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Abstract The paper studies families of positive solution curves for non-autonomous two-
point problems

u′′ + λf (u) − μg(x) = 0, −1 < x < 1, u(−1) = u(1) = 0,

depending on two positive parameters λ and μ. We regard λ as a primary parameter, giv-
ing us the solution curves, while the secondary parameter μ allows for evolution of these
curves. We give conditions under which the solution curves do not intersect, and the maxi-
mum value of solutions provides a global parameter. Our primary application is to constant
yield harvesting for diffusive logistic equation. We implement numerical computations of
the solution curves, using continuation in a global parameter, a technique that we developed
in (Korman in Nonlinear Anal. 93:226, 2013).
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1 Introduction

We study positive solutions of non-autonomous two-point problems

u′′ + λf (u) − μg(x) = 0, −1 < x < 1, u(−1) = u(1) = 0, (1.1)

depending on two positive parameters λ and μ. We assume that f (u) ∈ C2(R̄+), and g(x) ∈
C1(−1,1) ∩ C[−1,1] satisfies

g(−x) = g(x), for x ∈ (0,1), (1.2)
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g(0) > 0, and xg′(x) ≥ 0, for x ∈ (−1,1). (1.3)

In case g(x) is a constant, one can use the time map method, see K.C. Hung and
S.H. Wang [7, 8] who have studied similar multiparameter problems, or the book by
S.P. Hastings and J.B. McLeod [6]. We show that under the conditions (1.2) and (1.3) one
can still get detailed results on the solution curves u = u(x,λ), where we regard λ as a
primary parameter, and on the evolution of these curves when the secondary parameter μ

changes. We say that the solution curves u = u(x,λ) are the λ-curves. We also consider the
μ-curves, by regarding λ as the secondary parameter.

By B. Gidas, W.-M. Ni and L. Nirenberg [4], any positive solution of (1.1) is an even
function, and moreover u′(x) < 0 for x ∈ (0,1). It follows that u(0) is the maximum value
of the solution u(x). Our first result says that u(0) is a global parameter, i.e., its value
uniquely determines the solution pair (λ,u(x)) (μ is assumed to be fixed). It follows that
a planar curve (λ,u(0)) gives a faithful representation of the solution set of (1.1), so that
(λ,u(0)) describes the global solution curve. Then we show positivity of any non-trivial
solution of the linearized problem for (1.1). This allows us to compute the direction of turn
for convex and concave f (u).

Turning to the secondary parameter μ, we show that solution curves at different μ’s do
not intersect, which allows us to discuss the evolution of solution curves in μ.

We apply our results to a logistic model with fishing. S. Oruganti, J. Shi, and R. Shiv-
aji [16] considered a class of general elliptic equations on an arbitrary domain, which in-
cludes

u′′ + λu(1 − u) − μg(x) = 0, −1 < x < 1, u(−1) = u(1) = 0.

They proved that for λ sufficiently close to the principal eigenvalue λ1, the μ-curves are as
in Fig. 2 below. We show that such curves are rather special, with the solution curves as in
Fig. 3 below being more common. Our approach is to study the λ-curves first, leading to
the understanding of the μ-curves. We obtain an exhaustive result in case g(x) is a constant.
The parameter μ > 0 quantifies the amount of fishing in the logistic model. We also consider
the case μ < 0, corresponding to “stocking” of fish. Previous work on the logistic equation
with harvesting also includes D.G. Costa et al. [3], and P. Girão and H. Tehrani [5].

Using the fact that u(0) is a global parameter, we implement numerical computations
of the solution curves, illustrating our results. We use continuation in a global parameter,
a technique that we developed in [11].

2 Families of Solution Curves

The following result is included in B. Gidas, W.-M. Ni and L. Nirenberg [4], see also P. Ko-
rman [9] for an elementary proof.

Lemma 2.1 Under the conditions (1.2) and (1.3), any positive solution of (1.1) is an even
function, with u′(x) < 0 for all x ∈ (0,1], so that x = 0 is a point of global maximum.

We begin by considering the secondary parameter μ to be fixed. To stress that, we call
h(x) = μg(x), and consider positive solutions of

u′′ + λf (u) − h(x) = 0, −1 < x < 1, u(−1) = u(1) = 0. (2.1)
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Lemma 2.2 Assume that f (u) ∈ C(R̄+) satisfies f (u) > 0 for u > 0, and h(x) satisfies the
conditions (1.2) and (1.3). Then u(0), the maximum value of any positive solution, uniquely
identifies the solution pair (λ,u(x)).

