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ity of periodic solutions, and the global solution structure, for a class of periodically forced
pendulum-like equations. Our results apply also to the first order equations. We also show
that by choosing a forcing term, one can produce periodic solutions with any number of Fourier
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1. Introduction

We are interested in the exact number of periodic solutions, as well as in the precise
structure of the solution set, when parameters are varied, for forced pendulum-like
equations

u′′(t) + λu′(t) + kg(u(t)) = µ + e(t), u(t + T ) = u(t), (1.1)

where g(u) is a bounded function, whose derivative is also bounded, λ, k and µ are

real parameters; e(t) is a T -periodic function with
∫ T

0
e(t) dt = 0. The prominent

example is g(u) = sin u, the forced pendulum equation.

Our principal motivation comes from the paper of G. Tarantello [12], who
considered the pendulum equation. Since sinu is periodic, given any periodic
solution u(t), u(t) + 2nπ is also a solution, so G. Tarantello has restricted to
solutions whose average ξ satisfies 0 ≤ ξ < 2π. Her result says roughly that for
λ large there exist two constants d < D, so that the problem (1.1) has exactly
two T -periodic solutions if µ ∈ (d,D), exactly one T -periodic solution if either
µ = d or µ = D, and none if µ /∈ (d,D). Her method is based on the Lyapunov-
Schmidt reduction. This line of research has been apparently initiated by A.
Castro [1], who had established existence of T -periodic solutions, and continued
by G. Fournier and J. Mawhin [6], and J. Mawhin and M. Willem [13], who
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proved multiplicity results. Then G. Tarantello [12] gave the exact multiplicity
result, mentioned above. Perhaps one can characterize this line of research as
using PDE-like methods to study periodic solutions of (1.1). More recently J.
Cepicka et al [2] have extended G. Tarantello’s work by using similar methods.

We apply methods of bifurcation theory to understand the exact solution struc-
ture of the problem (2.1). In the case of pendulum equation we recover the results
of [12], and we illuminate these results by providing a detailed picture of the so-
lution set. Moreover, we do not require g(u) to be analytic. We describe our
approach next.

When k = 0 and µ = 0 the problem is linear, and it has a unique T -periodic
solution of any average. Let us look at the solution of zero average first. We show
that it continues in k, provided that k ≤ ω

√
ω2 + λ2, where ω = 2π

T , the frequency.
Namely, by applying the implicit function theorem, we show that for every k, with
k ≤ ω

√
ω2 + λ2, we can find µ = µ(k) and a T -periodic solution u = u(k) of

(1.1) of zero average. Similarly, we produce curves of solutions of any other fixed
average. Hence, for every k ≤ ω

√
ω2 + λ2 we have a T -periodic solution of any

average ξ. We now fix k, and show that (under another restriction on k) all these
solutions are connected by a unique smooth curve of solutions, parameterized as
µ = µ(ξ). To continue the solutions in µ, we use the implicit function theorem,
and a bifurcation theorem of M.G. Crandall and P.H. Rabinowitz [4]. We recall
next the Crandall-Rabinowitz bifurcation theorem [4], which is one of our main
tools.

Theorem 1.1. [4] Let X and Y be Banach spaces. Let (λ, x) ∈ R × X and
let F be a continuously differentiable mapping of an open neighborhood of (λ, x)
into Y . Let the null-space N(Fx(λ, x)) = span {x0} be one-dimensional and
codim R(Fx(λ, x)) = 1. Let Fλ(λ, x) 6∈ R(Fx(λ, x)). If Z is a complement of
span {x0} in X, then the solutions of F (λ, x) = F (λ, x) near (λ, x) form a curve
(λ(s), x(s)) = (λ+τ(s), x+sx0+z(s)), where s → (τ(s), z(s)) ∈ R×Z is a contin-
uously differentiable function near s = 0 and τ(0) = τ ′(0) = 0, z(0) = z′(0) = 0.

We develop similar results for the first order periodic problem

u′(t) + kg(u(t)) = µ + e(t), u(t + T ) = u(t). (1.2)

Our results fit in nicely with a counter example of R. Ortega [10].

It is known that the pendulum equation (i.e. the problem (1.1) with g(u) =
sin u) can have many geometrically different T -periodic solutions (solutions u(t)
and u(t)+2πn are considered to be geometrically equal). In case λ = 0, F. Donati
[5] proved that it is possible to find a forcing term with four geometrically different
T -periodic solutions, and then R. Ortega [11] showed that one can replace 4 by
an arbitrary number. A. Ureña [14] showed that arbitrary many solutions can be
produced in case λ 6= 0 too. We show (for any λ) that for any fixed n, one can find
a forcing term (f(t) = µ + e(t)), and a T -periodic solution with the first n Fourier
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coefficients arbitrarily prescribed. (We assume k to satisfy a certain bound, which
actually gets less restrictive for larger n.) Again, we do not require g(u) to be
analytic, as was the case in [14].

2. Preliminary results

We consider T -periodic functions, and use ω = 2π
T to denote the frequency.

