LECTURE \&
Ch Electrostatics: $\mathcal{F} 21 \vec{E}$-field

- Force on charge Q at point \vec{r} due to other (static) electric charges is

$$
\begin{aligned}
& \text { units }[Q]=C \text { (Coolaub) } \\
& {[\vec{E}]=\frac{N}{C}\left(\begin{array}{c}
\text { (Newton) } \\
\downarrow
\end{array}\right.} \\
& N \equiv k g \cdot m \cdot s^{-2}
\end{aligned}
$$

- Coulomb's law: electric field due to a point charge q, at \vec{r}_{1}^{\prime} is

$$
\vec{E}(\vec{r})=\frac{1}{4 \pi t_{0}} \frac{q_{1}}{r_{1}^{2}} \hat{r}_{1} \quad \vec{r}_{1} \doteq \vec{r}-\vec{r}_{1}^{\prime}
$$

- Units $\left[\epsilon_{0}\right]=\frac{C^{2}}{N_{m^{2}}}$ "permittivity of flee space" $\epsilon_{0} \cong 8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}} \quad$ (effectively def 'n "C"!)
- \vec{E} field due to wang charges is som of \vec{E} fields due to each:
number of chores

$$
\vec{E}(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{n} \frac{q_{i}}{\mu_{i}} \hat{\mu}_{i} \quad \vec{\mu}_{i} \dot{=} \vec{r}-\vec{r}_{i}^{\prime} .
$$

- Continuous charge distributions:

		densitizs	
O-dim'l:	point charge	q	c
1-dian'l:	line charge	λ	$\mathrm{c} / \mathrm{m}^{2}$
2-dim'l:	Surface cleave	σ	$\mathrm{c} / \mathrm{m}^{2}$
3-dim'l:	volume charge	ρ	$\mathrm{c} / \mathrm{m}^{3}$

Sum over point charges beomes an integral:

$$
\begin{gathered}
\vec{E}(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \int_{C} d l^{\prime} \lambda\left(\vec{r}^{\prime}\right) \frac{\hat{r}}{r^{2}} \\
d l^{\prime} \dot{ }=\left|d \vec{l}^{\prime}\right|
\end{gathered}
$$

$$
\begin{aligned}
& E(\vec{r})= \frac{1}{4 \pi \epsilon_{0}} \int_{S} d a^{\prime} \sigma\left(\vec{r}^{\prime}\right) \frac{\hat{r}}{\mu^{2}} \\
& d a^{\prime} \doteq\left|d \vec{a}^{\prime}\right|
\end{aligned}
$$

$$
\vec{E}(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \int_{V_{r} \text { optional }} d r^{\prime} \rho\left(\vec{r}^{\prime}\right) \frac{\hat{r}}{r^{2}}
$$

$2.2 \quad \vec{\nabla} \cdot \vec{E}=\vec{\nabla} \times \tilde{E}$

$$
\begin{aligned}
\overrightarrow{\nabla \cdot \vec{E}(\vec{r})} & =\vec{\nabla} \cdot\left(\frac{1}{4 \pi \epsilon_{0}} \int d \tau^{\prime} \rho\left(\vec{r}^{\prime}\right) \frac{\hat{r}}{r^{2}}\right) \\
& =\frac{1}{4 \pi \epsilon_{0}} \int d r^{\prime} \rho\left(\vec{r}^{\prime}\right) \vec{\nabla} \cdot\left(\frac{\hat{r}}{r^{2}}\right) \\
& =\frac{1}{4 \pi \epsilon_{0}} \int d \tau^{\prime} \rho\left(\vec{r}^{\prime}\right) 4 \pi \delta^{3}(\vec{r})
\end{aligned}
$$

$$
\vec{\nabla} \cdot \vec{E}(\vec{r})=\frac{1}{\epsilon_{0}} \rho(\vec{r})
$$

Gauss's law
(differential form)

