1. Introduction

Trace metals are commonly used for paleoenvironmental reconstruction, especially redox-sensitive and/or sulfide-forming elements that may become strongly enriched under low-oxygen and/or sulfidic water mass conditions. Among such elements, uranium (U) and molybdenum (Mo) have been extensively studied (Emerson and Helz, 2000; Zheng et al., 2000, 2002a, 2002b; Dean et al., 1999; Morford et al., 2005; Brumsack, 2006; McManus et al., 2004). The mechanisms of authigenic enrichment are somewhat different for U and Mo (for a detailed discussion, see Algeo and Maynard, 2004; Tribovillard et al., 2006) and both exhibit conservative behavior under oxic conditions but enhanced uptake by the sediment where the water mass is anoxic. As a consequence of these characteristics, enrichments of U and Mo in sediments or sedimentary rocks may generally be imputed to authigenic uptake of these elements from seawater.

The mechanisms of authigenic enrichment are somewhat different for U and Mo (for a detailed discussion, see Algeo and Maynard, 2004; Tribovillard et al., 2006) and both exhibit conservative behavior under oxic conditions but enhanced uptake by the sediment where the water mass is anoxic. As a consequence of these characteristics, enrichments of U and Mo in sediments or sedimentary rocks may generally be imputed to authigenic uptake of these elements from seawater.
process seems to be very slow (McManus et al., 2005, and references therein). Mo is also likely to be taken up across the sediment–water interface under reducing conditions (Zheng et al., 2000). However, removal of Mo to the sediment requires formation of particle-reactive thiomolybdates (MoO$_{3-2x}$S$_x$−, where x = 0 to 3), which are then scavenged by sulfidized (S-rich) organic material or Fe–S phases (Tribovillard et al., 2004). Thiomolybdate formation occurs only in the presence of free hydrogen sulfide (H$_2$S) (Helz et al., 1996, 2011) and, thus, at a lower redox potential than that for sedimentary uptake of U, creating the potential for enhanced uptake of U relative to Mo where suboxic conditions prevail (Algeo and Tribovillard, 2009). A second difference between the behavior of U and Mo is that the latter element is vigorously scavenged by metal oxyhydroxides (especially MnOOH but including FeOOH), probably in relation to a speciation change from the dissolved MoO$_2^−$ to the particle reactive MoO$_2$(s) (Tossell, 2005). Particulate Mn-oxides adsorb molybdate oxyanions during transit through the water column, playing the role of a shuttle (Algeo and Tribovillard, 2009; Dellwig et al., 2010). Usually, upon reaching the sediment/water interface, these particles are reductively dissolved, releasing molybdate ions that then either diffuse back into the water column or are scavenged by other phases within the sediment.

In a recent paper, Algeo and Tribovillard (2009) used these differences in the geochemical behavior of U and Mo to demonstrate how patterns of authigenic U–Mo co-variation may be related to specific redox conditions and processes in marine depositional systems. These authors, using enrichment factors (EFs; see definition in Section 2.2), identified three patterns of U–Mo covariation, each associated with a different modern marine setting. First, sediments of the eastern tropical Pacific exhibit a pattern of greater relative U$_{auth}$ enrichment (Mo:U ratios of ~0.1 to 0.3 × SW) at low EFs, indicative of suboxic conditions, and progressively greater relative Mo$_{auth}$ enrichment (Mo:U ratios > 1 × SW) at high EFs, indicative of a shift toward more intense and/or sustained anoxia in the water column (Fig. 1A). This trend is characteristic of “unrestricted marine” settings (Fig. 1B). Second, sediments of the Cariaco Basin exhibit strong enrichment of Mo relative to U at all EFs, reflecting the operation of a metal-oxyhydroxide particulate shuttle that enhances the export of aqueous Mo to the sediment (with little effect on aqueous U; Fig. 1A). Mo:U ratios are generally much greater (3 to 10 × SW) than the seawater ratio, defining a “particulate shuttle” trend that is distinct from the unrestricted marine trend (Fig. 1B). Finally, Algeo and Tribovillard (2009) identified a third pattern, characterized by decreasing Mo:U ratios with increasing EFs. This pattern is characteristic of sediments of the modern Black Sea and is inferred to represent the influence of changes in water mass chemistry with water depth (n.b., the deepwater mass of the Black Sea contains ~70% of the seawater concentration of U but only ~3% of the Mo concentration; Algeo and Maynard, 2008). This pattern, development that requires an extended interval of deepwater isolation to allow chemical evolution of the water mass, was tentatively identified in some Devonian black shales by Algeo and Tribovillard (2009).

In the present paper, we extend the ideas developed in Algeo and Tribovillard (2009) to an analysis of depositional conditions and processes in organic-rich units of Mesozoic age (Fig. 2). The Mesozoic experienced multiple episodes of oceanic anoxia commonly extending across broad portions of the Tethys Ocean and sometimes developed concurrently in the Panthalassic/Paleo-Pacific Ocean and in epicratonic seas. These episodes, termed Oceanic Anoxic Events (OAEs), were more or less protracted, ranging from a few thousand years to several million years in duration. They were commonly limited to oceanic deepwaters but sometimes impinged on the platform domain, depending on the paleogeographical configuration and other paleoenvironmental factors (see the recent review by Jenkyns (2010)). The OAEs and other episodes of extensive organic matter storage studied here are the Toarcian OAE-T (Early Jurassic), the Kimmeridgian and early Tithonian (Late Jurassic), the Hauterivian (Early Cretaceous), and the Cenomanian–Turonian OAE-2 and Coniacian–Santonian OAE-3 (Middle to Late Cretaceous;
Complete descriptions are available. These ancient sediments (carbonates, marls and shales) were deposited under suboxic to anoxic or even strongly euxinic conditions, based on independent paleoredox criteria described in each supporting paper. All contain detectable to abundant amounts of organic matter of predominantly marine origin.