Lemma 2.1. Consider the linear problem

y′′(t) + λy′(t) = e(t), (2.1)

with e(t) given continuous function of period T , of zero average, i.e.
∫ T

0
e(s) ds =

0. Then the problem (2.1) has a unique T -periodic solution of any average.

Proof. We represent e(t) by its complex Fourier series e(t) = Σ∞
−∞eneiωnt, with

e0 = 0, since it is of zero average, and ēn = e−n, because e(t) is real valued. We
then compute the T -periodic solution of zero average

y(t) = Σn6=0cneiωnt, cn =
en

(

−ω2n2 − iλωn
)

ω4n4 + λ2ω2n2
.

Since c̄n = c−n, it is real valued. Adding a constant to y(t), we will obtain a
solution of any average. ¤

The following lemma is known as Wirtinger’s inequality. Its proof follows easily
by using the complex Fourier series, and the orthogonality of the functions {eiωnt}
on the interval (0, T ).

Lemma 2.2. Assume that f(t) is a continuously differentiable function of period

T , and of zero average, i.e.
∫ T

0
f(s) ds = 0. Then

∫ T

0

f ′2(t) dt ≥ ω2

∫ T

0

f2(t) dt.

Next we consider a linear periodic problem in the class of functions of zero
average

w′′(t) + λw′(t) + kh(t)w(t) = µ, w(t + T ) = w(t),

∫ T

0

w(s) ds = 0, (2.2)

where h(t) is a given continuous function of period T , k and µ are parameters.
The following lemma was implicit in G. Tarantello [12], and explicitly stated and
proved in J. Cepicka et al [2]. We include its proof for completeness.

Lemma 2.3. Assume that |h(t)| ≤ M , where M > 0 is a constant, and

k <
1

M
ω
√

ω2 + λ2. (2.3)

Then the only solution of (2.2) is µ = 0 and w(t) ≡ 0.
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Proof. Multiply the equation (2.2) by w′′(t) + λw′(t) and integrate
∫ T

0
(w′′ + λw′)2 dt = −k

∫ T

0
h(t)w (w′′ + λw′) dt

≤ kM
(

∫ T

0
(w′′ + λw′)2 dt

)1/2 (

∫ T

0
w2 dt

)1/2

,

i.e. making use of the Wirtinger’s inequality
∫ T

0

(w′′ + λw′)
2

dt ≤ k2M2

∫ T

0

w2 dt ≤ k2M2

ω2

∫ T

0

w′2 dt. (2.4)

On the other hand, again using the Wirtinger’s inequality
∫ T

0

(w′′ + λw′)
2

dt =

∫ T

0

w′′2 dt+λ2

∫ T

0

w′2 dt ≥ (ω2+λ2)

∫ T

0

w′2 dt. (2.5)

Combining (2.4) and (2.5), we obtain a contradiction with our condition (2.3),

unless
∫ T

0
w′2 dt = 0, and the lemma follows. ¤

Next we consider another linear problem (notice that here w(t) is not assumed
to be of zero average)

w′′(t) + λw′(t) + kh(t)w(t) = 0, w(t + T ) = w(t). (2.6)

The following lemma was proved in [12], and in [2]. We present a different proof,
which explains the significance of the condition (2.7). Here again h(t) is a given
continuous function of period T .

Lemma 2.4. Assume that |h(t)| ≤ 1 and

k <
λ2

4
+ ω2. (2.7)

Then any non-trivial solution of (2.6) is of one sign, i.e. we may assume that
w(t) > 0 for all t.

Proof. Assume on the contrary that we have a sign changing solution w(t). Since
w(t) is T -periodic, there exist t1 < t2, such that t2−t1 = T , and w(t1) = w(t2) = 0.
Since we also have w′(t1) = w′(t2), it follows that w(t) has at least one more root
on (t1, t2). If we now consider an eigenvalue problem on (t1, t2),

w′′(t) + λw′(t) + kh(t)w(t) = 0, for t1 < t < t2, w(t1) = w(t2) = 0, (2.8)

it follows that w(t) is the second or higher eigenfunction, with k then being the
second or higher eigenvalue. On the other hand, we consider the following Dirichlet
eigenvalue problem on (t1, t2)

z′′(t) + λz′(t) + kz(t) = 0, z(t1) = z(t2) = 0. (2.9)

Its eigenvalues are kn = λ2

4 + n2ω2

4 , and in particular k2 = λ2

4 + ω2. Since all
eigenvalues of (2.8) are greater than the corresponding eigenvalues of (2.9), we
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conclude that the second eigenvalue of (2.8) (i.e. k) must be greater than k2,
contradicting the assumption of the lemma. ¤

We shall also consider the adjoint linear problem

ν′′(t) − λν′(t) + kh(t)ν(t) = 0, ν(t + T ) = ν(t) = 0. (2.10)

Lemma 2.5. Assume the condition (2.7) holds. If the problem (2.6) has a non-
trivial solution, the same is true for the adjoint problem (2.10). Moreover, we then
have ν(t) > 0 for all t.

