LECTURE 4

Ch2 Electrostatics : §2.1 E-field

• Force on charge Q at point \vec{r} due to other (static) electric charges is Vnits [Q] = C (Couloub) $\vec{F} = Q \vec{E}(\vec{r})$ $\vec{E} = \frac{N}{c} (Newton)$ $\vec{r} = \frac{1}{c}$ $L = \frac{1}{c}$ $L = \frac{N}{c} (Newton)$ $N = kg \cdot m \cdot s^2$

· Coulomb's law: électric field duc to a point charge 2, at r', in $\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{Z_1}{Z_1^2} \hat{\mathcal{H}}_1 \qquad \vec{\mathcal{H}}_1 = \vec{r} - \vec{r}_1^2$ • Units $[E_0] = \frac{C^2}{Nm^2}$ "permittivity of free space"€0 28.85 × 10⁻¹² C² Nm² (effectively defin "C"!) · Éficie due to many charges is som of Éfiells due to each:

number of charges

 $\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^n \frac{2^i}{n_i} \vec{h}_i \quad \vec{h}_i = \vec{r} - \vec{r}_i'.$

Continuous	charge distributions: densities			
				٤
O-dim'l:	point	charge	2	C
1- diwl:	line	charge	ス	C/m
2 - dim'd :	Surface	charge	G	C/m ²
3 - dine'l :	volume	charge	S	C/m ³

Svim over point charges becomes an integral: $\tilde{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int d\ell' \lambda(\vec{r}') \frac{\hat{r}}{r^2}$ $\frac{d\ell'}{r'} = |d\vec{\ell}|$

 $\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \left(\frac{da'}{\sigma(\vec{r}')} \frac{\dot{\mu}}{\pi^2} \right)$

da' = /da'/

 $\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int d\vec{r}' p(\vec{r}') \frac{\vec{r}}{n^2} \sqrt{\epsilon_2 optional}$

DERDE 2.2 $\overline{\nabla \cdot \vec{E}(\vec{r})} = \overline{\nabla} \cdot \left(\frac{1}{4\pi\epsilon_0} \int dz' \rho(\vec{r}') \frac{\vec{r}}{r^2} \right)$ $=\frac{1}{4\pi 60}\left(dz'\rho(\vec{r}')\,\overline{\nabla}\cdot\left(\frac{\hat{r}}{M^2}\right)\right)$ $=\frac{1}{4\pi r G_{a}} \left(dz' \rho(\vec{r}') 4\pi S^{3}(\vec{r}) \right)$

 $\overline{\nabla} \cdot \widetilde{E}(\vec{r}) = \frac{1}{C_0} \rho(\vec{r})$ (differential form)

 $\int dz \quad \nabla \cdot \vec{E}(\vec{r}) = \frac{1}{60} \int dz \quad p(\vec{r}) = \frac{1}{60} Q_{enc}$ $\| \leftarrow divergene \quad 1$ $\| \leftarrow divergene \quad 1$ $\int d\vec{a} \cdot \vec{E}(\vec{r}) \quad '' \vec{E} \cdot Flux \quad eucloud \quad uet) \quad c$ $\int d\vec{a} \cdot \vec{E}(\vec{r}) \quad '' \vec{E} \cdot Flux \quad eucloud \quad sus$ $\int s = \partial V \quad through \quad S''$ fotal (net) charge enclosed suside S $\oint Q \vec{a} \cdot \vec{E}(\vec{n}) = \frac{1}{\epsilon_0} Q enc \quad (integral form)$ $\cdot \quad \overrightarrow{\nabla \times \vec{E}} = \overrightarrow{\nabla} \times \left(\frac{1}{4\pi\epsilon_0} \int d\tau' \rho(\vec{r}') \frac{\vec{r}_1}{r_1^2} \right)$ $=\frac{1}{4\pi\epsilon_0}\int dz'\rho(\vec{r}') \,\,\overline{\nabla}\times\left(\frac{\hat{n}}{nz}\right) = 0\,.$ $\vec{\nabla} \times \vec{E}(\vec{v}) = 0$ $\Rightarrow \left(\oint_{C} d\vec{l} \cdot \vec{E}(\vec{r}) = 0 \right)$ Any closed C \Rightarrow $\exists V(\vec{r}) \ s.t. \vec{E}(\vec{r}) = - \vec{\nabla} V(\vec{r})$ V = "electric potential"...

- Summary: $\overline{E}(\overline{r}) = \frac{1}{4\pi\epsilon_0} \int dz' \frac{p(\overline{r'}) \overline{r}}{r z}$ is equivalent to (Coulomb) $\overline{\nabla} \cdot \vec{E}(\vec{r}) = \frac{1}{e_0} \rho(\vec{r})$

(clectro-statics equations) $\vec{\nabla} \times \vec{E}(\vec{r}) = 0$ * So far, we've only shown Coulomb => electrostatic equis & not vice versa...

· Symmetry & Gauss's law If problem has enough symmetry, can use integral form of Gauss's laws to quickly derive É(F).

· Éxample: Spherical symmetry p(r) = p(r), i.e. only depuids on distance from origin

- Choose "Gaussian surface" Sr = splue of radivs r centered on origin.

- Spherical gymmetry implies Spherical $\vec{E}(\vec{r}) = E(r)\hat{r}$ symin they

Why? Answer can't depend on how rotate coord. system around origin, so indy't of B, & E, p.

