LECTURE ${ }^{1}$
Physics 3020
Intro to Electricity \& Magnetism
all course info at webpage
homepages.vc.edu/~arggrepe

Text: D. Griffith s "Introduction to electrodynamics" (Sod oof 1999)
Fall semester outline: "Non-rilafiro io c E.M"
O. Overview

1. Vector calculus review
2. Electrostatics in vacuum
3. Math for linear elliptic P.P.E.S
4. Electrostatics in matter
5. Maquetostatics in vacuum
6. Magnetostatics in matter
7. Overview

- Electricity:

$$
\begin{aligned}
& m_{1} \vec{a}_{1}=m_{1} \frac{d^{2} \vec{r}_{1}}{d t^{2}}=\frac{q_{1} q_{2}}{d \pi \epsilon_{0}} \cdot \frac{\hat{\mu}}{r^{2}}=\vec{F}_{1}^{\text {coulomb }} \\
& \begin{array}{l}
q_{i} \text { positive or } \\
\text { negative }
\end{array} \\
& \begin{array}{c}
\text { experimentally de terminal } \\
\text { constant }
\end{array} \\
& \epsilon_{0} \equiv 8.85 \times 10^{-12} \cdot \frac{\mathrm{c}^{2}}{\mathrm{Nm}^{2}}
\end{aligned}
$$

Write $\vec{F}_{1}^{\text {Cool }}=q_{1}, \underbrace{\vec{E}\left(\vec{r}_{1}\right.}_{11})$
"Electric field at \vec{r}_{1} due to $q_{2} "$
Then can rewrite Coulomb force law:
where $\rho(\vec{r}) \doteq$ density of source charges ot \vec{r}.

$$
\left(c / m^{3}\right)
$$

- Gravity:

$$
\begin{aligned}
& m_{1} \vec{a}_{1}=m_{1} \frac{d^{2} \vec{r}_{1}}{d t^{2}}=-G m_{1} m_{2} \cdot \frac{\hat{r}}{M^{2}}=\vec{F}_{1} \text { Newton } \\
& \tilde{S}^{2} \text { experimentally determined } \\
& \text { constant: } \\
& m_{i}>0 .
\end{aligned}
$$

Write $\vec{F}_{1}^{\text {Newton }} \doteq m, \underbrace{\stackrel{\rightharpoonup}{g}\left(\vec{r}_{1}\right)}_{11}$
"Gravitational field at $\overrightarrow{r_{1}}$ due to m_{2} "

$$
\vec{F}_{(\text {Newton }}^{(\vec{r})}={\underset{\tau}{\text { test mass }}}_{m}^{g}(\vec{r}) \quad \&\left\{\begin{array}{l}
\vec{\nabla} \cdot \vec{g}(\vec{r})=-4 \pi G \cdot \rho(\vec{r}) \\
\vec{\nabla} \times \vec{g}(\vec{r})=0
\end{array}\right.
$$

where $\rho(\vec{r}) \doteq$ density of source masses of \vec{r}.

$$
\left(\mathrm{kg} / \mathrm{m}^{3}\right)
$$

- Similar forms, but electric charge "C":"Coulonb", new dimensionful quantity (in addition to mass ~ kg , length $\sim m$, time $\sim s$).

In both cases fields $(\overrightarrow{\dot{E}}, \vec{g})$ are jest notational/calculafional conveniences.

- Electrodynamics \& General relativity: more precise theories of electricity a gravity for motion of particles including corrections of order v / c a smaller.

$$
\begin{aligned}
& v \doteq\left|\frac{d \vec{r}}{d t}\right|=\text { velocity of charged particle } \\
& C=3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}=\text { speed of light }
\end{aligned}
$$

E.g. Electrodynamics find:

$$
\begin{array}{ll}
\begin{array}{ll}
\vec{F}=q(\vec{E}+\vec{V} \times \vec{B}) & \vec{\nabla} \cdot \vec{E}=\frac{l}{\epsilon_{0}} \rho \\
\begin{array}{l}
\text { new "magnetic" free fickle } \\
\text { new constant } \\
\text { charge cement density }\left(c / m^{3} s\right)
\end{array} & \begin{array}{ll}
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\vec{\nabla} \cdot \vec{B}=0
\end{array} \\
\underbrace{}_{\text {Maxwell's equations }} \times \overrightarrow{\vec{B}}=\mu_{0} \vec{J}+\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t}
\end{array}
\end{array}
$$