2.1.1. Early Jurassic

The ~183-Ma Toarcian OAE (Fig. 2) is documented by negative C-isotope excursions in sections with a near-global distribution (Cohen et al., 2004) as well as excursions in other proxies indicative of changes in global seawater composition (Jenkyns et al., 2000).
2.1.2. Late Jurassic

During the Late Jurassic, major organic matter accumulations developed in middle and high latitudes of the northern hemisphere, associated with the Kimmeridgian Clay Formation of the North European Platform, with the Bazhenov Formation in the Western Siberian basin, and with marine formations in the circum-Arctic basins of North Alaska, the Sverdrup Basin, and the Barents Sea (Riboulleau et al., 2003). Located between these large domains, the Russian Platform was covered by a shallow epicontinental sea that was also characterized by extensive organic matter deposition.

The Late Jurassic Kimmeridgian Clay Formation (KCF) was deposited across a large part of northern Europe between ~155 and 148 Ma (Fig. 2; see recent synthetic papers by Piper and Calvert (2009) and Pearce et al. (2010), and references therein). The KCF was deposited in a series of shallow basins included in the epicontinental Laurasian sea-way that connected the Boreal and Tethyan oceans (Fig. 4A). In this paper, we consider the KCF of the Cleveland Basin of Yorkshire (United Kingdom). These deposits accumulated in the distal part of the epicontinental sea extending from the Barents Sea to the English Channel. The cored sections of the Cleveland Basin show alternations of shales, marls and clayey limestones deposited under variably O2-depleted (i.e., suboxic to euxinic) conditions. However, Pearce et al. (2010) concluded that no indication of water mass stagnation or restriction could be observed.

Cycles of organic matter enrichment on several scales (from the lamina to the Milankovitch frequency band) are a prominent feature of the KCF (Tribouillard et al., 2005; Tyson, 2005). The present paper focuses on three well-studied meter-scale cycles (Ramanampisoa et al., 1992; Tribouillard et al., 1994; Lallier-Vergès et al., 1997; Tribouillard et al., 2005). Cycle 1 yields TOC values of 2–10% (consisting of a mixture of terrestrial and marine organic matter) and corresponds to suboxic conditions of deposition. Cycle 2 yields TOC values of 4–31% (consisting predominantly of marine organic matter) and corresponds to euxinic conditions of deposition. It contains several layers that are rich in sulfurized organic matter. Cycle 3 yields TOC values of 2–20% and is intermediate in terms of organic matter character and depositional redox conditions between those of cycles 1 and 2.

Late Jurassic sediments of the Boulonnais area of northern France include the Argiles de Wimereux and Bancs Jumeaux formations (Fig. 4A). The Kimmeridgian Argiles de Châtillon Formation consists of dark marls, mudstones, and shales containing abundant organic matter mainly of marine and secondarily of terrigenous origin with strong sulfuration of the former in samples containing TOC >6–7%. These sediments were deposited in a hemi-pelicagic setting that was variably oxic to anoxic. The Tithonian-age Argiles de Wimereux and Bancs Jumeaux formations consist of dark marls, mudstones, and siltstones containing low to moderate amounts of organic matter predominantly of terrigenous and secondarily of marine origin. These sediments were deposited on a mixed carbonate–siliciclastic ramp under redox conditions ranging from normally oxygenated to suboxic. Previous studies have inferred largely oxic conditions for the Argiles de Wimereux Formation and suboxic conditions for the Bancs Jumeaux Formation (Proust et al., 1995; Deconinck et al., 1996; Tribouillard et al., 2001; Wignall and Newton, 2001; Tribouillard et al., 2002, 2005, 2008a).

A major episode of organic matter accumulation occurred on the Russian Platform (from the Pechora Basin in the north to the Peri-Caspian Depression in the south, and into the Moscow Basin; Fig. 4A) during the latest Jurassic (Middle Volgian or latest Tithonian; Fig. 2). This short event resulted in organic-rich deposits that are relatively thin (8–10 m) but of nearly uniform thickness and facies character across the platform. In the middle Volga Basin, the organic-rich deposits from the Dorsoplanites panderti ammonite zone are known as the Kashpir Oil Shales (Riboulleau et al., 2003, and references therein). These units made up with meter-scale alternations of organic-rich black shale and organic–poor marls and calcareous claystones accumulated under bottom water redox conditions that were frequently oxygenated. However, beds that are particularly rich in sulfurized organic matter (TOC to 45%) represent the transient development of euxinic conditions (Riboulleau et al., 2003).

Fig. 3. (A) Paleogeographic reconstruction of the western Tethyan region during the Toarcian (Early Jurassic) showing the location of the Cleveland Basin (CB; Yorkshire, United Kingdom), Redrawn from Barrier and Vrielynck (2008). (B) U–EF vs. Mo–EF for late Pliensbachian–early Toarcian samples of the Whitby Mudstone Formation. Data from McArthur et al. (2008). Abbreviations as in Fig. 1.
2.1.3. Early Cretaceous

A short-lived episode of oxygen-deficient marine conditions, termed the Livello Faraoni, developed during the latest Hauterivian (late Spathicrioceras angulicostatum ammonite zone; Fig. 2). This organic-rich horizon was identified in the Umbria–Marche Basin of Central Italy and at various sites in the Western Tethys Ocean: the Trento Plateau of Italy, the Vocontian Trough of SE France, and the Swiss Prealpes (Cecca et al., 1994; Baudin et al., 1999; Bodin et al., 2007). The Livello Faraoni may be linked to a coeval drowning event that affected northern Tethyan carbonate platforms (Bodin et al., 2007).

