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Ch 2 Electrostatics 552.1 É field

Force on charge Q at point F due

to other statid electric charges is
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Continuous charge distributions
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O din'd point charge q c

1 din'd line charge 7 Clm
2 din'd surface charge r c m2
3 dim'd volume charge f Clm

Sum over point charge homes an integral
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Summary
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So far we've only shown Coulomb

electrostatic equs not vice versa

SymmetryaGaussstaw
If problem has enough symmetry can use

integral form of Gauss's law to quickly
derive Ect

Example Spherical symmetry

girl fCr i.e only depends on

distance from origin



Choose Gaussian surface S sphereof
radius r centered on origin
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rotate coord system around origin
so indy't of 0 p 0

This is actually a subtle point just
belause an equation has a symmetry

I it does not necessarily follow that
the solution has that symmetry
Famous simple example what is
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Example Cylindrical symmetry
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lie depends on's on distance

from Z axis and is

at translationally invariant in

the z direction
4

to be cylinder of
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Cylindrical symm implies
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i e independent of



g El p z translations in the x

or y directions

T
Choose Gaussian surface to be a

cylinder of arbitrary x sectional shape A

and height z along z axis

Planar symmetry implies

go fi EIsa
S

faddy E Elzie they

Stdz fall n E z É side cylinder
region



fadxdy f El f o I bottom A
region

a I to side cylinder so point in

x y plane a aft by
i I I 0

Also Idxdy area of region A A

Then fire

Soda Ece A EG A Elo
Sz A

Que Sdegee fdxdyftdzgaz't
Vera

A f dz's call

Gauss A Elz Elo A Stdz giz

ftp.ffdign c.li



From 92.3 Discontinuity of É at a surface charge
This is a useful result that follows most

easily from the integrated forms of the
F E 5xÉ laws

Consider a surface S with a surface charge

density ref 1

at a point Te S
the difference between
the electric field just above S Icel
and just below S É cel is
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Even though there is no symmetry in

this problem we can still use

Gauss's law in integrated form by choosing



the Gaussian surface to be an arbitrarily
pill box centered on a point I es
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Choose C to be small rectangular loop

along a tangential direction E to S
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