Proof Observe from (2.1) that f (u(0)) > 0 for any positive solution u(x). Let (λ1, v(x)) be
another solution of (2.1), with v(0) = u(0), v′(0) = u′(0) = 0, and λ1 > λ. From Eq. (2.1),
v′′(0) < u′′(0), and hence v(x) < u(x) for small x > 0. Let ξ ≤ 1 be their first point of
intersection, i.e., u(ξ) = v(ξ). Clearly

∣
∣v′(ξ)

∣
∣ ≤ ∣

∣u′(ξ)
∣
∣. (2.2)

Multiplying Eq. (2.1) by u′, and integrating over (0, ξ), we get

1

2
u′2(ξ) + λ

[

F
(

u(ξ)
) − F

(

u(0)
)] −

∫ ξ

0
h(x)u′(x) dx = 0,

where F(u) = ∫ u

0 f (t) dt . Integrating by parts, we conclude

1

2
u′2(ξ) = λ

[

F
(

u(0)
) − F

(

u(ξ)
)] + h(ξ)u(ξ) − h(0)u(0) −

∫ ξ

0
h′(x)u(x) dx.

Similarly,

1

2
v′2(ξ) = λ1

[

F
(

u(0)
) − F

(

u(ξ)
)] + h(ξ)u(ξ) − h(0)u(0) −

∫ ξ

0
h′(x)v(x) dx,

and then, subtracting,

1

2

[

u′2(ξ) − v′2(ξ)
] = (λ − λ1)

[

F
(

u(0)
) − F

(

u(ξ)
)] +

∫ ξ

0
h′(x)

(

v(x) − u(x)
)

dx.

Since v(x) < u(x) on (0, ξ), the second term on the right is non-positive, while the first term
on the right is negative, since F(u) is an increasing function. It follows that |u′(ξ)| < |v′(ξ)|,
which contradicts (2.2). �

Lemma 2.3 Assume that f (u) ∈ C(R̄+), and h(x) satisfies the conditions (1.2) and (1.3).
Then the curves of positive solutions of (1.1) in (λ,u(0)) plane, computed at different μ’s,
do not intersect.

Proof Assume, on the contrary, that v(x) is a solution of

v′′ + λf (v) − μ1g(x) = 0, −1 < x < 1, v(−1) = v(1) = 0, (2.3)

with μ1 > μ, but u(0) = v(0), where u(x) is a solution of (1.1). Then u′′(0) < v′′(0), and
hence u(x) < v(x) for small x > 0. Let ξ ≤ 1 be their first point of intersection, i.e., u(ξ) =
v(ξ). Clearly

∣
∣u′(ξ)

∣
∣ ≤ ∣

∣v′(ξ)
∣
∣. (2.4)

Multiplying Eq. (1.1) by u′, and integrating over (0, ξ), we get

1

2
u′2(ξ) + λ

[

F
(

u(ξ)
) − F

(

u(0)
)] = μ

∫ ξ

0
g(x)u′(x) dx.
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Similarly, using (2.3), we get

1

2
v′2(ξ) + λ

[

F
(

u(ξ)
) − F

(

u(0)
)] = μ1

∫ ξ

0
g(x)v′(x) dx.

Subtracting, we obtain

1

2

[

u′2(ξ) − v′2(ξ)
] = μ

∫ ξ

0
g(x)u′(x) dx − μ1

∫ ξ

0
g(x)v′(x) dx

> μ1

[∫ ξ

0
g(x)u′(x) dx −

∫ ξ

0
g(x)v′(x) dx

]

= μ1

∫ ξ

0
g′(x)

(

v(x) − u(x)
)

dx > 0.

Hence, |u′(ξ)| > |v′(ξ)|, which contradicts (2.4). �

Corollary 1 Assume that λ is fixed in (1.1), and μ is the primary parameter. Assume that
f (u) ∈ C(R̄+) satisfies f (u) > 0 for u > 0, and g(x) satisfies the conditions (1.2) and (1.3).
Then the maximum value of solution u(0) is a global parameter, i.e., it uniquely identifies
the solution pair (μ,u(x)).

Proof If at some λ0 we had another solution pair (μ1, u1(x)) with u(0) = u1(0), then the
λ-curves at μ and μ1 would intersect at (λ0, u(0)), contradicting Lemma 2.2. �

The linearized problem for (1.1) is

w′′ + λf ′(u)w = 0, −1 < x < 1, w(−1) = w(1) = 0. (2.5)

We call the solution of (1.1) singular if (2.5) has non-trivial solutions. Since the solution set
of (2.5) is one-dimensional (parameterized by w′(−1)), it follows that w(−x) = w(x), and
w′(0) = 0.