In this paper, we examine three (hemi-) pelagic sections forming a N–S transect through the western Tethys (Fig. 5A), where the Hauterivian–Barremian transition is recorded mainly by micritic limestones and marls (Bodin et al., 2007). In the Fiume-Bosso Section, located between Urbino and Gubbio (central Italy), the Livello Faraoni appears as three laminated black shale layers within pelagic limestones and cherts of the Maiolica Formation. During the latest Hauterivian, this section was situated in the southern part of the Tethys, within the deep Umbria–Marche Basin. The Veveyse de Châtel-Saint-Denis (VCD) Section is located along the Veveyse River close to Fribourg (Switzerland), where the Livello Faraoni consists of organic-rich shales and marly limestones. The Angles Section is located near Barrême (southeastern France), where the Livello Faraoni is expressed as laminated shales within a limestone–marl succession. During the latest Hauterivian, these sections were located on the northern Tethyan margin, either within the Vocontian Trough (Angles) or in the adjacent Ultra–Helvetic realm, a deep northeastern elongation of the Vocontian Trough (VCD). We also examined the La Charce section (Vocontian Basin, southeastern France), which represents a pelagic setting with oxic to suboxic bottom waters (Fig. 5A). This section records typical pelagic alternations of burrowed limestone beds and marls (Baudin et al., 1999; Van de Schootbrugge et al., 2000, 2003). The La Charce section covers the Late Hauterivian but does not expose the time-equivalent of the Faraoni Level.

2.1.4. Middle to Late Cretaceous

The famous OAE-2, bracketing the ~93-Ma Cenomanian–Turonian boundary (Fig. 2) was a short (220–800 kyr) anoxic event characterized...
by enhanced marine productivity in the Tethyan regions (e.g., Brumsack, 2006; Scopelliti et al., 2006; Turgeon and Brumsack, 2006; Jenkyns, 2010). Enhanced productivity resulted in dysoxic to anoxic bottom waters over wide areas, intensifying to euxinia at the peak of the event, when anoxia was widespread in the deeper parts of the Tethys as well as in shallow shelf environments. One of the most studied expressions of the OAE-2 is a horizon called the Livello Bonarelli, which appears in the Bottaccione Section of the Umbria–Marche Basin (central Italy; Fig. 6A). The Livello Bonarelli consists of a 1 m-thick horizon of organic-rich shales interspersed with radiolarian-rich beds, in sharp contrast to under- and overlying siliceous limestone beds of the Scaglia Bianca Formation (Scopelliti et al., 2006; Turgeon and Brumsack, 2006). The Calabianca Section of northwestern Sicily contains the age-equivalent horizon (Scopelliti et al., 2006). Both sections were deposited at bathyal depths within the Tethyan Ocean: ~1500–2500 m for Bottaccione and somewhat shallower for Calabianca (Scopelliti et al., 2004). Both locations experienced high surface water productivity and anoxic benthic conditions, but productivity was stronger in the Sicilian area, which was under the influence of an upwelling system along the south Tethyan margin. Consequently, benthic redox conditions were more reducing at Calabianca, where euxinia existed in the water column, than at Bottaccione (Scopelliti et al., 2006).

The Bahloul Formation of Tunisia represents OAE-2 sedimentation on a shallow platform (Fig. 6A; Caron et al., 1999; Soua and Tribovillard, 2007). This formation that can be traced from the margin of the Saharan platform (southern Tunisia) to the deep Tethyan Basin to the north, shows regular alternations of black laminated limestone beds and bioturbated grey marls. The black laminated facies was deposited under suboxic to anoxic conditions, whereas the grey marls were deposited under more frequently oxygenated conditions (Caron et al., 1999).

The famous oil-source rock La Luna Formation was deposited during a major Late Cretaceous transgression of the northern margin of South America (Fig. 6A; Marcellari and De Vries, 1987; Tribovillard et al., 1991; Erlich et al., 1999a, 1999b; Alberdi and Tocco, 1999; Erlich et al., 2000; Lo Monaco et al., 2002; Rey et al., 2004). The formation ranges in...
age from the latest Albian to the earliest Campanian thus encompassing both the Cenomanian–Turonian OAE-2 and the Coniacian–Sanctonian OAE-3 (Fig. 2). Data used in this study are from a Maracaibo Basin drill core (Mongenot et al., 1996). The Maracaibo Basin was characterized by high-productivity surface waters and the presence of bathymetric barriers (i.e. shallow sills) around the basin margins, both factors contributing to the development of strongly anoxic (euxinic) bottom waters (Mongenot et al., 1996; Rey et al., 2004). In drill cores from the basin, the La Luna Formation appears as an alternation of black or dark grey limestones and shaly limestones, thinly laminated and rich in organic matter.

2.2. Elemental data

Samples of the Kimeridgian Argiles de Wimereux and Hauterivian La Charce Section were analyzed by ICP-AES (major and minor elements) and ICP-MS (trace elements) at the spectrochemical laboratory of the Centre de Recherches en Pétrographie et Géochimie of the CNRS (France). The samples were prepared by the usual protocol consisting of fusion with LiBO2 + HNO3 dissolution. Precision and accuracy were both better than 1% (mean 0.5%) for major and minor elements and 5% for Mo and U, as checked by international standards and analysis of replicate samples (Carignan et al., 2001). Results are given in Table 1. For the remaining study units, geochemical data were taken from our earlier studies and other published literature (as noted above).

