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Abstract

We use an integral relation from P. Korman and Y. Li [1] to prove
uniqueness of positive solutions of two-point problem, when the maxi-
mum value of solution is lying in some interval (u0, u1), 0 < u0 < u1. If
additionally one knows that the problem has exactly k solutions with
values in the (0, u0) range, one may then conclude existence of exactly
k+1 solutions with values in the (0, u1) range. In another direction, the
same integral relation allows us to give a complete analysis of positive
and sign-changing solutions of a non-local problem.
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1 Introduction

In our first result we give conditions for uniqueness of positive solutions of
two-point problem

u′′ + f(u) = 0, x ∈ (0, 1), u(0) = u(1) = 0.(1.1)

Our tool is the integral relation from P. Korman and Y. Li [1], which is
satisfied by any positive solution of (1.1). This relation was derived by a

change of the independent variable, that depended on the solution itself, and
which resulted in a linear equation (on an interval whose length depended

on the solution). This approach is very similar to the derivation of the time
map in R. Schaaf [4]. In fact both approaches led to the same condition for
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the uniqueness of solutions. Both approaches allowed one to prove existence

of at most two solutions, although the conditions were now different (see
condition (1-4-1) in [4], and (2.14) in [1]). Since the condition (1-4-1) in [4]

is hard to verify, R. Schaaf went on to develop her well-known A-B and C
conditions, which involved the third derivatives of f(u). Similarly, we were

able to derive third order conditions, based on P. Korman and Y. Li [1]. We
do not include them here, since these conditions and, to some extent, the

A-B and C conditions are superseded by the following theorem, which was
implicit in P. Korman, Y. Li and T. Ouyang [2], see also T. Ouyang and J.

Shi [3].

Theorem 1.1 ([2])
(i) Assume that f(0) ≥ 0, f ′′(u) < 0 for 0 < u < u0, f ′′(u) > 0 for u > u0.

Then only turns to the left are possible on the solution curve.
(ii) Assume that f(0) ≤ 0, f ′′(u) > 0 for 0 < u < u0, f ′′(u) < 0 for u > u0.

Then only turns to the right are possible on the solution curve.

(Of course, in both cases we conclude existence of at most two positive

solutions, with the maximum values lying in the first positive hump of f(u).)

In the present paper we notice that using the generalized averages, or

time maps, allows for some extra flexibility, compared to the bifurcation
approach, when one considers uniqueness of solution whose maximum value
lies between two numbers 0 < u0 < u1 ≤ ∞. Indeed, our conditions restrict

f(u) only on the interval (u0, u1), which is somewhat surprising, since the
range of the solution of the Dirichlet problem begins at zero. As an appli-

cation of our result, we give a new exact multiplicity result, based on the
cubic-like equations of P. Korman, Y. Li and T. Ouyang [2].

In another direction we use the same integral relation (2.5) to give a

complete description of solutions with any number of nodes to a non-local
problem

u′′ + u3 = 0, 0 < x < L,

u(0) = 0,

∫ L

0
u(s) ds = α,

where we prescribe α, which is equivalent to prescribing the average value

of the solution.

Finally, we show that the conditions for the uniqueness of solutions from
[4] and [1] actually imply that the solution is in addition non-degenerate.
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2 A general uniqueness result

We consider positive solutions of the following two point boundary value
problem (u = u(x) > 0)

u′′ + f(u) = 0, x ∈ (0, 1), u(0) = u(1) = 0.(2.1)

It is well-known that positive solutions are symmetric with respect to the
midpoint of the interval, x = 1/2, and u′(x) > 0 for x ∈ (0, 1/2), so that

u(1/2) is the maximum value of the solution.

Theorem 2.1 Assume that for some 0 < u0 < u1 ≤ ∞ we have

f(u) > 0, for u0 < u < u1,(2.2)

f ′(u)

∫ u

u0

f(t) dt −
1

2
f2(u) > 0, for u0 < u < u1.(2.3)

(Observe that we implicitly assume that f(u0) = 0.) Then the problem (2.1)
has at most one positive solution, with u0 < u(1/2) < u1.

Our tool is the following integral relation from P. Korman and Y. Li [1].

Theorem 2.2 ([1]) Assume that u(x) is any positive solution of

u′′ + f1(u) = 0, x ∈ (0, L), u(0) = u(L) = 0,(2.4)

where f1(u) is a continuous function, with f1(u) > 0 for u > 0. Define

F1(u) =
∫ u
0 f1(t) dt, and g(u) = f1(u)

2
√

F1(u)
. Then for any L > 0,

∫ L

0
g(u(x)) dx =

π
√

2
.(2.5)

Remark For the particular case of

u′′ + u3 = 0, x ∈ (0, L), u(0) = u(L) = 0

the theorem implies that

∫ L

0
u(x) dx =

π
√

2
,(2.6)

i.e. we obtain the average of the solution. We can then regard the formula

(2.5) as giving us the generalized average of the solution.