Proof. Assume that the problem (2.6) has non-trivial solution, but the problem
(2.10) does not. The differential operator given by the left hand side of (2.10) is
Fredholm, of index zero. Since its kernel is empty, the same is true for its co-kernel,
i.e. we can find a solution z(t) of

z′′(t) − λz′(t) + kh(t)z(t) = w(t), z(t + T ) = z(t) = 0. (2.11)

Multiplying the equation (2.11) by w(t), the equation (2.6) by z(t), subtracting
and integrating, we have

∫ T

0

w2(t) dt = 0,

a contradiction.

Positivity of ν(t) follows by the previous Lemma 2.4 (in which no assumption
on the sign of λ was made). ¤

The following lemma is easily proved by integration.

Lemma 2.6. Assume |g(u)| ≤ M, for all u ∈ R. If u(t) is a T -periodic solution
of (1.1), then

|µ| ≤ kM.

3. Continuation of solutions of any fixed average

We denote by C2
T the subspace of C2(R), consisting of T -periodic functions. By

C̄2
T we denote the subspace of C2

T , consisting of functions of zero average on (0, T ),

i.e.
∫ T

0
u(t) dt = 0.

Theorem 3.1. Consider the problem

u′′(t) + λu′(t) + kg(u(t)) = µ + e(t), u(t + T ) = u(t), (3.1)

1

T

∫ T

0

u(t) dt = ξ. (3.2)

where k, µ, λ and ξ are parameters, and the continuous function e(t) is T -periodic

and of zero average, i.e.
∫ T

0
e(t) dt = 0. Assume that the function g(u) ∈ C1(R)
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is bounded and it has a bounded derivative, i.e.

|g(u)|, |g′(u)| ≤ M, for all u ∈ R. (3.3)

Assume finally that

k ≤ 1

M
ω
√

ω2 + λ2. (3.4)

Then for any ξ ∈ R one can find a unique µ for which the problem (3.1), (3.2)
has a unique solution. (I.e. for each ξ there is a unique solution pair (µ, u(t)).)

Proof. We begin by assuming that ξ = 0. We wish to prove that there is a unique
µ = µ(k) for which the problem (3.1) has a solution of zero average, and that
solution is unique. We recast the equation (3.1) in the operator form

F (u, µ, k) = e(t), (3.5)

where F : C̄2
T × R × R → CT is defined by

F (u, µ, k) = u′′(t) + λu′(t) + kg(u(t)) − µ.

When k = 0 and µ = 0, the problem (3.5) has a unique T -periodic solution of zero
average, according to the Lemma 2.1. We now continue this solution for increasing
k, i.e. we solve (3.5) for the pair (u, µ) as a function of k. Compute the Frechet
derivative

F(u,µ)(u, µ, k)(w, µ∗) = w′′(t) + λw′(t) + kg′(u(t))w(t) − µ∗.

According to Lemma 2.3 the only solution of the linearized equation

F(u,µ)(u, µ, k)(w, µ∗) = 0, w(t + T ) = w(t)

is (w, µ∗) = (0, 0). I.e. locally we have a curve of solutions u = u(k) and µ = µ(k).
To show that this curve continues for all k satisfying our condition (3.4), we only
need to show that this curve cannot go to infinity at some k, i.e. we need an a
priori estimate. Multiplying the equation (3.1) by u′′ and integrating, we easily

obtain (using boundness of g(u)) that
∫ T

0
u′′2(t) dt is bounded, and then by the

Wirtinger’s inequality the same is true for
∫ T

0
u′2(t) dt, and then for

∫ T

0
u2(t) dt.

We conclude the uniform boundness of the solution by the Sobolev embedding
theorem, and then we bootstrap to the boundness in C2

T , since µ is bounded by
Lemma 2.6.

The solution (u, µ), which we found at the parameter value of k, is unique since
otherwise we could continue it for decreasing k, obtaining at k = 0 a zero average
T -periodic solution of

u′′ + λu′ = µ0 + e(t),

with some constant µ0. Clearly, µ0 = 0, and then we obtain another solution of
the problem (2.1) (since curves of solutions of zero average do not intersect, in
view of the implicit function theorem), contradicting Lemma 2.1.
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Turning to the solutions of any average ξ, we again solve (3.5), but redefine
F : C̄2

T × R × R → CT by

F (u, µ, k) = u′′(t) + λu′(t) + kg(u(t) + ξ) − µ.

As before, we obtain a solution (u, µ) at k, with u of zero average, which implies
that (u + ξ, µ) solves our problem (3.1), (3.2). ¤

Remark. A similar result can be proved using the Lyapunov-Schmidt reduction,
as was done in G. Tarantello [12], see also [2]. Our proof appears to be simpler,
and we do not need g(u) to be analytic, as in those papers.

4. Continuation in µ for fixed k and λ

In this section we keep k and λ fixed, and study the solutions of (3.1) as a function
of µ. The following simple lemma will be important for the understanding of the
solution curves.