Enrichment factors (EF) were calculated as:

\[X_{EF} = \left(\frac{X}{Al} \right)_{\text{sample}} \left/ \left(\frac{X}{Al} \right)_{\text{PAAS}} \right. \]

where \(X \) and Al represent the weight percent concentrations of elements \(X \) and Al, respectively. Samples were normalized using the weight percent concentrations of elements X and Al, respectively. Samples were normalized using the Centre de Recherches en Pétrographie et Géochimie of the CNRS (France).

Table 1

Geochemical data for the previously unpublished material used in this paper, namely, the Hauterivian La Charce Section (SE France) and the Tithonian Argiles de Wimereux Formation of Bouloumais (N-France), bd stands for below detection. Detection thresholds are 0.1 ppm and 0.01 ppm for Mo and U, respectively.

<table>
<thead>
<tr>
<th>La Charce section</th>
<th>Argiles de Wimereux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample #</td>
<td>Al2O3 (% ppm)</td>
</tr>
<tr>
<td>LCH 255/256 A</td>
<td>5.7</td>
</tr>
<tr>
<td>LCH 255/256 B</td>
<td>7.61</td>
</tr>
<tr>
<td>LCH 255/256 C</td>
<td>8.51</td>
</tr>
<tr>
<td>LCH 255/256 D</td>
<td>5.95</td>
</tr>
<tr>
<td>LCH 255/256 E</td>
<td>4.54</td>
</tr>
<tr>
<td>LCH 287/288 A</td>
<td>4.89</td>
</tr>
<tr>
<td>LCH 287/288 B</td>
<td>5.26</td>
</tr>
<tr>
<td>LCH 287/288 C</td>
<td>7.61</td>
</tr>
<tr>
<td>LCH 287/288 D</td>
<td>4.78</td>
</tr>
<tr>
<td>LCH 287/288 E</td>
<td>3.21</td>
</tr>
<tr>
<td>LCH 319/320 A</td>
<td>4.69</td>
</tr>
<tr>
<td>LCH 319/320 C</td>
<td>7.38</td>
</tr>
<tr>
<td>LCH 319/320 E</td>
<td>6.13</td>
</tr>
<tr>
<td>LCH 350/351 B</td>
<td>8.68</td>
</tr>
<tr>
<td>LCH 350/351 D</td>
<td>5.31</td>
</tr>
</tbody>
</table>

In practical terms, EFs >3 represent a detectable enrichment of an element over average crustal concentrations, and EFs >10 represent a moderate to strong degree of enrichment (Algeo and Tribovillard, 2009).

3. Results

3.1. Early Jurassic

Samples of the Whitby Mudstone Formation define several stratigraphically distinct clusters on a U–Mo crossplot (Fig. 3B). Samples from below and above the Toarcian OAE interval yield U–EFs close to 1.0 (i.e., no Uauth enrichment) and Mo–EFs up to ~10 with an average of 2.16 (standard deviation 2.44). Most samples from the Toarcian OAE interval exhibit some degree of Uauth and Moauth enrichment relative to these “background” samples. Samples from the upper semicratum subzone and basal exaratum subzone show weak enrichments (U–EFs ~1–2 and Mo–EFs ~2–3), and those from the main part of the exaratum subzone show modest enrichments (U–EFs ~2–5, Mo–EFs ~4–8). Both of these subsets follow along the unrestricted marine trend (Fig. 3B). Samples from overlying falciferum ammonite subzone show U–EFs of ~1–2 and Mo–EFs of ~6–14, yielding Mo:U ratios close to those of the particulate shuttle field but reflecting a lower overall degree of authigenic U–Mo enrichment compared to samples of the modern Carico Basin (Fig. 1).

3.2. Late Jurassic

Samples of the Kimmeridge Clay Formation (KCF) exhibit a well-defined pattern of U–Mo covariation (Fig. 4B). Moauth is substantially more enriched than Uauth, typically by a factor of >10x where Mo–EF is >20; even at low EFs, Moauth tends to be more enriched than Uauth. As a result, samples from these units show a pattern of U–Mo covariation that does not fall along the unrestricted marine trend but, rather, rises toward and bisects the particulate shuttle field. Cycle 1 of the KCF yields lower U–EFs and Mo–EFs than Cycles 2 and 3, and Cycle 2 yields higher Mo–EFs (but similar U–EFs) to Cycle 3. Samples from the Banks Jumeneux Fm. show Mo–EFs mostly in the range of 2 to 5, but a subset yields Mo–EFs of >5 (to a maximum of ~25) and fall along a trend parallel to that of KCF-Cycle 1 samples (although shifted toward lower U–EF values). Samples from the Argiles de Wimereux Fm. show only weak U–Mo enrichment (EFs <2). The Kashmir Oil Shales show substantial enrichments of both Uauth and Moauth, with EFs ranging from ~10 to 1000 (Fig. 4C). Samples having EFs >40 plot within the unrestricted marine field, and samples having EFs >40 trace an extension of this field although with authigenic Mo:U ratios that are somewhat higher (~2–3 x SW) than for lower-EF samples (mostly 0.3 to 1.0 x SW). The five samples containing highly sulfured organic matter and corresponding to the most reducing depositional conditions (Ribouleau et al., 2003) have U–EFs of ~20 and Mo–EFs >200.