The following lemma is well-known. For completeness we sketch an easy
proof.
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Lemma 2.1 Different positive solutions of (2.1) do not intersect.

Proof: The “energy” E(x) = 1
2u′2(x) + F (u(x)) is constant along any

solution. If we have two solutions u(x) and v(x), and u(x) is greater than

v(x) near x = 0, then u(x) has higher energy than v(x). At the first point of
intersection we conclude that v(x) must have higher energy, a contradiction.

(Since both solutions are symmetric with respect to x = 1/2, the first point
of intersection would have to lie in (0, 1/2), where both u(x) and v(x) are
increasing.)

Proof of the Theorem 2.1 Assume, on the contrary, that there are two
solutions u(x) and v(x). By Lemma 2.1, we may assume that u(x) > v(x)

for all x ∈ (0, 1). Define the points ξ and η in (0, 1) by u(ξ) = u(η) = u0,
and the points α and β by v(α) = v(β) = u0. Clearly (α, β) ⊂ (ξ, η). Define

p(x) = u(x)− u0, and q(x) = v(x)− u0. Then p(x) satisfies

p′′ + f1(p) = 0, x ∈ (ξ, η), p(ξ) = p(η) = 0,(2.7)

where f1(u) = f(u+u0). Clearly q(x) satisfies the same problem, but on the

interval (α, β) instead of (ξ, η). Denote g(u) = f1(u)

2
√

F1(u)
, as before. Observe

that g(u) > 0 for all u > 0 by our condition (2.2). We then have by the
Theorem 2.2 applied to (2.7)

∫ β

α
g(p) dx <

∫ η

ξ
g(p) dx =

π
√

2
,

∫ β

α
g(q) dx =

π
√

2
.

Subtracting, we have
∫ β

α
[g(p)− g(q)] dx < 0.(2.8)

Since p(x) > q(x) on (α, β), this will lead to a contradiction, provided that

g(u) is an increasing function for all u > 0.

To verify that g(u) is increasing, we compute

2g′(u) =
f ′
1F1 − 1

2f2
1

F
3/2
1

=
f ′(u + u0)

∫ u
0 f(t + u0) dt − 1

2f2(u + u0)

F
3/2
1

.(2.9)

To see that the numerator of the last fraction is positive, we set u + u0 = v,
where v > u0. Then the numerator of (2.9) is

f ′(v)

∫ v−u0

0
f(t + u0) dt−

1

2
f2(v) = f ′(v)

∫ v

u0

f(τ) dτ −
1

2
f2(v) > 0,
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by our condition (2.3), completing the proof.

Example 1. Assume that f(u) ∈ C2(R̄+) satisfies

f(u0) = 0, f(u) > 0 for u0 < u < u1 ≤ ∞,

f ′′(u) > 0 for u0 < u < u1 ≤ ∞.

Then the problem (2.1) has at most one positive solution, with u0 < u(1/2) <
u1. In case u1 = ∞, we can assert the existence of exactly one solution with

u(1/2) > u0. Indeed, under these assumptions the condition (2.2) holds,
providing the uniqueness, while existence of solutions is well known (ob-

serve that f(u) → ∞ as u → ∞). This example roughly constitutes the
Theorem 3.4.3 in R. Schaaf [4].

The Theorem 2.1 may be used to extend many exact multiplicity results,
as the following example illustrates.

Example 2. Consider the problem

u′′ + 0.4 λu(u− 1)(u− 3)(u− 7) = 0, x ∈ (0, 1), u(0) = u(1) = 0.(2.10)

Then there exists a critical λ0 > 0 so that for 0 < λ < λ0 the problem (2.10)

has exactly one positive solution, it has exactly two positive solutions at
λ = λ0, and exactly three positive solutions for λ > λ0, see the bifurcation

diagram in Figure 1, where we draw umax = u(1/2) versus λ. The diagram
was generated by the actual computation of the solutions, using Mathemat-
ica. (The constant 0.4 in front of the nonlinear term makes the picture look

better.) We provide a proof next.