Lemma 4.1. Assume that a fixed k satisfies the inequality (3.4). The average
value of the solution uniquely determines the corresponding µ, and the solution.
I.e., for any ξ ∈ R we can find a unique µ at which the problem (3.1) has a unique
T -periodic solution u(t). (In short, the value of ξ uniquely determines the solution
pair (µ, u(t)).)

Proof. We begin with the unique T -periodic solution of average ξ of the linear
equation, obtained from (3.1) by setting k = 0 and µ = 0. We now continue this
solution for increasing k, using the Theorem 3.1, until we reach the fixed k in our
problem with the corresponding µ = µ0, and the T -periodic solution u0(t). If there
were another pair (µ1, u1(t)), satisfying (3.1) at the same k (and the average of
u1(t) is also ξ), we would continue it for decreasing k on another curve of solutions,
obtaining another solution of average ξ at k = 0, which is a contradiction. ¤

Remarks

1. It follows that as we continue the solution of (3.1) in µ, the average of solution
ξ must change monotonously.

2. When one considers positive solutions of the two-point problem

u′′ + λf(u) = 0, x ∈ (−1, 1), u(−1) = u(1) = 0

one proves that the value of the maximum of solution, i.e. u(0), uniquely
identifies both the value of the parameter λ and the solution u(x), see e.g. [9].
The above result gives an exact analogy for the periodic solutions.

With k and λ fixed, and k satisfying (3.4), the problem (3.1) has a T -periodic
solution of any average ξ ∈ R (with µ = µ(ξ)). This continuum of solutions “has
arrived” on curves of fixed average from k = 0. These solutions are non-singular
on the curves of fixed average (which should not be confused with unconditionally
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non-singular solutions). As we now vary µ, we may encounter singular solutions.
However, if condition (2.7) is also satisfied, we show that the Crandall-Rabinowitz
theorem applies at the singular solutions. We then show that there is a unique
smooth curve of solutions, connecting all T -periodic solutions at a fixed k.

Theorem 4.1. For the problem (3.1) assume that the conditions (2.7), (3.3) and
(3.4) are satisfied. Then there exists a continuous bounded function φ(ξ), defined
for all ξ ∈ R, so that for µ = φ(ξ) the problem (3.1) has a unique T -periodic
solution of average ξ.

Proof. Starting with the solution of (3.1) of, say, zero average and the correspond-
ing µ = µ0, we continue this solution in µ. If the solution is non-singular we
can continue using the implicit function theorem. Eventually, though, a singular
solution will be reached, since this continuation in µ cannot continue indefinitely.
Indeed, integrating the equation (3.1), we see that no T -periodic solutions are
possible if |µ| > kM .

We show next that the Crandall–Rabinowitz theorem applies at a singular
solution. We recast our equation (3.1) in the operator form F = 0, by defining a
map F : C̄2

T × R → CT as follows

F (u, µ) ≡ u′′ + λu′ + kg(u) − µ − e(t) = 0.

The linearized equation is

Fu(u, µ)w = w′′ + λw′ + kg′(u)w = 0, w(t) = w(t + T ). (4.1)

If u(t) is a singular solution, i.e. the problem (4.1) has a non-trivial solution, then
we may assume that w(t) > 0 for all t, in view of Lemma 2.4. By Lemma 2.5 the
adjoint linear problem

ν′′ − λν′ + kg′(u)ν = 0, ν(t) = ν(t + T ) (4.2)

also has a T -periodic solution ν(t) > 0. We claim that the null-space of Fu is one
dimensional. Indeed, if we had two linearly independent solutions of (4.1) w1(t) >
0 and w2(t) > 0, then we could find constants c1, c2, so that c1w1(t) + c2w2(t) is
sign changing, a contradiction. Since the operator F is Fredholm of index zero,
the codimension of Fu is also one. Finally, we check that Fµ /∈ R(Fu). Indeed,
assuming otherwise we could find a non-trivial solution of

θ′′ + λθ′ + kg′(u)θ = 1, θ(t) = θ(t + T ),

i.e. 1 is orthogonal to the solution of (4.2),
∫ T

0
ν(t) dt = 0, a contradiction, since

ν > 0. Hence, the Crandall-Rabinowitz theorem applies, and we can continue the
solution smoothly through the critical point. So that the solution curves can be
continued indefinitely (globally).

According to the Lemma 4.1 the average of the solution ξ changes monotonously
on the solution curve. Hence, we can use ξ as a parameter on the solution curve,
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with (µ, u(t)) being a function of ξ. We claim that (µ, u(t)) cannot become un-
bounded at a finite ξ. We already know that |µ| ≤ kM . To get a bound on u(t),
we proceed as in the Theorem 3.1. Multiplying the equation (3.1) by u′′ and inte-

grating, we obtain the boundness of
∫ T

0
u′′2(t) dt, and then of

∫ T

0
u′2(t) dt. Since

the average ξ is bounded, we conclude a bound in H1, and hence the uniform
bound. It follows that we can continue the solution curve as ξ → ∞, and when
ξ → −∞. ¤

The above theorem shows that all solutions of (3.1) lie on a unique solution
curve in (ξ, µ, u(t)) “space”. A good idea about the curve can be gleaned from
its projection Γ : (ξ, µ), which is a graph of the function φ(ξ), described in the
above theorem. In the present generality we cannot say much about the shape
of Γ. We can get considerably more information for special type of nonlinearities
g(u) and the corresponding special class of solutions u(t), which are motivated by
G. Tarantello [12].

