

Nearly Surface-Free Confinement of Excitons in Single GaAs/AlGaAs Core-Shell Nanowires

Melodie Fickenscher University of Cincinnati

Univ. of Cincinnati

Saranga Perera Howard E. Jackson L.M. Smith Thang. B. Hoang Miami University Jan Yarrison-Rice Univ. of Queensland, Australia X. Zhang J. Zou

Australian National Univ.

Chennupati Jagadish Hannah Joyce H. Tan Y. Kim Q Gao

Supported by the National Science Foundation (0701703) and the Australian Research Council.

Materials for 1-D Devices

<u>Applications</u>
Sensor development
LED and Nanowire lasers
Photo detectors
Single electron devices

All depend on material quality

Surface/Volume → Large Surfaces dominate NW properties

Surface recombination velocity $(S) \rightarrow$ characterizes effects of nonradiative surface states

Nonradiative recombination reduces quantum efficiency. Occurs at surfaces ($\tau_{NR} = d/2S$) and defects within wire.

InP nanowires

Surface recombination velocity
 S = 5 x 10³ cm/s

•Non-radiative lifetime $\tau = d/2S = 2 ns$

•Experiments InP \rightarrow 1.5ns

 Intrinsic (non surface dominated) properties visible

•Hole diffusion length = $1\mu m$

GaAs comparison

GaAs comparison •S = 10⁶ cm/s! • τ_{nr} = d/2S = 1.5ps •Hole diffusion length = 3µm •Experiments bare GaAs \rightarrow 1ps

Bare GaAs nanowires: low quantum efficiency due to non-radiative surface recombination

GaAs/AlGaAs Nanowires

- Core-shell GaAs-AlGaAs nanowires have much higher quantum efficiency (20-100x)
- But lifetime is still < 80 ps</p>
- Significant nonradiative recombination centers remain...

Potential problems with old samples...Cincinnati

Twin defects

Oxidation of AlGaAs shell → Oxygen deep levels in GaAs

Two-temperature growth

1. Twin Free Core Growth

- High nucleation temperature, $T_n = 450$ °C for 1 minute
- Low growth temperature, $T_g = 375^{\circ}C$ for 30 minutes
- 2. AlGaAs/GaAs shell/cap Growth
 - Temperature increased to T= 650°C
 - 20nm AlGaAs shell, 5nm GaAs cap

Lifetime Comparison

Excitation: 780nm, 200fs pulsed laser, low power.

Emission: Decay times measured at 1.51 eV free exciton peak

Time decay variablity

Majority of lifetimes <a>-1ns

Minority show shorter lifetimes \rightarrow nonradiative recombination

Isolated twin defectsAIGaAs/GaAsinterface

All lifetimes longer than old growth method

- •Time decays \rightarrow Almost intrinsic lifetime!
- possible to achieve NW optical qualities which approach that of the best 2D heterostructures
- •fabrication of highly efficient 1D devices

Now let's look at the intrinsic properties...

Time Resolved Photoluminescence

Early times:

•Asymmetric emission \rightarrow electron hole plasma

Later times:

Symmetric emission→ excitons
Carrier Density below Mott density

Band gap renormalization

GaAs/ AlGaAs core-shell Improvements

Reduced surface defects with two temp growth
Eliminated oxidation of AlGaAs shell with GaAs cap

Optical Characterization

- Quantum efficiency of PL greatly enhanced
- Exciton lifetimes increased from 80ps → 1ns
 State filling and many body effects observed

Work to be published in App. Phys Letters in the coming weeks