3.3. Early Cretaceous

Most samples of the Fiume-Bosso Section show modest enrichments of authigenic U and Mo, with maximum EFs of ~20 for both elements (Fig. 5B). The samples do not exhibit a well-defined pattern of U–Mo covariation but, rather, broadly bracket the unrestricted marine trend. Samples of both the Veveyse de Châtel-Saint-Denis (VCD) and Angles sections exhibit low EFs for both U and Mo (~3), but a subset of samples exhibit higher Mo–EFs (~20–40) and fall along a vector in the direction of the particulate shuttle field (but without exhibiting the degree of U–Mo enrichment shown by the modern Carico Basin; Fig. 1). Samples of the La Charce Section exhibit uniformly low EFs for both U and Mo (~3), with slight enrichment of Uauth relative to Moauth.
3.4. Middle to Late Cretaceous

All four study units of Middle to Late Cretaceous age exhibit significant positive covariation between U–EF and Mo–EF, although Mo:U ratios and maximum EFs vary between the studied units (Fig. 6B). Samples of the Bahloul Formation exhibit maximum EFs of ~10 for Uauth and ~20 for Moauth and plot within the unrestricted marine trend. Samples of the Calabianca Section exhibit maximum EFs of ~50 for Uauth and ~300 for Moauth and define a covariation pattern that broadly straddles the unrestricted marine trend (although with greater variance than exhibited by sediments of the modern eastern tropical Pacific; Fig. 1). Samples of the Bottaccione Section exhibit maximum EFs of ~10 for Uauth and ~300 for Moauth and define a covariation pattern that falls between the unrestricted marine trend and the particulate shuttle field. Samples of the La Luna Formation exhibit greater U–Mo enrichment than the other units, with maximum EFs of ~100 for Uauth and ~1000 for Moauth. This unit also exhibits the highest Mo:U ratios, resulting in most samples plotting either within the particulate shuttle field or along an extension of the field to higher EFs tracking the 3 × SW Mo:U ratio (Fig. 6B).

4. Interpretation of paleomarine systems

4.1. Redox conditions in unrestricted marine systems

For sediments deposited in modern unrestricted marine systems, the relationships between paleoredox conditions and authigenic U–Mo enrichment are as follows: (1) oxic environments show at most minor enrichments in both U and Mo; (2) suboxic environments correspond to modest authigenic enrichments (EFs < 10), with U–EFs often greater than Mo–EFs; and (3) anoxic to euxinic facies record strong enrichments (EFs > 10), with greater enrichment of Moauth relative to Uauth at higher EFs (yielding progressively higher sediment Mo:U ratios; Fig. 1; Algeo and Tribovillard, 2009). Relative to the aqueous Mo:U ratio of present-day seawater (SW), sediment Mo:U ratios tend to be low (~0.3 × SW) in suboxic environments, intermediate (~1 × SW) in weakly anoxic environments, and high (~3 × SW) in strongly euxinic environments (Fig. 1). Thus, more reducing water mass conditions promote enrichment of the sediment in both Uauth and Moauth, but the rate of Mo uptake increases faster than that of U. At high Mo:U ratios, the trend for unrestricted marine systems converges with that of restricted systems with an active particulate shuttle, probably because particulate shuttles become increasingly important in strongly euxinic systems regardless of the degree of water mass restriction.

These patterns provide a basis for evaluation of bottom water redox conditions in unrestricted paleomarine systems. A number of the studied units exhibits authigenic U–Mo concentrations consistent with deposition under predominantly suboxic conditions, including the semicelatum subzone of the Whitby Mudstone Formation (Fig. 3B), the Argiles de Wimereux Formation (Fig. 4B), the La Charce Section (Fig. 5B), and portions of other studied units. Suboxic to predominantly anoxic conditions existed during deposition of the exaratum subzone of the Whitby Mudstone Formation (Fig. 3B), the non-sulfurized portions of the Kashpir Oil Shales (Fig. 4C), the Livello Faraoni in the Fiume-Bosso Section (Fig. 5B), and the Livello Bonarelli at its three studied sites (Fig. 6B). Predominantly euxinic conditions existed during deposition of the sulfurized portions of the Kashpir Oil Shales (Fig. 4C) and portions of the Livello Bonarelli and the La Luna Formation that show maximum authigenic U–Mo enrichments (Fig. 6B).

Paleomarine systems exhibit some variation in the fidelity with which they track the modern unrestricted marine trend. Thus, the non-sulfurized samples of the Kashpir Oil Shales plot almost entirely within this trend (Fig. 4C), whereas Livello Faraoni samples from the Fiume-Bosso Section (Fig. 5B) and Livello Bonarelli samples from the Calabianca Section exhibit greater scatter around the trend (Fig. 6B).

The paleoredox interpretations of the studied units given above are in excellent agreement with existing interpretations in the literature based on a range of sedimentological, paleontological, palynological, and geochemical proxies. We cannot report exhaustively here on every argument used in the literature to assess the paleodepositional conditions independently from our approach but all the supporting papers are quoted below. The Haueterian La Charce samples are enriched in neither U nor Mo, which is in agreement with their depositional conditions, interpreted as being oxic to faintly suboxic by Baudin et al. (1999) and Van de Schootbrugge et al. (2000, 2003) who used geochemical (mainly P distribution) and isotopic arguments. Most of the (hemi-) pelagic sections containing the Faraoni Level typically illustrate the “shuttle effect” affecting Mo but not U, as was also the case for the Toarcian black shales presented above. It suggests that the three sections encompassing the Faraoni Level record suboxic depositional conditions with anoxia developing at some depth below the sediment–water interface as explained above. This is in good agreement with the interpretations of Baudin et al. (2002), Bodin et al. (2006, 2007, 2009) and Godet et al. (2006, 2008), who also concluded that the redox conditions documented by the three sections containing the Faraoni Level were not strongly reducing (using organic matter, clay-mineral, isotope and elemental data). However we observe here that a number of samples of the Fiume-Bosso Section recorded more severe redox conditions, which must be ascribed to the deep setting of this section.