$$
\begin{aligned}
& \int_{V} d r \vec{\nabla} \cdot \vec{E}(\vec{r})=\frac{1}{\epsilon_{0}} \int_{V} d \tau \rho(\vec{r})=\frac{1}{\epsilon_{0}} Q_{p} \\
& \oint_{S=\partial V} d \vec{a} \cdot \vec{E}(\vec{r}) \quad \begin{array}{c}
\text { " } \vec{E} \text {-flux } \\
\text { through } S^{\prime \prime}
\end{array} \\
& \oint_{S} d \vec{a} \cdot \vec{E}(\vec{r})=\frac{1}{\epsilon_{0}} Q_{\text {enc }} \\
& \text { Gauss's law } \\
& \text { (integral form) } \\
& \text { - } \underline{\vec{\nabla}} \times \vec{E}=\vec{\nabla} \times\left(\frac{1}{4 \pi \epsilon_{0}} \int d \tau^{\prime} \rho\left(\vec{r}^{\prime}\right) \frac{\hat{r}}{r^{2}}\right) \\
& =\frac{1}{4 \pi \epsilon_{0}} \int d \tau^{\prime} \rho\left(\vec{r}^{\prime}\right) \vec{\nabla} \times\left(\frac{\hat{r}}{r^{2}}\right)=0 \text {. } \\
& \vec{\nabla} \times \vec{E}(\vec{r})=0 \\
& \Rightarrow \oint_{C} d \vec{l} \cdot \vec{E}(\vec{r})=0 \quad \text { any closed } C \\
& \Rightarrow \exists V(\vec{r}) \text { set. } \vec{E}(\vec{r})=-\vec{\nabla} V(\vec{r}) \\
& V \doteq \text { "electric potential"... }
\end{aligned}
$$

-Summary:

$$
\vec{E}(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \int d r^{\prime} \frac{\rho\left(\vec{r}^{\prime}\right) \hat{r}}{r^{2}} \quad(\text { Coulomb }
$$

is equivalent* to

$$
\begin{array}{ll}
\vec{\nabla} \cdot \vec{E}(\vec{r})=\frac{1}{\epsilon_{0}} \rho(\vec{r}) & \left(\begin{array}{l}
\text { electro- } \\
\text { statics } \\
\text { equations }
\end{array}\right) \\
\vec{\nabla} \times \vec{E}(\vec{r})=0 &
\end{array}
$$

So far, we've only shown Coulomb \Rightarrow electrostatic equs \& not vice versa...

- Symmetry a Gauss's law If problem hae enough symmetry, can use integral form of Gauss's law to quickly derive $\vec{E}(\vec{r})$.
- Example: Spherical symmetry $\rho(\vec{r})=\rho(r)$, i.e. only depends on distance form origin

- Choose "Gaussian surface" $S_{r}=$ splore of radius r centered on origin.
- Spherical symmetry inplics

$$
\stackrel{\rightharpoonup}{E}(\vec{r})=E(r) \hat{r} \quad \begin{aligned}
& \text { spherical } \\
& \text { syminity }
\end{aligned}
$$

Why? Answer cant dy end on how rotate coord system around origin, so indy't of θ, φ \& $\widehat{\theta}, \hat{\varphi}$.

* This is actually a subtle point: just because an equation has a symmetry, it does not necessarily follow that the solution has that symmety! Famous simple example: what is
the shortest possible network of roads connecting 4 towns at the corves of a square?
-

not the answer?

Challenge: find the answer.
Hint: there are 2 answers.

$$
\begin{aligned}
& -\oint_{S_{r}} d \vec{a} \cdot \tilde{E}(\vec{r})=\int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \varphi r^{2} \hat{r} \cdot E(r) \hat{r} \\
& =4 \pi r^{2} E(r) \\
& \text { - enc }=\int_{V_{r}} d r^{\prime} \rho\left(\vec{r}^{\prime}\right)=\int_{r^{\prime}<r}\left(r^{\prime}\right)^{2} d r^{\prime} \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d_{0} \varphi\left(r^{\prime}\right) \\
& =4 \pi \int_{0}^{r} d r^{\prime}\left(r^{\prime}\right)^{2} \rho\left(r^{\prime}\right) \\
& \therefore \text { avs's law } \Rightarrow 4 \pi r^{2} E(r)=\frac{4 \pi}{\epsilon_{0}} \int_{0}^{r} d r^{\prime}\left(r^{\prime}\right)^{2} \rho\left(r^{\prime}\right) \\
& \therefore \vec{E}(\vec{r})=\frac{\hat{r}}{\epsilon_{0} r^{2}} \int_{0}^{r} d r^{\prime}\left(r^{\prime}\right)^{2} \rho\left(r^{\prime}\right) \text {. spherical } \text { spume. }
\end{aligned}
$$

- Example: Cglindrical symmethy
i.e, despends only on distunce

$$
\rho(\vec{r})=\rho(s)
$$

from z-axis, and is translahoudly invariant in the z-divection.