Definition We say that the function g(u) ∈ C2(R) is of class Tm if g(u) changes
sign infinitely many times, and if ρ denotes any point of local maximum (minimum)
of g(u) then on the interval |u − ρ| < m we have

g(u) > 0 (< 0) (4.3)

g′′(u) < 0 (> 0).

In other words, g(u) has only positive maximums and negative minimums, and
they are spaced out. For example, sinu ∈ Tπ/2.

Definition We say that the function u(t) ∈ CT is of class tm if, when writing

u(t) = ξ + Uξ(t), with
∫ T

0
Uξ(t) dt = 0, we have

|Uξ(t)| < m/2 for all t. (4.4)

As was pointed out by G. Tarantello [12], see the Lemma 4.2 below, the condition
(4.4) will hold if either λ is large, or e(t) is small. If u(t) is of class tm, it follows
that the range of u(t) belongs to an interval of length less than m. Hence, if the
range of u(t) includes any point of local maximum (minimum) of g(u), and g(u)
is of class Tm, then (4.3) holds, which implies that g′′(u) is of one sign. This will
allow us to compute the direction of bifurcation.

The following lemma shows that a solution of class tm stays in this class, as
we continue it in µ (or in ξ). The proof is from G. Tarantello [12], p. 86, but we
present it here, partly for completeness, partly to stress the uniformity in µ and
ξ. Setting u(t) = ξ + Uξ(t) in (3.1), we obtain

U ′′
ξ (t) + λU ′

ξ(t) + kg(ξ + Uξ(t)) = µ + e(t), Uξ(t + T ) = Uξ(t). (4.5)

We shall write L2 for L2(0, T ), and L∞ for L∞[0, T ].

Lemma 4.2. Assume that √
T√
3

‖e(t)‖L2

|λ| < m. (4.6)
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Then for any µ ∈ R and any ξ ∈ R we have

‖Uξ‖L∞ <
m

2
, (4.7)

i.e. any T -periodic solution of (3.1) is of class tm.

Proof. Multiply (4.5) by U ′
ξ, and integrate

λ

∫ T

0

U ′
ξ
2
(t) dt =

∫ T

0

U ′
ξ(t)e(t) dt.

This implies

‖U ′
ξ‖L2 <

‖e(t)‖L2

|λ| . (4.8)

Since Uξ(t) = Σj 6=0cje
2π

T
ijt, we have using (4.8)

‖Uξ‖L∞ ≤ Σj 6=0|cj | ≤
(

Σj 6=0
1
j2

)1/2
(

Σj 6=0j
2|cj |2

)1/2

= π√
3

√
T

2π ‖U ′
ξ‖L2 ≤

√
T

2
√

3

‖e(t)‖
L2

|λ| < m
2 . ¤

Theorem 4.2. Assume that conditions of the Theorem 4.1 are satisfied, and in
addition g(u) ∈ Tm, while u(t) ∈ tm (the last condition will hold if (4.6) is
assumed to be satisfied). Then the function µ = φ(ξ) changes sign infinitely many
times. Moreover, it is positive at any of its local maximums, and negative at its
local minimums, and it has no points of inflection.

If in addition, g(u) is a periodic function, of period, say 2π, then the same is
true for the function φ(ξ).

Proof. Integrating the equation (3.1),

k

∫ T

0

g(u(t)) dt = µT. (4.9)

Along the solution curve ξ changes continuously from −∞ to ∞. When ξ equals
to a point of local maximum of g(u), then by our assumptions the integrand on
the left in (4.9) is positive, and hence µ > 0. Similarly µ < 0, when ξ passes a
point of local minimum of ξ. Since g(u) changes sign infinitely many times, the
same is true for φ(ξ).

Turning to the extremums of φ(ξ), we differentiate the equation (3.1) in ξ

u′′
ξ + λu′

ξ + kg′(u)uξ = µ′(ξ). (4.10)

At a critical point (ξ, µ0) we have µ′(ξ0) = 0. We now set ξ = ξ0 in (4.10). Then
w(t) ≡ uξ |ξ=ξ0

satisfies the linearized problem (4.1), and hence by Lemma 2.4,
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w(t) > 0. By Lemma 2.5, the adjoint linear problem (4.2) has a non-trivial solution
ν(t) > 0. Integrating (4.10) at ξ = ξ0

k

∫ T

0

g′(u(t))w(t) dt = 0. (4.11)

We differentiate (4.10) in ξ again, and set ξ = ξ0

u′′
ξξ + λu′

ξξ + kg′(u)uξξ + kg′′(u)w2 = µ′′(ξ0). (4.12)

We multiply this equation by ν(t) and subtract the equation (4.2) multiplied by
uξξ, then integrate

k

∫ T

0

g′′(u(t))w2(t)ν(t) dt = µ′′(ξ0)

∫ T

0

ν(t) dt. (4.13)

We see from (4.11) that g′(u) changes sign on the range of u(t), i.e. the range of
u(t) includes a critical point of g(u). By our conditions, the range of u(t) includes
exactly one critical point of g(u). If it is a point of maximum of g(u), the first set
of inequalities in (4.3) holds, and then we see from (4.9) and (4.12) that µ(ξ0) > 0
and µ′′(ξ0) < 0, while the opposite inequalities hold in case of a point of minimum.

