LECTURE
1.5 Dirac delta function

$$
\text { - } 1-d
$$

"infinity thin bump" at $x=a$ of area 1

$$
\begin{aligned}
& \Rightarrow \quad \int_{a}^{b} d x \delta(x-y)= \begin{cases}1 & \text { if } a<y<b \\
0 & \text { otherwise }\end{cases} \\
& \Rightarrow \quad f(x) \delta(x-y)=f(y) \delta(x-y)
\end{aligned}
$$

for envy continuous $f(x)$

$$
\Rightarrow \quad \int_{-\infty}^{\infty} d x f(x) \delta(x-y)=f(y) \text { for def } f
$$

- Key (defining) property of " $\delta(x-y)$ "
- S-functions alway appear in integrals in physical expressions.
- Turn (*) around to define "generalized functions" or "distribution":
2 distributions $D_{1}(x) \in D_{2}(x)$ are equal iff

$$
\int_{-\infty}^{\infty} d x f(x) D_{1}(x)=\int_{-\infty}^{\infty} d x f(x) D_{2}(x)
$$

fir all $f(x)$.

- Example: $\delta(a x-b)=\frac{1}{|a|} \delta\left(x-\frac{b}{a}\right)(a \neq 0)$ Proof:

$$
\begin{aligned}
& I_{1}=\int_{-\infty}^{\infty} d x f(x) \delta(a x-b) \\
& I_{2}=\int_{-\infty}^{\infty} d x f(x) \frac{1}{|a|} \delta\left(x-\frac{b}{a}\right)
\end{aligned}
$$

Change variables $\bar{x}=a x-b$ in I_{1} :

$$
\begin{array}{r}
\Rightarrow d \bar{x}=a d x \\
I_{1}=\int_{-a \cdot \infty}^{+a \cdot \infty} \frac{1}{a} d \bar{x} f\left(\frac{\bar{x}+3}{a}\right) \delta(\bar{x})
\end{array}
$$

$$
\begin{align*}
& = \begin{cases}\int_{-\infty}^{\infty} \frac{1}{a} d \bar{x} f\left(\frac{x+b}{a}\right) \delta(\bar{x}) & \text { if } a>0 \\
\int_{\infty}^{-\infty} \frac{1}{a} d \bar{x} f\left(\frac{\bar{x}+b}{a}\right) \delta(\bar{x}) & \text { if } a<0\end{cases} \\
& =\underbrace{\left(\int_{-\infty}^{\infty} d \bar{x} f\left(\frac{\bar{x}+b}{a}\right) \delta(\bar{x})\right)}_{f\left(\frac{b}{a}\right)} \cdot \underbrace{\left\{\begin{array}{cl}
\frac{1}{a} & \text { if } a>0 \\
-\frac{1}{a} & \text { if } a<0
\end{array}\right.}_{\frac{1}{|a|},} \\
& I_{2}=\frac{1}{|a|} \int_{-\infty}^{\infty} d x f(x) \delta\left(x-\frac{b}{a}\right) \\
& =\frac{1}{|a|} \cdot f\left(\frac{b}{a}\right)
\end{align*}
$$

- 3-d In Cantesian coords:

$$
\begin{aligned}
& \delta^{3}\left(\vec{r}-\vec{r}^{\prime}\right) \doteq \delta\left(x-x^{\prime}\right) \delta\left(y-g^{\prime}\right) \delta\left(z-z^{\prime}\right) \\
\Rightarrow & \int_{\substack{\text { are } \\
\text { space }}} d r \delta^{3}\left(\vec{r}-\vec{r}^{\prime}\right) f(\vec{r})=f\left(\vec{r}^{\prime}\right) \quad \forall f \Theta_{3 d}
\end{aligned}
$$

just because $\int_{\text {aude }} d r=\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d y \int_{-\infty}^{\infty} d z$.
Example: $\quad \vec{\nabla} \cdot\left(\frac{\hat{r}}{r^{2}}\right)=4 \pi \delta^{3}(\vec{r})$
(Recall: $\vec{\mu} \doteq \vec{r}-\vec{r}^{\prime}$; and $\vec{\nabla} \doteq \stackrel{\rightharpoonup}{\nabla}_{\vec{r}}=\vec{\nabla}_{\vec{r}}$.)
Proof: Want to show for all $f(\vec{r})$ $I_{1}=I_{2}$ where

$$
\begin{aligned}
& I_{1} \dot{=} \int d r f(\vec{r}) \vec{\nabla} \cdot\left(\frac{\widetilde{r}}{\mu^{2}}\right) \\
& I_{2} \doteq \int d r f(\vec{r}) 4 \pi \delta^{3}(\vec{r})
\end{aligned}
$$

