss only the plane here and
will leave the sphere for the

problem set

So consider a conductor filling 2 o
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What is the induced charge tie on

the surface z 0 and Uci above the

surface

We know Ve constant on the conductor
and since the overall additive constant

in V is undetermined choose V1 o

Then also V 0 at infinity

So we want to solve for U in

the region R 2703 with
V O on DR and with a point
charge q at E del The uniquenen
than implies the solution is unique
so if we can find any U satisfying
these boundary conditions then we're

done

Ike put an image charge q at
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42 image charge

The image charge is not real we

have removed the conductor and

put this fictitious charge in its place
Since these fictitious changes are not

in R we have not mined up the

problem there

From the reflection symmetry z z

it should be clear that the potential
of the image charge q will be equal
and opposite to that of q on 2 0
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So we have found our solution

Induced surface charge
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Force on q

E g Ecd 7 9 4 É Effi
Energy stored
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But by symmetry q q gives
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