The Kashpir Oil Shales are regarded as having been deposited in an unrestricted marine environment characterized by high surface water productivity and benthic redox conditions that regularly fluctuated between oxic and anoxic (Vishnevskaya et al., 1989; Riboulleau, 2000; Riboulleau et al., 1998, 2003, notably using organic geochemistry and palynofacies data). The patterns of authigenic U–Mo covariation documented here are consistent with this interpretation, although all samples show levels of enrichment that imply the existence of at least weakly anoxic conditions during their accumulation. It is possible that variation between oxic and anoxic conditions in the depositional environment occurred at timescales shorter than that represented by individual samples (~10⁴ years), and that the trace metal content of the sediment reflects the anoxic episodes. In addition, the five samples combining high U–EF and the highest Mo–EF correspond to sediments where isorenieratene molecules have been detected. These molecular biomarkers evidence the presence of green sulfur bacteria performing anoxygenic photosynthesis in H₂S-containing water (within the photic zone). In other words, organic geochemistry data confirm our interpretation basing on U–Mo relationship that these five samples record euxinic conditions.

Among the three sections representing the earlyLate Cretaceous OAE-2, the deepwater environments (Bottaccione and Calabianca) show larger enrichment of Uauth and Moauth than the shallow platform setting of the Bahloul Formation. These results are consistent with previous works (Jenkyns, 1980; Arthur and Premoli-Silva, 1982; Coccioni et al., 1991; Scopelliti et al., 2004; Tsikos et al., 2004; Scopelliti et al., 2006; Turgeon and Brumsack, 2006; Moré et al., 2007) concluding that both deepwater sections endured strongly reducing conditions. The Calabianca and Bahloul sections show no evidence of operation of a particulate shuttle, whereas the slightly higher Mo:U ratios of the Bottaccione Section may reflect a weak or intermittently operating shuttle. On the other hand, the pattern of U–Mo covariation shown by the La Luna Formation is consistent with a strong particulate shuttle, operating over a wide range of redox conditions, probably ranging from suboxic to strongly euxinic (Morgenot et al., 1996; Alberdi and Tocco, 1999; Erlich et al., 1999a, 1999b, 2000; Lo Mónaco et al., 2002; Rey et al., 2004, the authors using paleontological, sedimentological, and geochemical—organic and inorganic—data).

One feature that, in combination with authigenic U–Mo enrichment, may assist in evaluating redox conditions in paleomarine systems is the presence of sulfurized organic matter. Several of the study units,
including the La Luna Formation, KCF, and Kashpir Oil shales, contain at least some samples that yield high EFs (especially for Mo) in combination with highly sulfurized organic matter (Tribovillard et al., 2004). The same relationship pertains to sediments of the modern Peru Margin (Fig. 1), in which the significance of abundant sulfurized organic matter has been investigated (Mossmann et al., 1991; Eglinton et al., 1994; Lückge et al., 1996). This observation may be explained by the fact that sulfurized organic matter is known to enhance Mo uptake by the sediment (Tribovillard et al., 2004), and that open-marine conditions allow Mo to be continuously replenished to the oxygen-depleted bottom waters. Both high EFs and abundant sulfurized organic matter are a reflection of the high activity of HS− in strongly euxinic environments. This relationship may also prove useful in predicting which samples are likely to contain S-rich organic matter prior to any labor-intensive and costly kerogen isolation and molecular analysis.

The U–EF vs. Mo–EF graph uses only concentrations in Al, U and Mo, and it leads to the same interpretations as those obtained with multi-parameter datasets. Notably, the approach developed here does not require information about organic matter; it may be used even if organic matter data are simply not available or even impossible to determine, as is the case with deeply buried rocks. In the case of organic matter overmaturation induced by deep burial or tectonics, organic matter data may not be measurable, whereas trace metal abundance can still be used (e.g., Mongenot et al., 1996; Ross and Bustin, 2009). Thus, when information about organic matter is not available for any reason, the U–EF vs. Mo–EF crossplot is a reliable alternative to the approach based on the relationship of total organic carbon to Mo concentration developed recently by Algeo and Lyons (2006) and Algeo et al. (2007). However, U may undergo some limited maturation control. Although not the most common trace metal present in hydrocarbons, U may be engaged into petroleum when source rocks reach the maturity stage corresponding to the so-called oil window (Bell, 1960). Consequently some U may be lost from the initial sedimentary rock when hydrocarbons are sourced and migrate. As suggested by P.B. Wignall (personal communication during review process), this may explain why some of the Whitby Mudstone (Early Jurassic) samples have so low U–EF values (<2).

4.2. Operation of water column particulate shuttles

A number of the study units exhibits patterns of authigenic U–Mo enrichment that are consistent with the operation of a vigorous metal-oxyhydroxide particulate shuttle within the water column. This process accelerates the transfer of aqueous Mo to the sediment while having little effect on aqueous U (see Section 1), thus resulting in markedly higher sediment Mo:U ratios over a wide range of EFs than are typical of unrestricted marine systems lacking an active particulate shuttle (Fig. 1). In the modern Cariaco Basin as well as in several of the paleomarine systems of the present study, Mo–EFs initially rise rapidly to >10 while U–EFs remain low (<3). For Mo–EFs higher than ~10, EFs for both Mo and U tend to increase in equal proportion (on a logarithmic scale), yielding sediment Mo:U ratios between 3 and 10× SW (PS field, Fig. 1). At U–EFs >20 and Mo–EFs >200, samples deposited in such systems show EFs that converge with those of strongly anoxic unrestricted marine settings. This convergence may indicate that particulate shuttles enhance aqueous Mo uptake by the sediment becoming important in euxinic systems regardless of the degree of water mass restriction.