... Realize: $\vec{E}(\vec{r}, t) \& \vec{B}(\vec{r}, t)$ cany enersy ot speed $\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}=C$ specd of ligat
By changing relative units of q, \vec{E}, \vec{B} can rewrite eleetrodynamics as

$$
\vec{F}=q\left(\vec{E}+\frac{\vec{v}}{c} \times \vec{B}\right) \quad \begin{aligned}
& \vec{\nabla} \cdot \vec{E}=4 \pi \rho \\
& \vec{\nabla} \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \\
& \vec{\nabla} \cdot \vec{B}=0 \\
& \\
& \vec{\nabla} \times \vec{B}=\frac{1}{c}\left(4 \pi \vec{J}+\frac{\partial \vec{E}}{\partial t}\right)
\end{aligned}
$$

Makes clear $c \rightarrow \infty \Rightarrow \vec{B} \rightarrow 0 \ldots$
Define:

$$
\begin{aligned}
& x^{\mu} \doteq\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=(c t, x, y, z) \\
& \partial_{\mu} \doteq \frac{\partial}{\partial x^{\mu}} \\
& F^{\mu v} \doteq\left(\begin{array}{cccc}
0 & \frac{E_{x}}{c} & \frac{E_{y}}{c} & \frac{E_{z}}{c} \\
- & 0 & B_{z} & -B_{y} \\
- & - & 0 & B_{x} \\
- & - & - & 0
\end{array}\right) \quad \text { "EN fict } \\
& \text { streasth } \\
& \text { teaser" }
\end{aligned}
$$

$$
J^{\mu} \doteq\left(c \rho, J_{x}, J_{y}, J_{z}\right)
$$

"4-current dens.its"
Then Maxwill's equs become

$$
\partial^{[\mu} F^{\nu \rho]}=0, \quad \partial_{\mu} F^{\mu \nu}=4 \pi J^{\nu}
$$

Lorentz force law a bit trickier:
Particle motion $\vec{x}(t) \Rightarrow \frac{d x^{\mu}}{d t}=(c, \vec{v})$
Define proper time $=$ by $\frac{d \tau}{d t}=\sqrt{1-\frac{v^{2}}{c^{2}}}$,
then
$m \frac{d^{2} x^{\mu}}{d \tau^{2}}=q F^{\mu \alpha} \frac{d x_{\alpha}}{d \tau} \quad$ Cor. fore law

- This formulation of electrodynamics ic where we want to get to by cud of course (spring semester).
- Key points:
(1) Fields carry energy etc so are "physical".
(2) Magnetic fields are a "relativistic effect."
(3) (Non-relativistic) experimental units $\left(C, \epsilon_{0}, \mu_{0}\right)$ hide symmetries (Lorentz-ino-aiana) of theory.
- General relafivity is similar, but noh-linear:

$$
\begin{aligned}
& \vec{g}(\vec{r}, t) \rightarrow g_{\mu \nu}(x)=g_{\nu \mu}(x) \quad \text { "methic tensor" } \\
& D^{\mu} G_{\mu \nu}=0, \quad G_{\mu \nu}=8 \pi G \cdot T_{\mu \nu} \text { "Einstein equs } \\
& \frac{d^{2} x^{\mu}}{d \tau^{2}}=-\Gamma_{\alpha \beta}^{\mu} \frac{d x^{\alpha}}{d \tau} \frac{d x^{\beta}}{d \tau} \quad \text { "geodesic equ" }
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{r}
G_{\mu \nu} \doteq \\
\text { "Einstoin tensor" }=\text { nonlinear } \\
\text { combo of } 2^{\prime \prime} \text { dnives of } g_{\mu \nu}
\end{array}\right. \\
& T_{\mu v} \doteq \text { "stress-energy tensiv" }= \\
& \text { energy/momention/ prelsure deasity }
\end{aligned}
$$