Finally, assume that g(u) is 2π-periodic. If u(t) is a solution of average ξ, then
u(t) + 2π is a solution of average ξ + 2π, corresponding to the same µ. Since the
value of ξ uniquely identifies µ (and u(t)), we have φ(ξ + 2π) = φ(ξ). ¤

Corollary 1. Under the conditions of the theorem, the problem

u′′ + λu′ + kg(u) = e(t), u(t + T ) = u(t)

has infinitely many solutions.

The forced pendulum equation is our main example:

u′′(t) + λu′(t) + k sin(u(t)) = µ + e(t), u(t + T ) = u(t). (4.14)

Because of periodicity of sinu, without restricting the generality, we will only con-

sider solutions, with average values satisfying ξ ∈ [0, 2π). As before,
∫ T

0
e(t) dt = 0.

Theorem 4.3. Assume that k satisfies the conditions k < λ2

4 + ω2 and k ≤
ω
√

ω2 + λ2, and the condition (4.6) is satisfied, with m = π
2 . Then there exist

two constants d < 0 < D, so that the problem (4.14) has exactly two T -periodic
solutions if µ ∈ (d,D), exactly one T -periodic solution if either µ = d or µ = D,
and none if µ /∈ (d,D). Moreover, all solutions lie on a unique smooth curve in
(ξ, µ) plane, given by a function µ = µ(ξ). This function has exactly two critical
points - a point of global maximum, followed by a point of global minimum, and
µ(2π−) = µ(0), see Figure 1.
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Figure 1. The solution curve for forced pendulum equation

Proof. By Lemma 4.2 any solution of our problem (4.14) is of class tπ/2, i.e. the
range of u(t) belongs to an interval, whose length is less than π. Since sinu ∈
Tπ/2, the previous Theorem 4.2 applies, implying the existence of solution curve
µ = φ(ξ), with φ(ξ) being 2π periodic. It remains to show that φ(ξ) has exactly
two critical points on [0, 2π) - a point of local maximum, followed by a point of
local minimum. If u(t) is a singular solution (which corresponds to a critical point
of φ(ξ)), and w(t) is the solution of the corresponding linearized equation, then
by (4.11) we have

∫ T

0

w(t) cos u(t) dt = 0.

Since by Lemma 2.4, w(t) is of one sign, it follows that the range of u(t) contains
either π/2 or 3π/2. If the range of u(t) contains π/2 (3π/2), the range of u(t)
lies in (0, π) (in (π, 2π)), where g(u) = sin u is positive (negative), and its second
derivative is negative (positive). If the range of a singular solution u(t) contains
π/2, then by (4.13) this is a point of maximum of µ = φ(ξ), and only one critical
point is possible in this range. Similarly, when u(t) is near 3π/2, only one point
of minimum of φ(ξ) is possible. Since φ(ξ) is 2π periodic, we have a point of local
(global) maximum, followed by a point of local (global) minimum. ¤

5. Continuation of solutions of any signature

In Theorem 3.1 we had continued in k solutions of any fixed average, by adjusting
the average of the forcing term as a function of k. Average of the solution u(t) is
just its zeroes Fourier coefficient. We show that for any fixed n, we can continue
the solution with the first n Fourier coefficients fixed, by adjusting the first n
Fourier coefficients of the forcing term as a function of k.
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Definition. Let u(t) be a real valued function, with its complex Fourier series
u(t) = Σ∞

j=−∞uje
iωjt, (u−j = ūj). We define the vector (u0, u1, . . . , un) to be

the n-signature of u(t) (or just signature, for short). (Observe, that we also know
(u−1, . . . , u−n), if the n-signature of u(t) is given.)

We will need the following straightforward generalization of Wirtinger’s in-
equality, Lemma 2.2.

Lemma 5.1. Let f(t) be a T -periodic function of class C1, whose n-signature is
zero (i.e. f0 = f1 = . . . = fn = 0 in its complex Fourier series). Then

∫ T

0

f ′2(t) dt ≥ (n + 1)2ω2

∫ T

0

f2(t) dt.

We now write the equation (1.1) in the form

u′′(t) + λu′(t) + kg(u(t)) = µ + µ1e
iωt + µ̄1e

−iωt + . . . (5.1)

+µneinωt + µ̄ne−inωt + e(t), u(t + T ) = u(t),

where e(t) has n-signature zero, i.e.
∫ T

0
e(t)eijωt dt = 0, for j = 0,±1, . . . ± n.