First, $I_{2}=4 \pi \int d r f(\vec{r}) \delta^{3}\left(\vec{r}-\vec{r}^{\prime}\right)=4 \pi f\left(\vec{r}^{\prime}\right)$
by $\overbrace{3 d}$,
Next $\vec{\nabla} \cdot\left(\frac{\hat{r}}{\mu^{2}}\right)=\vec{\nabla}_{\vec{\mu}} \cdot\left(\frac{\hat{\mu}}{\mu^{2}}\right)$

$$
=\frac{1}{\mu^{2}} \frac{\partial}{\partial r}\left(\mu^{2} \frac{1}{\mu^{2}}\right)=0, \quad \mu>0
$$

when e we have gone to spherical coordinates centred $a \vec{r}^{\prime}$, so that
M is the radial variable.
Therefore, for any continuous $f(\vec{r})$, since the integrand of I_{1} is O except at $\vec{r}=\vec{r}^{\prime}$, we have

$$
\begin{aligned}
I_{1} & =\int d r f(\vec{r}) \tilde{\nabla} \cdot\left(\frac{\hat{r}}{\mu^{2}}\right)=\int d r f\left(\vec{r}^{\prime}\right) \vec{\nabla} \cdot\left(\frac{\hat{r}}{\mu^{2}}\right) \\
& =f\left(\vec{r}^{\prime}\right) \underbrace{\int}_{\Omega} d r \vec{\nabla} \cdot\left(\frac{\hat{\mu}}{\mu^{2}}\right) \\
& =f\left(\vec{r}^{\prime}\right) \underbrace{\int}_{r<R} d r \vec{\nabla} \cdot\left(\frac{\hat{r}}{r^{2}}\right)
\end{aligned}
$$ contend on \vec{v}^{\prime}

Now use divergence theorem to evaluate

$$
\begin{aligned}
\int_{\mu<R} d r \vec{\nabla} \cdot\left(\frac{\hat{r}}{r^{2}}\right) & =\underset{r=R}{\oint} d \vec{a} \cdot\binom{\hat{r}}{r^{2}} \\
& =\int_{0}^{\pi} \operatorname{spher} \text { of radius } R \\
& =4 \pi
\end{aligned}
$$

where I used spherical coordinates centered at $\vec{r}^{\prime}, \infty 0 r=$ radial varia bl.

$$
\therefore \quad I_{1}=f\left(\vec{r}^{\prime}\right) \cdot 4 \pi . \checkmark
$$

- Since $\vec{\nabla}\left(\frac{1}{\mu}\right)=-\frac{\hat{r}}{\mu^{2}} \quad$ (check!)

$$
\Rightarrow \quad \nabla^{2} \frac{l}{\mu}=-4 \pi \delta^{3}(\vec{\mu})
$$

1.6 Curb-less a divergence-less fields

- Curl-Less fields: $\vec{\nabla} \times \vec{A}=0$ eveonwhere. Then for any surface S

$$
O=\int_{S} d \vec{a} \cdot(\vec{\nabla} \times \vec{A})=\oint_{\partial S} d \vec{l} \cdot \vec{A}
$$

So for any closed loop $C=2 S$:

$$
\theta=\oint_{C} d \vec{l} \cdot \vec{A}=\int_{C_{1}} d \vec{l} \cdot \vec{A}-\int_{C_{2}} d \vec{l} \cdot \vec{A}
$$

- There is a scalar field f such that

$$
\vec{A}=\vec{\nabla} f
$$

(Harder to prove; only time if $\vec{D} \times \vec{A}=0$ everywhen in 3^{-d} space.)

- Note f is not unique because if $f^{\prime}=f+c$ w/ $c=$ constant, then $\vec{\nabla} f^{\prime}=\vec{\nabla} f$.
- Divergence-less fields $\vec{\nabla} \cdot \vec{A}=0$ everywhere

Then for any region V

$$
O=\int_{V} d r \vec{\nabla} \cdot \vec{A}=\oint_{\partial V} d \vec{a} \cdot \vec{A}
$$

So for any closed surface S

$$
\begin{aligned}
0 & =\oint_{S} d \vec{a} \cdot \vec{A} \\
& =\int_{S_{1}} d \vec{a} \cdot \vec{A}-\int_{S_{2}} d \vec{a} \cdot \vec{A}
\end{aligned}
$$

$$
\therefore \quad \int_{S_{1}} d \vec{a} \cdot \vec{A}=\int_{S_{2}} d \vec{a} \cdot \vec{A}
$$

for any $S_{1} \& S_{2}$ as long as $\partial S_{1}=\partial S_{2}$.

Finally, there exists a vector field \vec{B} such that

$$
\vec{A}=\vec{\nabla} \times \vec{B}
$$

(Harder to proves only tire if $\vec{D} \cdot \vec{A}=0$ everywhen in 3-d space.)

- Note \vec{B} is not unique because if

$$
\vec{B}^{\prime}=\vec{B}+\vec{\nabla} f \text { then } \vec{\nabla} \times \vec{B}^{\prime}=\vec{\nabla} \times \vec{B}_{1}
$$