1. Vector calculus review
1.1 Linear algebra

- Vector space (real)
"Flat" space $\sim \mathbb{R}^{d} \sim$ dimension $\geqslant 0$ with a choice of origin:

\vec{A}, \vec{B}, \ldots
"vectors"
$a(\vec{A}+\vec{B})=a \vec{A}+a \vec{B} \quad a \in \mathbb{R}$ "scalars"
- Basis's ordered cut of d linearly indey't vectors $\left\{\vec{n}_{1}, \vec{n}_{2}, \ldots, \vec{n}_{d}\right\} \Leftrightarrow$ any vector. can be written uniquely as linear combo

$$
\begin{aligned}
& \vec{A}=A_{1} \vec{n}_{1}+A_{2} \vec{n}_{2}+\cdots+A_{d} \overrightarrow{n_{d}}=\sum_{i=1}^{2} A_{i} \cdot \overrightarrow{n_{i}} \\
& f \text { (inner) product } \\
& A_{i} \in \mathbb{R}
\end{aligned}
$$

- Dot (inner) product
- Symmetric prodist to scalars:

$$
\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A} \in \mathbb{R}
$$

- Bilinear:

$$
\begin{aligned}
& (a \vec{A}+b \vec{B}) \cdot \vec{C}=a \vec{A} \cdot \vec{C}+b \vec{B} \cdot \vec{C} \\
& \vec{A} \cdot(b \vec{B}+e \vec{C})=b \vec{A} \cdot \vec{B}+c \vec{A} \cdot \vec{C}
\end{aligned}
$$

- In basis:

$$
\begin{aligned}
& \text { In basis: } \\
& \vec{A} \cdot \vec{B}=\left(\sum_{i=1}^{d} A_{i} \vec{n}_{i}\right) \cdot\left(\sum_{j=1}^{d} B_{j} \vec{n}_{j}\right) \\
&=\sum_{c i j=1}^{d} A_{i} B_{j}\left(\vec{n}_{i} \cdot \vec{n}_{j}\right)
\end{aligned}
$$

So if know dad symm. matrix of basis inner products, $\vec{n}_{i} \cdot \vec{n}_{j}$, then know any inner product.

Orthonormal basis $\left\{\hat{x}_{1}, \ldots, \hat{x}_{d}\right\}$ such that

$$
\begin{aligned}
& \hat{x}_{i} \cdot \hat{x}_{j}=\delta_{i j} \\
& \delta_{i j}=\left\{\begin{array}{lll}
1 & \text { if } i=j \quad \text { "kronecker } \\
0 & \text { if } i \neq j \quad \text { delta }
\end{array}\right. \\
- & \vec{A}=\sum_{i} A_{i} \hat{x}_{i} \quad \text { etc } \\
\Rightarrow & \vec{A} \cdot \vec{B}=\sum_{i, j} A_{i} B_{j} \hat{x}_{i} \cdot \hat{x}_{j}=\sum_{i j j} A_{i} B_{j} \delta_{i j}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
& =\sum_{i} A_{i} B_{i} \\
-A & \doteq \sqrt{\vec{A} \cdot \vec{A}}=\sqrt{\sum_{i}\left(A_{i}\right)^{2}} \quad \begin{array}{c}
\text { Pythagorean } \\
\text { theorem }
\end{array} \\
\text { length of } \vec{A}, \geqslant 0 . \\
\Rightarrow & \vec{A} \cdot \vec{B}=A B \cos \theta^{2} \quad \text { angle between } \\
\vec{A} \& \vec{B} " \text { (defin) }
\end{array}\right] \begin{aligned}
& \vec{A} \cdot \vec{B}=0 \Leftrightarrow \vec{A} \text { orthogonal (pere.) to } \vec{B} .
\end{aligned}
$$

$3 d$ vector space $\approx \mathbb{R}^{3}$

- on basis $\left\{\hat{x}_{1}, \hat{x}_{2}, \hat{x}_{3}\right\} \dot{=}\{\hat{x}, \hat{y}, \hat{z}\}$
" Cartesian basis"
- Cross (exterior) product (only in $3 d$) $\vec{A} \times \vec{B}$ gives new vector, antisymmetric, bilinear-

$$
\begin{aligned}
& \vec{C}=\vec{A} \times \vec{B}=-\vec{B} \times \vec{A} \\
& (a \vec{A}+b \vec{B}) \times \vec{C}=a(\vec{A} \times \vec{C})+b(\vec{B} \times \vec{C})
\end{aligned}
$$