* This is actually a subtle point: just because an equation has a symmetry, it does not necessarily follow that the solution has that symmetry! Famous simple example: what is

the shortest possible network of roads connecting 4 towns at the corner of a square? i not the lanswer. Challenge: find the auswer. Hint: there are 2 auswers. $= 4\pi r^2 E(r)$ $Q_{enc} = \int dz' \rho(\vec{r}') = \int (r')^2 dr' \int \sin \theta d\theta \int_{\partial \theta}^{\partial \theta} \rho(r')$ $= 4\pi \int dr' (r')^2 \rho(r')$

 $\therefore \text{ Gavss's law} \Rightarrow 4\pi r^2 E(r) = \frac{4\pi}{\varepsilon_0} \int_0^r dr'(r')^2 \rho(r')$ $= \frac{\hat{r}}{E(r')} = \frac{\hat{r}}{\varepsilon_0 r^2} \int_0^r dr'(r')^2 \rho(r') \int_0^r spherical symm.$

· Example: Calindrical symmetry i.e. degrends only on distance p(5) from 2-axis, and is translappudly invariant in the z-direction. (ی)ع Choose Gaussian surface 2 W 5,2 to be cylindle of height Z & radius v centered or z-axis. " S_{s,z}

- Cylindrical gymm. implies: $\vec{E}(\vec{r}) = E(s)\hat{s}$ cyl. symm.

 $- \oint d\vec{a} \cdot \vec{E}(\vec{a}') =$ $S_{s_1 z} = \int_{s' ds'}^{s} \int_{0}^{2\pi} d\phi \hat{z} \cdot E(s') \hat{s}'$ top disk

· Example: Planar gymmetry i.e. independent of

 $g(\vec{r}) = p(z)$

translations in the xor you directions.

- Choose Gaussian surface to be a cylinder of arbitrary x-sectional shape "A" and height Z along Z-axis.

- Planar symmetry implies planar symmetry $\vec{E}(\vec{r}) = E(\vec{z})\hat{z}$

 $\oint d\vec{a}' \cdot \vec{E}(\vec{r}') =$ Sz,A $= \int dx dy \hat{z} \cdot E(z) \hat{z}$ < top A vegion $+ \int_{0}^{z} dz' \int dl' \hat{n}' \cdot E(z') \hat{z}$ E side cylinder vegion

< bottom A region + $\int_{A} dx dy (-\hat{z}) \cdot E(0) \hat{z}$

n' 1 to side cylinder so point in K-y plane: û'= a x + bj

Then for,

 $\oint d\vec{a}' \cdot \vec{E}(\vec{r}') = A E(\vec{z}) - A E(\vec{o})$ SZIA

- $Q_{enc} = \int dz' p(\bar{r}') = \iint dxdy \int dz' p(\bar{z}')$ $= A \int_0^z dz' \rho(z')$.

 $A(E(z) - E(o)) = \frac{1}{\epsilon_0} A \int_0^z dz' p(z')$

 $\therefore \vec{E}(\vec{r}) = \frac{\hat{z}}{\epsilon_0} \left(\int_0^z dz' \rho(z') \right) + \vec{E}(0) \frac{\rho(anor)}{symm}$

LECTURE 4 (Continder)

(From §2.3:) Discontinuity of Ē at a surface charge • This is a useful result that follows most easily from the integrated forms of the P.Ē & ⊽xĒ laws.

Consider a surface S with a surface charge density (F): We will show that at a point res, the difference 1 1. the difference between the electric field just above 5, E,(?) and just below S, E_(r), is $\vec{E}_{+}(\vec{r}) - \vec{E}_{-}(\vec{r}) = \frac{1}{\epsilon_{o}} \sigma(\vec{r}) \hat{n} \quad \textcircled{\begin{subarray}{c} \hline \end{subarray}}$

where n is the unit normal vector to S pointing to the "above" ("+") side.

 Even though there is no symmetry in this problem, we can still use Gauss's law in integrated form by choosing

the Gaussian surface to be an arbitrarily pill-box centered on a point rES:

• Gauss's law: $\oint_{S'} d\vec{a}' \cdot \vec{E}(\vec{r}') = \frac{1}{\epsilon_0} Q_{enc}$

 $\int \oint_{S'} d\vec{a} \cdot \vec{E}(\vec{r}') = A \hat{n} \cdot \vec{E}_{+}(\vec{r}) - A \hat{n} \cdot \vec{E}_{-}(\vec{r}) + O(\epsilon)$ $\int_{C'} \frac{1}{\epsilon_{o}} Q_{enc} = \frac{1}{\epsilon_{o}} A \sigma(\vec{r}) + O(\epsilon)$

Take $\varepsilon \rightarrow 0$ limit \Rightarrow $\hat{h} \cdot (\vec{E}_{+}(\vec{r}) - \vec{E}_{-}(\vec{r})) = \frac{1}{\varepsilon_{0}} \sigma(\vec{r})$ (1)

· Integrated form of curd eqn: $\int_{C} d\vec{l} \cdot \vec{E}(\vec{r}') = 0$ Choose C to be small rectangular loop along a tangential direction \hat{t} to S:

Then $\oint d\vec{I} \cdot \vec{E}(\vec{r}') = L\hat{t} \cdot \vec{E}_{+}(\vec{r}) - L\hat{t} \cdot \vec{E}_{-}(\vec{r}) + O(\epsilon),$

so, taking $\lim E \to 0$, get $\hat{t} \cdot (\vec{E}_{+}(\vec{r}) - \vec{E}_{-}(\vec{r})) = 0$ (2)

for any it tangent to S.