As before, we begin by considering the linear problem

w′′(t) + λw′(t) + kh(t)w(t) = µ0 + µ1e
iωt + µ̄1e

−iωt + . . . (5.2)

+µneinωt + µ̄ne−inωt,

w(t + T ) = w(t), w0 = w1 = . . . = wn = 0.

Here h(t) is a given continuous function of period T , and we are looking for
(µ0, µ1, . . . , µn), and the T -periodic solution w(t), whose n-signature is zero.

Lemma 5.2. Let |h(t)| ≤ M for all t ∈ R, and

k <
1

M
(n + 1)ω

√

ω2(n + 1)2 + λ2. (5.3)

Then the only solution of (5.2) is

µ0 = µ1 = . . . = µn = 0, and w(t) ≡ 0.

Proof. Multiply the equation (5.2) by its solution w(t) (i.e. w(t) has n-signature
zero). Integrate over (0, T ). The integral on the right is zero. Then we proceed
exactly as in the proof of Lemma 2.3, using the generalized Wirtinger’s inequality,
Lemma 5.1, twice. (Once we prove that w(t) ≡ 0, it follows that µ = µ1 = . . . =
µn = 0, by uniqueness of Fourier series.) ¤

Similarly to the Theorem 3.1, we prove the following result, which is an exten-
sion of the one in A. Ureña [14].

Theorem 5.1. Consider the problem (5.1), where e(t) is a T -periodic continuous
function of n-signature zero. Assume that the function g(u) ∈ C1(R) satisfies

|g(u)|, |g′(u)| ≤ M, for all u ∈ R.
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Assume finally that (5.3) holds. Then for any vector (u0, u1, . . . , un), of any length
n, one can find a unique vector (µ(k), µ1(k), . . . , µn(k)), so that the problem (5.1)
has a unique T -periodic solution of n-signature (u0, u1, . . . , un).

Proof. We begin by assuming that u0 = u1 = . . . = un = 0. By Ĉ2
T we denote the

subspace of C2
T , consisting of functions, whose n-signature is zero. We also denote

µ = (µ0, µ1, . . . , µn) ∈ Rn+1. We recast the equation (5.1) in the operator form

F (u, µ, k) = e(t), (5.4)

where F : Ĉ2
T × Rn+1 × R → CT is defined by

F (u, µ, k) = u′′(t) + λu′(t) + kg(u(t)) − µ0 − µ1e
iωt − µ̄1e

−iωt − . . .

−µneiωnt − µ̄ne−iωnt.

When k = 0 and µ = 0, the problem (5.1) has a unique T -periodic solution of n-
signature zero , as easily follows by Fourier series, similarly to Lemma 2.1. We now
continue this solution for increasing k, i.e. we solve (3.5) for (u(t), µ0, µ1, . . . µn)
as a function of k. Compute the Frechet derivative

F(u,µ)(u, µ, k)(w, µ∗) = w′′(t) + λw′(t) + kg′(u(t))w(t) − µ∗
0

−µ∗
1e

iωt − µ̄∗
1e

−iωt − . . . − µ∗
neiωnt − µ̄∗

ne−iωnt.

According to Lemma 5.2 the only solution of the linearized equation

F(u,µ)(u, µ, k)(w, µ∗) = 0, w(t + T ) = w(t), w0 = w1 = . . . = wn = 0

is (w, µ∗) = (0, 0). I.e. locally we have a curve of solutions of zero signature
u = u(k) and µ = µ(k).

To show that this curve continues for all k satisfying the condition (5.3), we need
an a priori estimate. We begin by showing that µ = µ(k) is bounded. Integrating
the equation (5.1), we conclude as before that |µ0| ≤ kM . If we multiply the
equation (5.1) by e−ijωt, for any j = 1, . . . n, and integrate, we have (keep in mind
that u(t) has n-signature zero)

µjT = k

∫ T

0

g(u(t)) e−ijωt dt,

i.e. |µj | ≤ kM . If we now denote by f(k, t) the right hand side of the equation
(5.1), then f(k, t) is bounded in L2(0, T ), uniformly in k. We now multiply the
equation (5.1) by u′′, integrate, and conclude the uniform boundness of solution,
exactly as before.

The solution (u(t), µ) that we found at the parameter value k is unique. Indeed,
any other solution we could continue for decreasing k, obtaining at k = 0 a solution
of n-signature zero for the problem

u′′(t) + λu′(t) = µ0
0 + µ0

1e
iωt + µ̄0

1e
−iωt + . . .

+µ0
neiωnt + µ̄0

ne−iωnt + e(t), u(t + T ) = u(t),
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for some vector µ0 = (µ0
0, µ

0
1, . . . µ

0
n). Multiplying this equation by e−ijωt, for

any j = 0, 1, . . . n, and integrating, we conclude that µ0 = 0, and then we obtain
another solution of n-signature zero for the linear problem

u′′(t) + λu′(t) = e(t), u(t + T ) = u(t),

which is impossible.