Among the present studied units, the Whitby Mudstone Formation shows evidence of an active particulate shuttle during deposition of shales of the falciferum subzone (Fig. 3B). The level of Mo, enrichment does not rise to that of the modern Cariaco Basin, possibly indicating a comparatively weak particulate shuttle in the Early Jurassic Cleveland Basin. A particulate shuttle may have existed also during deposition of Late Jurassic shales of the Banks Jumeaux Formation (Fig. 4B) and Early Cretaceous shales of the Livello Faraoni in the Angles and VCD sections (Fig. 5B). The study units that exhibit the most characteristic patterns for a strong particulate shuttle are the Late Jurassic KCF (Fig. 4B) and the Late Cretaceous La Luna Formation (Fig. 6B). In both of these units, samples trace a vector of authigenic U–Mo enrichment that bisects the “particulate shuttle” field defined by the modern Cariaco Basin (Fig. 1). The particulate shuttle appears to have operated through multiple cycles of the KCF although with varying intensities, which is strongest during deposition of Cycle 2 and weakest during Cycle 1 (Fig. 4B). Particulate shuttle vigor appears to have been related to redox conditions, since Cycle 1 is inferred to represent the least reducing (i.e., suboxic) and Cycle 2 the most reducing (i.e., anoxic) conditions (Ramanampisoa et al., 1992; Tribovillard et al., 1994; Lallier-Vergès et al., 1997; Tribovillard et al., 2005). For the KCF our results may be compared to those of Pearce et al.’s (2010) who studied the formation in the Dorset (UK). Their results are presented using both a U–EF vs. Mo–EF diagram and a [TOC] vs. [Mo] crossplot (Pearce et al., 2010, their Fig. 4). The results for the Dorset and Cleveland datasets are consistent. For the Dorset, the Mo concentrations do not exceed the value of 70 ppm whereas they exceed 200 ppm for some samples of Cycle 2 of Cleveland (Fig. 7A). For values below [Mo] = 70 ppm, the two datasets show the same distribution in both the U–EF vs. Mo–EF and [TOC] vs. [Mo] diagrams. The difference between the two datasets is that Cycle 2 of Cleveland shows Mo concentrations exceeding 100 ppm (Fig. 7A). It may be reminded that these Mo-rich samples contain abundant organic sulfur as evoked above (Section 4.1). The consistency of the two datasets suggests that marine conditions were similar for both locations for the part of the “KCF Sea” that covered the domain corresponding to present-day England.

In the case of the La Luna Formation, the particulate shuttle appears to have operated vigorously for almost the full stratigraphic interval represented by our samples, with exceedingly strong euxinia leading to higher levels of authigenic U–Mo enrichment than observed in the modern Cariaco Basin (Fig. 6B; Mongenot et al., 1996; Alberdi and Tocco, 1999; Lo Mónaco et al., 2002). Thus, the degree of authigenic U–Mo enrichment in marine systems having an active particulate shuttle is influenced by redox conditions.

4.3. Evaluation of water mass restriction

The degree of deepwater restriction has the potential to influence authigenic U–Mo enrichment of marine sediments. Other variables being equal, increasing restriction results in lesser degrees of trace metal enrichment in sediments owing to a reduced resupply of aqueous trace metal species to the basinal water mass from the global ocean (Algeo and Lyons, 2006). However, water mass restriction is often correlated with other environmental variables such as redox conditions, and more reducing conditions in a restricted basin (especially within the suboxic–anoxic redox range) may enhance trace metal uptake and offset the effects of increasing restriction (Algeo and Lyons, 2006). Thus, assessments of the hydrographic, aqueous chemical, and redox conditions of a particular paleomarine system are best undertaken using a combination of proxies and analytical approaches.

One example of using authigenic U–Mo data to assess water mass restriction is the Early Jurassic Cleveland Basin (Yorkshire, United Kingdom; Fig. 3A). Whitby Mudstone Formation samples show almost no U enrichment and relatively limited Mo enrichment despite inferred strongly anoxic (euxinic) conditions during some depositional intervals (especially within the falciferum subzone; Fig. 3B). This pattern is likely to be indicative of strong drawdown of aqueous Mo in the Cleveland Basin water mass as a consequence of massive transfer to the sediment (McArthur et al., 2008), a process termed the “basin reservoir effect” (Algeo, 2004; Algeo and Lyons, 2006). Consequently the approach based on the authigenic U–Mo enrichment does not supply the same information as that given by the [TOC] vs. [Mo] diagram (Fig. 7B). With such a diagram, coupled to geochemical and isotopic data, McArthur et al. (2008, their Fig. 11) and Pearce et al. (2008, their Fig. 3) observed two
contrasting distributions for the Falciferum zone samples (Saanich Inlet-type distribution) and the Exaratum zone samples, showing a distribution beyond the Black Sea-type, that is, with very high TOCs and low Mo concentrations (Fig. 7B). Pearce et al. (2008) concluded to a regional anoxia affecting the Cleveland Basin during the Falciferum zone and widespread anoxia during the Exaratum zone, while McArthur et al. (2008) concluded weak water mass restriction during the Falciferum zone and extreme restriction during the Exaratum zone. With a U–EF vs. Mo–EF diagram, we cannot conclude to strong water mass restriction for the Exaratum zone because, in this specific case, the relatively low U–EF values place the samples close to the “unrestricted marine conditions” zone and not beyond it toward higher U–EF values as is the case for the Black Sea. Does this situation result from a “basin reservoir effect” also affecting the U inventory (which has not been reported yet), or from a loss of U during hydrocarbon generation as suggested above (end of Section 4.1), or does it relate to the length of time that the bottom waters were restricted for? We cannot conclude presently; we only observe that in the case of the Toarcian deposits of the Cleveland Basin, the U–EF vs. Mo–EF crossplot cannot assess unambiguously the water mass restriction conditions evidenced by previous studies. A different conclusion may be drawn from analysis of authigenic U–Mo data from the Late Cretaceous Maracaibo Basin of Venezuela (Fig. 6A). Previously, the Maracaibo Basin had been interpreted as strongly restricted because of its paleobathymetric configuration (Erlich et al., 2000). In a [TOC] vs. [Mo] diagram the La Luna samples show a “Saanich Inlet-type” distribution suggesting moderate water mass restriction (Fig. 7C). However, our data show that almost all La Luna Formation samples yield very high Mo–EFs (Fig. 6B), meaning that aqueous Mo was massively transferred to the sediment for a protracted (multi-million year) interval of time and, hence, must have been constantly replenished to the basinal water mass. If so, the deepwater mass of the basin could not have been isolated from the global ocean to any significant degree, probably because the marginal sills were not as continuous or as elevated as previously thought. Thus, comparisons of authigenic U–Mo data with other proxy data for paleomarine systems may help to clarify aspects of basin hydrography and water mass restriction.