- Choose Gavssian surface to be cylincles of height z \& radiss r ceutered on z-axis. ${ }^{\prime} S_{S, z}$
- Cylindrical symm. implies:

$$
\begin{aligned}
& \vec{E}(\vec{r})=E(s) \hat{s} \quad \begin{array}{l}
\text { cyl. } \\
\text { symm. }
\end{array} \\
& -\oint d \vec{a}: \vec{E}\left(\vec{r}^{\prime}\right)= \\
& =\int_{0}^{s} s^{\prime} d s^{\prime} \int_{0}^{2 \pi} d \phi \hat{z} \cdot E\left(s^{\prime}\right) \hat{s}^{\prime} \quad \text { top }
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{0}^{z} d z^{\prime} \int_{0}^{2 \pi} d \phi \cdot s \hat{s} \cdot E(s) \hat{s} \quad \text { cf } \quad \text { side } \\
& +\int_{0}^{s} s^{\prime} d s^{\prime} \int_{0}^{2 \pi} d \phi(-\hat{z}) \cdot E\left(s^{\prime}\right) \hat{s}^{\prime} \begin{array}{l}
\text { bot } H_{\text {on }} \\
d i s k
\end{array} \\
& \begin{array}{l}
=0 \\
+2 \pi z S E(s) \\
+0
\end{array} \\
& -Q_{\text {enc }}=\int_{V_{s, z}} d \tau^{\prime} \rho\left(\vec{r}^{\prime}\right)=\int_{0}^{z} d z^{\prime} \int_{0}^{s} s^{\prime} d s^{\prime} \int_{0}^{2 \pi} d \phi \rho\left(s^{\prime}\right) \\
& =2 \pi z \int_{0}^{s} d s^{\prime} s^{\prime} \rho\left(s^{\prime}\right) \\
& \therefore G^{\prime} s \text { law: } \quad 2 \pi z s E(s)=\frac{1}{\epsilon_{0}} 2 \pi z \int_{0}^{s} d s^{\prime} s^{\prime} \rho\left(s^{\prime}\right) \\
& \therefore \vec{E}(\vec{r})=\frac{\hat{s}}{\epsilon_{0} s} \int_{0}^{s} d s^{\prime} s^{\prime} \rho\left(s^{\prime}\right) \\
& \text { sem. }
\end{aligned}
$$

- Example: Planar symmetry ie. indegenduat of
$\rho(\vec{r})=\rho(z) \quad$ translations in the $x-$ or y^{-}directions.

- Choose Gaussian surface to be a cylinder of arbitrary x-sectional shape " A " and height z along z-axis.
- Planar symunety implies

$$
\stackrel{\rightharpoonup}{E}(\vec{r})=E(z) \hat{z} \quad \begin{gathered}
\text { planar } \\
\text { sylumetus }
\end{gathered}
$$

$$
\begin{aligned}
&-\oint_{S_{z_{1} A}} d \vec{a}^{\prime} \cdot \stackrel{\rightharpoonup}{E}\left(\vec{r}^{\prime}\right)= \\
&=\int_{A} d x d y \hat{z} \cdot E(z) \hat{z} \leftarrow \underset{\text { region }}{ } \leftarrow \underset{\text { top }}{ } \quad \leftarrow \\
&+\int_{0}^{z} d z^{\prime} \int d l^{\prime} \hat{n}^{\prime} \cdot E\left(z^{\prime}\right) \hat{z} \leftarrow \text { side cylindu } \\
& \text { region }
\end{aligned}
$$

$$
+\int_{A} d x d y(-\hat{z}) \cdot E(0) \hat{z} \leftarrow \begin{gathered}
\text { bottom } A \\
r=8 i o n
\end{gathered}
$$

$\hat{n}^{\prime} \perp$ to side cylinder so point in $x-y$ plane: $\quad \hat{u}^{\prime}=a \hat{x}^{+} b \hat{y}$

$$
\therefore \quad \hat{h}^{\prime} \cdot \hat{z}=0
$$

$A\left(\right.$ so, $\quad \iint_{A} d x d y=$ area of region $A \doteq " A "$
Then fore,