Observe that the function f(u) = 0.4 u(u−1)(u−3)(u−7) has inflection

points u1 ' 1.2 and u2 ' 4.3. In particular, it changes concavity exactly
once on (0, 3). By the Theorem 2.3 of P. Korman, Y. Li and T. Ouyang

[2] the solution set for u(0) < 3 is a parabola-like curve, i.e. there exists
a critical λ0 so the problem has zero, one or two solutions with u(0) < 3,

depending on whether 0 < λ < λ0, λ = λ0 or λ > λ0. Since f(u) is convex
for u > 7, by the Theorem 2.1 there is at most one positive solution with
u(0) > 7. Since existence of solution in this range is well known, we conclude

the proof.

In fact we have the following general exact multiplicity result.

Theorem 2.3 Assume that the function f(u) ∈ C2(R̄+) has four roots 0 ≤
a < b < c < d.
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Figure 1: Bifurcation diagram for the problem (2.10).

(i) In case a = 0 we assume that that f(u) > 0 on (b, c)∪(d,∞) and f(u) < 0
on (0, b)∪ (c, d). We also assume that there is a point θ ∈ (b, c) so that f(u)

is convex on (0, θ) and concave on (θ, c). Let
∫ c
0 f(u) du > 0, and assume

finally that

f ′(u)

∫ u

d
f(t) dt−

1

2
f2(u) > 0, for all u > d.(2.11)

Then there exists a critical λ0 > 0 so that for 0 < λ < λ0 the problem

(2.1) has exactly one positive solution, it has exactly two positive solutions
at λ = λ0, and exactly three positive solutions for λ > λ0, and the generic

bifurcation diagram is the same as in Figure 1.
(ii) In case a > 0 we assume that that f(u) > 0 on (0, a)∪(b, c)∪(d,∞) and

f(u) < 0 on (a, b) ∪ (c, d). We also assume that there is a point θ ∈ (b, c)
so that f(u) is convex on (0, θ) and concave on (θ, c). Let

∫ c
a f(u) du > 0,

and assume that (2.11) holds. We define two points β, r ∈ (b, c) by the
relations (β−a)f ′(β) = f(β), and

∫ r
a f(u) du = 0. We define i(u) = f2(u)−

2F (u)f ′(u), and assume finally that either f ′(r) < 0 or i(β) > 0 holds. Then

there exists a critical λ0 > 0 so that for 0 < λ < λ0 the problem (2.1) has
exactly two positive solution, it has exactly three positive solutions at λ = λ0,

and exactly four positive solutions for λ > λ0, and the generic bifurcation
diagram is the same as in Figure 2.

We remark that condition (2.11) holds, provided that f ′′(u) > 0 for
u > d.
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Figure 2: Bifurcation diagram for the problem (2.12).

Proof: In case a = 0 the proof is exactly the same as in the Example
2. In case a > 0 the proof is similar, this time using the Theorem 2.7 in P.

Korman, Y. Li and T. Ouyang [2].

Example 3. Consider the problem

u′′ + 0.2 λ(u − 1)(u− 2)(u− 9)(u − 13) = 0, u(0) = u(1) = 0.(2.12)

For the function f(u) = 0.2 (u − 1)(u − 2)(u − 9)(u − 13) we calculate

the inflection points u1 ' 3.38 and u2 ' 9.12. In particular, it changes
concavity exactly once on (0, 9), and is convex for u ≥ 13. We also calculate
β ' 4.79 and i(β) ' 862 > 0. The Theorem 2.3 applies, implying existence

of exactly two, exactly three, or exactly four positive solutions, depending
on the value of λ. The actual bifurcation diagram, computed using the

Mathematica software, is given in Figure 2.

3 Non-degeneracy of solutions

It was observed in R. Schaaf [4] and in P. Korman and Y. Li [1] that
the problem (2.1) has at most one positive solution, provided that I(u) ≡
f ′(u)F (u)− 1

2f2(u) does not change sign, where as usual F (u) =
∫ u
0 f(t) dt.

Theorem 3.1 Assume that the function f(u) ∈ C1(R̄+) satisfies f(u) > 0
for u > 0, and either

I(u) = f ′(u)F (u) −
1

2
f2(u) > 0 for almost all u > 0(3.1)
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or the opposite inequality holds. Then any positive solution of (2.1) is non-

degenerate, i.e. the corresponding linearized problem

w′′ + f ′(u)w = 0, x ∈ (0, 1), w(0) = w(1) = 0(3.2)

has only a trivial solution.

Proof: If w(x) is a non-trivial solution of (3.2), it is well known that we
may assume that w(x) > 0 on (0, 1), see e.g. [2]. We use a test function

z(x) =
√

F (u(x)). One sees that z(x) satisfies

z′′ + f ′(u)z = I

(

u′2

2F 3/2
+

1

F 1/2

)

, x ∈ (0, 1), z(0) = z(1) = 0.(3.3)

From the equations (3.2) and (3.3) we conclude that

∫ 1

0
I

(

u′2

2F 3/2
+

1

F 1/2

)

w dx = 0,

which is a contradiction, since the integrand has the same sign as I .