4.4. Long-term changes in seawater trace metal concentrations

One additional factor that might influence authigenic U–Mo enrichment in marine sediments is changes in the concentration of aqueous U and Mo in seawater through time. Although the residence times of U and Mo in seawater are long (~450 and 780 kyr, respectively), some of the stratigraphic intervals of organic matter accumulation considered in this study lasted several million years (Fig. 2), suggesting that major changes in aqueous U and Mo concentrations could have occurred during these events. The idea of secular evolution of the trace metal inventories of seawater was first investigated by Algeo (2004) in relation to Late Devonian anoxic events, and probable drawdown of seawater trace metal concentrations has since been documented in conjunction with the Toarcian OAE (McArthur et al., 2008; Pearce et al., 2008) and the Cenomanian–Turonian OAE-2 (Hetzel et al., 2009). Whether these examples represent drawdown of trace metals in global seawater during Mesozoic OAEs, or merely changes in aqueous chemistry within restricted marine basins as for Devonian–Carboniferous black shales (Algeo et al., 2007; Rowe et al., 2008), remains unclear.

Fig. 7. Total organic carbon contents vs. Mo concentrations ([TOC] vs. [Mo]) diagrams drawn for most of the formations studied in this paper. A—Late Jurassic formations; B—Early Jurassic formations; C—Late Cretaceous formations. Note that the TOC data are not available for the two Italian Hauterivian sections. Such diagrams are designed to assess the paleodegree of water mass restriction in oxygen-limited marine basins (Algeo and Lyons, 2006; Algeo et al., 2007). The solid lines represent four present-day basins characterized by some restriction of the water mass circulation. The restriction severity increases from the Saanich Inlet to the Black Sea. See explanations in Algeo and Lyons (2006) and Algeo et al. (2007).
U–EF vs. Mo–EF crossplots (Figs. 3–6) are probably not optimal for assessing long-term variation in seawater trace metal concentrations, because simultaneous changes in U and Mo concentrations would result in positive covariant trends that mimic the effects of changing redox conditions on sediment trace metal enrichment (Fig. 1). A superior method of identifying secular changes in seawater trace metal concentrations utilizes Mo-TOC crossplots (Algeo and Lyons, 2006; Algeo et al., 2007), because an increase or decrease in the aqueous concentration of a given trace metal is likely to be manifested as an increase or decrease in the TOC-normalized concentration of that metal in the sediment. A second approach to this problem is based on chemostatigraphic trends for multiple trace metals in a single basin, variations in which are assessed relative to the secular redox and event history of the basin (Algeo and Maynard, 2008; Rowe et al., 2008; Hettel et al., 2009). Although both approaches are subject to recording local water mass effects (e.g., the “basin reservoir effect” of Algeo and Lyons (2006)), it is at least conceptually possible to recognize a global signal. Such a signal might take the form of simultaneous changes of similar magnitudes in multiple, hydrographically independent basins—especially those in which deepwaters were subject to minimal restriction and, thus, have a trace metal composition close to that of normal seawater of a given age.

5. Conclusions

Patterns of authigenic U–Mo covariation in marine sediments provide insights regarding bottom water redox conditions, the operation of metal-oxyhydroxide particulate shuttles, and the degree of deepwater restriction. Organic-rich sediments of the western Tethyan region deposited during oceanic anoxic events (OAEs) of Early Jurassic to Late Cretaceous age exhibit characteristic U–Mo patterns. Our analysis generally confirms existing interpretations of redox conditions in these formations but provides significant new insights regarding water mass restriction and the operation of particulate shuttles in some deposition systems. In addition to allowing us to diagnose a spectrum between oxidizing and reducing conditions, the operation of metal-oxyhydroxide particulate shuttles, and the degree of deepwater restriction, Mo-TOC crossplots (Algeo and Lyons, 2006), it is at least conceptually possible to recognize a global signal. Such a signal might take the form of simultaneous changes of similar magnitudes in multiple, hydrographically independent basins—especially those in which deepwaters were subject to minimal restriction and, thus, have a trace metal composition close to that of normal seawater of a given age.

Acknowledgments

We thank Giovanna Scopelliti and Stephane Bodin for kindly supplying data. Thanks to Tim Lyons for comments on an earlier version of the manuscript. Research by Thomas J. Algeo was supported by grants from the National Science Foundation (EAR-0618003 and EAR-0745574) and the University of Cincinnati Research Council. The useful reviews by Paul B. Wignall, Christopher R. Pearce and an anonymous reviewer, as well as the editorial work by the guest associate editor Jennifer L. Morford are much appreciated. Thanks to Neelima Dondapati, Journal Manager for Chemical Geology at Elsevier.

References