$$
\begin{aligned}
& \oint d \vec{a}^{\prime} \cdot \vec{E}\left(\vec{r}^{\prime}\right)=A E(z)-A E(0) . \\
& S_{z_{1} A} \\
& \sim Q_{\text {enc }}=\int_{V_{z A} A} d r^{\prime} \rho\left(\vec{r}^{\prime}\right)=\iint_{A} d x d y \int_{0}^{z} d z^{\prime} \rho\left(z^{\prime}\right) \\
&= A \int_{0}^{z} d z^{\prime} \rho\left(z^{\prime}\right) . \\
& \therefore \text { Gauss } \Rightarrow A(E(z)-E(0))=\frac{1}{\epsilon_{0}} A \int_{0}^{z} d z^{\prime} \rho\left(z^{\prime}\right) \\
& \therefore \vec{E}(\vec{r})=\frac{\hat{z}}{\epsilon_{0}}\left(\int_{0}^{z} d z^{\prime} \rho\left(z^{\prime}\right)\right)+\vec{E}(0) \text { planar sum. }
\end{aligned}
$$

LECTURE 4 (contindel)
(From s2.3:) Discontinuity of \vec{E} at a swface charge

- This is a useful result that follows most easily from the integrated forms of the $\vec{\nabla} \cdot \vec{E}$ \& $\vec{\nabla} \times \vec{E}$ laws.

Consider a surface S with a surface charge density $\sigma(\vec{r})$:

We will show that at a point $\vec{r} \in S$,
the difference between
the electric field just above $S, \vec{E}_{+}(\vec{r})$ and just below $S, \vec{E}_{-}(\vec{r})$, is

$$
\stackrel{\rightharpoonup}{E}_{f}(\vec{r})-\stackrel{\rightharpoonup}{E}_{-}(\stackrel{\rightharpoonup}{r})=\frac{1}{\epsilon_{0}} \sigma(\vec{r}) \hat{n}
$$

where \hat{n} is the unit normal vector to S pointing to the "above" (" + ") side.

- Even though there is no symmetry in this problem, we can still use Gauss's law in integrated form by choosing
the Gaussian surface to be an arbitrarily pillbox centered on a point $\vec{r} \in S$:

- Gauss', law: $\oint_{S^{\prime}} d \vec{a}^{\prime} \cdot \vec{E}\left(\vec{r}^{\prime}\right)=\frac{1}{\epsilon_{0}}$ Qenc

$$
\left\{\begin{aligned}
\oint_{S^{\prime}} d \vec{a}^{\prime} \cdot \vec{E}_{\left(\vec{r}^{\prime}\right)} & =A \hat{n} \cdot \vec{E}_{+}(\vec{r})-A \hat{n} \cdot \vec{E}_{-}(\vec{r})+O(\varepsilon) \\
\frac{1}{\epsilon_{0}} Q_{\text {enc }} & =\frac{1}{\epsilon_{0}} A \sigma(\vec{r})+O(\varepsilon)
\end{aligned}\right.
$$

Take $\varepsilon \rightarrow 0$ limit \Rightarrow

$$
\begin{equation*}
\hat{n} \cdot\left(\vec{E}_{+}(\vec{r})-\stackrel{\rightharpoonup}{E}_{-}(\vec{r})\right)=\frac{1}{\epsilon_{0}} \sigma(\vec{r}) \tag{1}
\end{equation*}
$$

- Integrated form of curd eqn: $\oint_{C} d \vec{l}^{\prime} \cdot \vec{E}\left(\vec{r}^{\prime}\right)=0$ Choose C to be small rectangular loop along a tangential direction \hat{t} to S :

Then $\oint_{C} d \vec{l}^{\prime} \cdot \vec{E}\left(\vec{r}^{\prime}\right)=L \hat{t} \cdot \vec{E}_{+}(\vec{r})-L \hat{t} \cdot \vec{E}(\vec{r})+O(\varepsilon)$,
so, taking $\lim \varepsilon \rightarrow 0$, get

$$
\begin{equation*}
\hat{t} \cdot\left(\overrightarrow{E_{+}}(\vec{r})-\overrightarrow{E_{-}}(\vec{r})\right)=0 \tag{2}
\end{equation*}
$$

for any \hat{t} tangent to S.
(1) $\&(2) \Rightarrow$ since $\hat{n} \cdot *)=(1)$, and $\hat{t} \cdot(*)=$ (2) (using $\hat{t} \cdot \hat{u}=0)$, and since $\left\{\hat{n}, \hat{t}, \hat{t}^{\prime}\right\}$ form a basis at \vec{r} for any 2 Lineal independent tangent vectors $\hat{t}, \hat{t}^{\prime}$.