So if know cross products of a basis, can compute in general.

$$
\begin{aligned}
& \hat{x} \times \hat{y}=\hat{z}, \quad \hat{y} \times \hat{z} \doteq \hat{x}, \quad \hat{z} \times \hat{x}=\hat{y} \\
& \hat{x} \times \hat{x}=0 \text { etc. } \quad \hat{y} \times \hat{y}=-\hat{z}, \quad \text { etc. } \\
& \Rightarrow \vec{A} \times \vec{B}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{x}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{y}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{z} \\
&= \operatorname{det}\left(\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right) .
\end{aligned}
$$

$\begin{aligned} & \Rightarrow \vec{A} \times \vec{B}=A B \sin \theta \cdot \hat{n} \text { unit vector } 1 \\ & \text { to } \vec{A}+\vec{B}\end{aligned}$
$\int 3$ θ, in defined by "right hand rube"

- Identities

$$
\begin{aligned}
\vec{A} \cdot(\vec{B} \times \vec{C}) & =\operatorname{det}\left(\begin{array}{lll}
A_{x} & A_{4} & A_{z} \\
B_{x} & B_{y} & B_{z} \\
C_{x} & C_{y} & C_{z}
\end{array}\right)=\begin{array}{c}
\text { oriented volume } \\
\text { of parcalce pored } \\
\text { formed } b_{r} \\
\vec{A}, \vec{B}, \vec{C}
\end{array} \\
\Rightarrow \vec{A} \cdot(\vec{B} \times \vec{C}) & =\vec{B} \cdot(\vec{C} \times \vec{A})=\vec{C} \cdot(\vec{A} \times \vec{B}) \\
& =-\vec{A} \cdot(\vec{C} \times \vec{B}) \quad \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \vec{A} \times(\vec{B} \times \vec{C})=+(\vec{A} \cdot \vec{C}) \vec{B}-(\vec{A} \cdot \vec{B}) \vec{C} \\
& (\vec{A} \times \vec{B}) \times \vec{C}=-(\vec{B} \cdot \vec{C}) \vec{A}+(\vec{A} \cdot \vec{C}) \vec{B}
\end{aligned}
$$

Not a ssociative!
By using these identities, can always reduce to expressions with 0 or $1 x$-product.

- Position, displacement, and separation vectors
\rightarrow Position: $\vec{r} \dot{=} x \hat{x}+y \hat{y}+z \hat{z}$
of point in 3-d with Cartesian cords (x, y, z).

$$
\begin{aligned}
& r=|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}} \\
& \hat{r}=\frac{\bar{r}}{r}=\text { unit vector pointing to }(x, y, z)
\end{aligned}
$$

- Separation: 2 points with positions $\vec{r}, \vec{r}^{\prime}$, separation is

$$
\begin{aligned}
& \vec{\mu} \doteq \vec{r}-\vec{r}^{\prime} \\
& \mu \doteq|\vec{\mu}| \\
& \hat{M} \doteq \frac{\vec{\mu}}{\mu}
\end{aligned}
$$

- Infinitesimal displacement:

$$
d \vec{r} \doteq d \vec{l} \doteq d x \hat{x}+d y \hat{y}+d z \hat{z}
$$

is separation between 2 nearby points

$$
\begin{aligned}
& \vec{r}^{\prime}=x \hat{x}+y \hat{y}+z \hat{z} \\
& \vec{r}=(x+d x) \hat{x}+(y+d y) \hat{y}+(z+d z) \hat{z}
\end{aligned}
$$