Remark The condition (3.1) may be replaced by a simpler and more general

condition
uf ′(u)− f(u) does not change sign for u > 0.(3.4)

(We still assume that f(u) > 0 for u > 0.)

Indeed, we begin by observing

d2

du2
(
√

F (u)) =
I

2F 3/2
≡ J(u),

where J(u) has the same sign as I(u). Integrating between some a > 0 and
u > 0,

d

du
(
√

F (u)) =

∫ u

a
J(ξ) dξ + c > 0,(3.5)

where c = f(a)

2
√

F (a)
> 0. Integrating (3.5),

√

F (u) = cu + c1 +

∫ u

a
(u − ξ)J(ξ) dξ,(3.6)

where c1 = −
∫ a
0 ξJ(ξ) dξ. From (3.6) we find F (u), and then f(u) and f ′(u)

by differentiation. We then have

uf ′(u)− f(u) = 2
√

F (u)J(u)u + 2

∫ u

0
ξJ(ξ) dξ

(
∫ u

a
J(ξ) dξ + c

)

.
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In view of (3.5) it follows that if J(u) is positive (negative), so is uf ′(u) −
f(u).

Since non-degeneracy of solutions is well known under the condition

(3.4), we obtain an alternative proof of the Theorem 3.1.

4 A non-local problem

We begin with a simple observation. It is well known that for any L > 0

the problem (here u = u(x))

u′′ + u3 = 0, 0 < x < L, u(0) = u(L) = 0

has a unique positive solution, and a unique negative solution. If we now

take a positive solution on the interval (0, L/k), followed by the negative
solution on (L/k, 2L/k), and so on, then we obtain a solution with k − 1
sign changes, for any positive integer k.

We now consider a non-local problem, where instead of a second bound-
ary condition we prescribe the average value of the solution on some interval

(0, L)

u′′ + u3 = 0, 0 < x < L,(4.1)

u(0) = 0,
∫ L
0 u(s) ds = α,

where α is a prescribed constant. We are interested in both positive, nega-
tive and sign-changing solutions, i.e. we shall talk of solutions with k sign

changes, where k ≥ 0. Without loss of generality we may assume α ≥ 0
(otherwise, consider v = −u). If α = 0, it is clear that there exists exactly

two solution of (4.1) with k sign changes, for any odd k ≥ 1. Indeed, a solu-
tion of the equation in (4.1) with u(0) = u(L) = 0 having an odd number of
roots inside (0, L), and its negative, provide the desired solutions of (4.1).

So that we may assume α > 0.

Theorem 4.1 For any 0 < α < π√
2

there exists exactly one solution of

(4.1) with k sign changes, for any k ≥ 0. For α = π√
2

there exists exactly

one solution with k sign changes, for any even k ≥ 0, and no solutions if k

is odd. For any α > π√
2

the problem (4.1) has no solutions.
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Proof: The problem “scales right”. Setting x = bt, and u = 1
b v, we see

that v = v(t) satisfies

v′′ + v3 = 0, 0 < t < L
b ,(4.2)

v(0) = 0,
∫

L

b

0 v(s) ds = α.

Comparing with (4.1), we see that only the length of the interval has changed.

Hence we have a one-to-one map between the solution sets on any two in-
tervals. So consider a solution U(x) of the equation u′′ + u3 = 0, with

u(0) = 0, which has k sign changes, whose roots are x = 1, 2, . . ., and such
that U(x) > 0 on (0, 1), U(x) < 0 on (1, 2), and so on. According to the

formula (2.6), the integral of U(x) over any of its positive humps is equal
to π√

2
, while the integral of U(x) over any of its negative humps is − π√

2
.

Imagine cutting this solution with a sliding vertical line x = ξ. By conti-
nuity, for any α ∈ (0, π√

2
] we can find a unique ξ ∈ (0, 1] so that U(x) is

positive solution of (4.1) on the interval (0, ξ). We then map this solution

to the original interval (0, L) by the above transformation. Similarly, for
any α ∈ (0, π√

2
) we can find a unique ξ ∈ (1, 2) so that we have a solution

of (4.1) on the interval (0, ξ), with exactly one sign change. We then map

U(x) to the original interval, as before. Similarly we construct solutions
with arbitrarily many sign changes.

By the Theorem 2.1, no solution is possible in case α > π√
2
.
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