Turning to the solutions of an arbitrary n-signature (u0, u1, . . . un), we define

ū(t) = u(t) + u0 + u1e
iωt + ū1e

−iωt + . . . + uneiωnt + ūne−iωnt,

and find as before the solution of n-signature zero for the problem (5.4), where we
redefine F : Ĉ2

T × Rn+1 × R → CT by

F (u, µ, k) = u′′(t) + λu′(t) + kg(ū(t)) − µ0 − µ1e
iωt − µ̄1e

−iωt − . . .

−µneiωnt − µ̄ne−iωnt.

Then (ū(t), µ) gives solution of our problem (5.1), with the n-signature equal to
(u0, u1, . . . un). ¤

6. First order equations

One can develop similar results for the first order periodic problem

u′(t) + kg(u(t)) = µ + e(t), u(t + T ) = u(t). (6.1)

As before, k and µ are parameters, and e(t) is a given continuous function of period
T . Given the similarity with the second order case, we only sketch the proofs. The
following analog of Lemma 2.1 is easily proved by integration.

Lemma 6.1. Consider the linear problem

y′(t) = e(t), (6.2)

with e(t) given continuous function of period T , of zero average, i.e.
∫ T

0
e(s) ds =

0. Then the problem (6.2) has a unique T -periodic solution of any average.

Again, we begin by considering a linear periodic problem in the class of func-
tions of zero average

w′(t) + kh(t)w(t) = µ, w(t + T ) = w(t),

∫ T

0

w(s) ds = 0, (6.3)

where h(t) is a given continuous function of period T , k and µ are parameters.

Lemma 6.2. Assume that |h(t)| ≤ M and

k <
ω

M
. (6.4)

Then the only solution of (6.3) is µ = 0 and w(t) ≡ 0.
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Proof. Multiply the equation (6.3) by w′, integrate over (0, T ),

∫ T

0

w′2 dt = −k

∫ T

0

h(t)ww′ dt ≤ kM

(

∫ T

0

w2 dt

)1/2 (

∫ T

0

w′2 dt

)1/2

.

Using the Wirtinger’s inequality, we then conclude
∫ T

0

w′2 dt ≤ k2M2

∫ T

0

w2 dt ≤ k2M2

ω2

∫ T

0

w′2 dt,

i.e. w(t) ≡ 0. ¤

The positivity for the linearized problem is now “free”, as follows by simple
integration.

Lemma 6.3. Any non-trivial solution w(t) of the linearized problem

w′(t) + kh(t)w(t) = 0, w(t + T ) = w(t), (6.5)

is of one sign, for any k > 0, and any continuous function h(t).

The following lemma is also easy to prove by integration.

Lemma 6.4. The problem

ν′(t) − kh(t)ν(t) = 0, ν(t + T ) = ν(t), (6.6)

has a non-trivial solution iff the problem (6.5) does. (That happens iff
∫ T

0
h(s) ds =

0.)

The Theorem 3.1, as well as Lemma 4.1, now follow verbatim for the first order
problem (6.1), with the condition (3.4) replaced by (6.4).

The following results follow similarly to the second order case. We shall only
sketch the proof of the lemma.

Theorem 6.1. For the problem (6.1) assume that the conditions (3.3) and (6.4)
are satisfied. Then there exists a continuous bounded function φ(ξ), defined for all
ξ ∈ R, so that for µ = φ(ξ) the problem (6.1) has a unique T -periodic solution of
average ξ.

Lemma 6.5. Assume that
√

T√
3

‖e(t)‖L2 < m. (6.7)

Then any T -periodic solution of (6.1) is of class tm.

Proof. Setting as before u(t) = ξ + Uξ(t), with
∫ T

0
Uξ(t) dt = 0, we have

U ′
ξ(t) + kg(ξ + Uξ(t)) = µ + e(t), Uξ(t + T ) = Uξ(t).
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Multiplying by U ′
ξ(t) and integrating

∫ T

0

U ′
ξ
2
(t) dt =

∫ T

0

U ′
ξ(t)e(t) dt.

The rest of the proof is exactly the same as in Lemma 4.2. ¤

Theorem 6.2. Assume that conditions (3.3), (6.4) and (6.7) are satisfied, and
in addition g(u) ∈ Tm. Then the function µ = φ(ξ) (defined in Theorem 6.1)
changes sign infinitely many times. Moreover, it is positive at any of its local
maximums, and negative at its local minimums, and it has no points of inflection.
If in addition, g(u) is a periodic function, of period, say 2π, then the same is
true for the function φ(ξ). In case g(u) = sinu, the solution picture is given by
Figure 1.

Example. Consider

u′(t) + k sin(u(t)) = µ + e(t), u(t + T ) = u(t).

Here M = 1, and hence if we assume that k < ω and (6.7) holds, then the Theorem
6.2 applies. It implies, in particular, that the problem

u′(t) + k sin(u(t)) = e(t), u(t + T ) = u(t) (6.8)

has exactly two solutions, whose average ξ ∈ [0, 2π). On the other hand, a result
of R. Ortega [10] says that for every k ≥ ω one can find e(t), so that the problem
(6.8) has no solutions.
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