- Transformation of vector components under change of basis

Basis: $\left\{\vec{n}_{i}, \quad i=1 \cdots d\right\}$
Basis': $\left\{\vec{h}_{i}^{\prime}, i=1 \ldots d\right\}$
$\vec{n}_{i}=\sum_{j} \vec{n}_{j}^{\prime} R_{j i} \quad$ some $d \times d$ matrix $\left(R_{i j}\right)$

$$
\begin{aligned}
& \vec{A}=\sum_{i} A_{i} \overrightarrow{\vec{n}_{i}}=\sum_{i} A_{i}\left(\sum_{j} R_{j i}{\overrightarrow{u_{j}}}^{\prime}\right) \\
&=\sum_{i j} A_{i} R_{j i} \vec{n}_{j}^{\prime} \doteq \sum_{j} A_{j}^{\prime} \vec{n}_{j}^{\prime} \\
& \Rightarrow A_{j}^{\prime}=\sum_{i} R_{j i} A_{i}
\end{aligned}
$$

Turn into matrix expression:

$$
\left(\begin{array}{c}
A_{1}^{\prime} \\
A_{2}^{\prime} \\
\vdots \\
A_{d}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
R_{11} & R_{12} & \cdots & R_{1 d} \\
R_{21} & R_{22} & \cdots & R_{2 d} \\
\vdots & \vdots & \ddots & \vdots \\
R_{d 1} & R_{d 2} & \cdots & R_{d d}
\end{array}\right)\left(\begin{array}{c}
A_{1} \\
A_{2} \\
\vdots \\
A_{d}
\end{array}\right)
$$

- If bases are o-n $\left\{\hat{x}_{i}\right\},\left\{\hat{x}_{i}^{\prime} \mid\right.$ then

$$
\begin{aligned}
& \sum_{j} R_{i j} R_{k j}=\delta_{i k} \\
\Rightarrow & R R^{T}=I \text { or } R^{-1}=R^{T} \\
R= & \text { "or the gonal matiix". }
\end{aligned}
$$

- Rank-r teusor T is object with components

$$
T_{i,} i_{2} \ldots i_{r}
$$

which traseforms vada C.0.6. as

$$
T_{i, i_{2} \cdots i_{r}}^{\prime}=\sum_{j_{1} \cdots j_{r}} R_{i_{i}, j,} R_{i_{z} j_{2}} \cdots R_{i_{r j}} T_{j_{1} \cdots j r}
$$

Generalizu: $\left\{\begin{array}{l}\text { scalars }=\operatorname{rank} 0 \\ \text { rectore }=\operatorname{rank} 1 .\end{array}\right.$.

1. 2 Differential calculus

- Differentials Given fundion $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$

$$
\begin{aligned}
& f\left(x_{1} \cdots x_{d}\right) \in \mathbb{R} \\
& \Rightarrow d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\cdots+\frac{\partial f}{\partial x_{d}} d x_{d} \\
& \frac{\partial f}{\partial x_{i}}=\left\{\begin{array}{l}
\text { derivative w.r.t. } x_{i}, \text {, bleeping } \\
\text { all otter } x_{j} \text { fixed }
\end{array}\right\}
\end{aligned}
$$

- $d \stackrel{\text { " exterior derivative", "differential operator" }}{ }$
- d is linear: $d(a f+b g)=a d f+b d g$ ($a, b \in \mathbb{R}$ constants, f, g functions)
- d is a derivation: "Leibniz rule"

$$
d(f g)=f d g+g d f
$$

- Gradient Interpret

$$
\Rightarrow \quad \begin{aligned}
& d f \doteq(\vec{\nabla} f) \cdot d \vec{l} \\
& \vec{\nabla} f \doteq \frac{\partial f}{\partial x_{1}} \hat{x}_{1}+\cdots+\frac{\partial f}{\partial x_{d}} \hat{x}_{d} \\
& \text { in Cartesian coordinates ! }
\end{aligned}
$$

- Geometrical interpretation:
$\stackrel{\rightharpoonup}{\nabla} f$ points in direction of maximum increase of f, and
$|\vec{\nabla} f|$ is slope of f along this direction
- Define gradient differental operator

$$
\vec{\nabla}=\sum_{i=1}^{d} \hat{x}_{i} \frac{\partial}{\partial x_{i}} \quad(\text { Cartesian cords.') }
$$

$\vec{\nabla}:$ scalar functions \rightarrow vector -valued functions

- $f(x)$: scalar function
$\vec{v}(x)$: vector-valued function Then can form:

Gradient: $\stackrel{\rightharpoonup}{\nabla} f$
Divergence: $\vec{\nabla} \cdot \vec{v}$
Cure: $\vec{\nabla} \times \vec{v}$
$?: \vec{\nabla} \vec{v}$
ϵ vector-valued fac
E scalar free
ϵ vectur-valued fac
E teusor-valued fra

- Divergence

$$
\vec{\nabla} \cdot \vec{v}=\sum_{j=1}^{d} \frac{\partial v_{j}}{\partial x_{j}} \quad \text { (Cartesian coords.) }
$$

$\vec{\nabla} \cdot \vec{v} \propto$ rate \vec{v} "spreads out"

- Curd ($d=3$ only!)
$\vec{\nabla} \times \vec{v}=\operatorname{det}\left(\begin{array}{ccc}\hat{x} & \hat{y} & \hat{z} \\ \partial x & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_{x} & v_{y} & v_{z}\end{array}\right)=\cdots\left(\begin{array}{c}(\text { Cartesian } \\ \text { cords.) }\end{array}\right.$
$|\vec{\nabla} \times \vec{v}| \propto$ "vorticity" of \vec{v}
- Product rules $\vec{\nabla}$ linear diff. op. \Rightarrow

$$
\begin{aligned}
& \vec{\nabla}(a f+b g)=a \vec{\nabla} f+\perp \vec{\nabla} g \quad a, b \in \mathbb{R} \text { cast. } \\
& \vec{\nabla} \cdot(a \vec{v}+b \vec{w})=a \vec{\nabla} \cdot \vec{v}+b \vec{\nabla} \cdot \vec{w} \\
& \vec{\nabla} \times(a \vec{v}+b \vec{\omega})=a \vec{\nabla} \times \vec{v}+b \vec{\nabla} \times \vec{w} \\
& \begin{array}{l}
\vec{\nabla}(f g)=f \vec{\nabla} g+g \vec{\nabla} f \\
\vec{\nabla}(\vec{v} \cdot \vec{\omega})= \\
\\
+(\vec{v} \times(\vec{\nabla} \times \vec{\nabla}) \vec{w}+(\vec{w} \times(\vec{\nabla} \times \vec{v}) \\
\hline \vec{\nabla}) \vec{v}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\vec{\nabla} \cdot(f \vec{v}) & =f \vec{\nabla} \cdot \vec{v}+\vec{v} \cdot \vec{\nabla} f \\
\vec{\nabla} \cdot(\vec{v} \times \vec{w}) & =\vec{w} \cdot(\vec{\nabla} \times \vec{v})-\vec{v} \cdot(\vec{\nabla} \times \vec{w}) \\
\vec{\nabla} \times(f \vec{v}) & =f \vec{\nabla} \times \vec{v}-\vec{v} \times \vec{\nabla} f \\
\vec{\nabla} \times(\vec{v} \times \vec{w}) & =(\vec{w} \cdot \vec{\nabla}) \vec{v}-(\vec{v} \cdot \vec{\nabla}) \vec{w} \\
& -\vec{w}(\vec{\nabla} \cdot \vec{v})+\vec{v}(\vec{\nabla} \cdot \vec{w})
\end{aligned}
$$

useful!
-2 derivatives:

$$
\begin{aligned}
& \left.\vec{\nabla} \cdot \vec{\nabla} f=\nabla^{2} f=\sum_{j=1}^{d} \frac{\partial^{2} f}{\partial x_{j}^{2}}\right\} \begin{array}{c}
\text { Laplacian } \\
\left(\begin{array}{l}
\text { cart. } \\
\text { coors) }
\end{array}\right. \\
\vec{\nabla} \times \vec{\nabla}=\sum_{j=1}^{d}\left(\nabla^{2} v_{j}\right) \hat{x}_{j} \\
\vec{\nabla} f=(\vec{\nabla} \times \vec{v})=0 \\
\vec{\nabla} \times(\vec{\nabla} \times \vec{v})=\underbrace{\vec{\nabla}(\vec{\nabla} \cdot \vec{v})}_{\text {gradient }}-\nabla^{2} \vec{v}
\end{array}, \begin{array}{l}
\text { divergence }
\end{array}
\end{aligned}
$$