Lemma 2.4 Assume that f (u) ∈ C1(R̄+), and g(x) satisfies the conditions (1.2) and (1.3),
and let u(x) be a positive solution of (1.1). Then any non-trivial solution of (2.5) is of one
sign, i.e., we may assume that w(x) > 0 for all x ∈ (−1,1).

Proof Assuming the contrary, we can find a point ξ ∈ (0,1) such that w(ξ) = w(1) = 0,
and w(x) > 0 on (ξ,1). Differentiate Eq. (1.1)

u′′′ + λf ′(u)u′ − μg′(x) = 0.

Combining this with (2.5),

(

u′w′ − u′′w
)′ + μg′(x) = 0. (2.6)

Integrating over (ξ,1),

u′(1)w′(1) − u′(ξ)w′(ξ) + μ

∫ 1

ξ

g′(x) dx = 0.
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All three terms on the left are non-negative, and the second one is positive, which results in
a contradiction. �

Lemma 2.5 Assume that f (u) ∈ C(R̄+), and g(x) satisfies the conditions (1.2) and (1.3).
Let u(x) be a positive and singular solution of (1.1), with u′(1) < 0, and w(x) > 0 a solution
of (2.5). Then

∫ 1

0
f (u)w dx > 0.

Proof By (2.6), the function u′w′ − u′′w is non-increasing on (0,1), and hence

u′w′ − u′′w ≥ u′(1)w′(1).

Integrating over (0,1), and expressing u′′ from (1.1), gives

2
∫ 1

0
w

(

λf (u) − μg(x)
)

dx ≥ u′(1)w′(1) > 0,

which implies the lemma. �

Theorem 2.1 Assume that f (u) ∈ C1(R̄+), and g(x) satisfies the conditions (1.2) and (1.3).
Then positive solutions of the problem (1.1) can be continued globally either in λ or in μ,
on smooth solution curves, so long as u′(1) < 0.

Proof At any non-singular solution of (1.1), the implicit function theorem applies (see e.g.,
L. Nirenberg [13], or P. Korman [10] for more details), while at the singular solutions the
Crandall-Rabinowitz [2] bifurcation theorem applies, with Lemma 2.5 verifying its crucial
“transversality condition”, see e.g., P. Korman [10] (or [12, 15]) for more details. In either
case we can always continue the solution curves. �

Theorem 2.2

(i) Assume that f (u) ∈ C2[0,∞) is concave. Then only turns to the right are possible in
the (λ,u(0)) plane, when solutions are continued in λ, and only turns to the left are
possible in the (μ,u(0)) plane, when solutions are continued in μ.

(ii) Assume that f (u) ∈ C2[0,∞) is convex. Then only turns to the left are possible in
the (λ,u(0)) plane, when solutions are continued in λ, and only turns to the right are
possible in the (μ,u(0)) plane, when solutions are continued in μ.

Proof Assume that when continuing in λ, we encounter a critical point (λ0, u0), i.e.,
the problem (2.5) has a non-trivial solution w(x) > 0. By Lemma 2.5, the Crandall-
Rabinowitz [2] bifurcation theorem applies. This theorem implies that the solution set near
(λ0, u0) is given by a curve (λ(s), u(s)) for s ∈ (−δ, δ), with λ(s) = λ0 + 1

2λ′′(0)s2 + o(s2),
and

λ′′(0) = −λ0

∫ 1
−1 f ′′(u)w3 dx
∫ 1

−1 f (u)w dx
,

see e.g., [10]. When f (u) is concave (convex), λ′′(0) is positive (negative), and a turn to the
right (left) occurs on the solution curve.
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If a critical point (μ0, u0) is encountered when continuing in μ, the Crandall-Rabinowitz
[2] bifurcation theorem implies that the solution set near (μ0, u0) is given by (μ(s), u(s))

for s ∈ (−δ, δ), with μ(s) = μ0 + 1
2μ′′(0)s2 + o(s2), and

μ′′(0) = λ

∫ 1
−1 f ′′(u)w3 dx
∫ 1

−1 g(x)w dx
,

see e.g., [14]. When f (u) is concave (convex), μ′′(0) is negative (positive), and a turn to the
left (right) occurs on the solution curve. �

3 Numerical Computation of the Solution Curves

In this section we present computations of the global curves of positive solutions for
the problem (1.1), which are based on our paper [11]. We assume that the conditions of
Lemma 2.2 hold, so that α ≡ u(0) is a global parameter. We think of the parameter μ as sec-
ondary, and we begin with the problem (2.1) (i.e., we set μg(x) = h(x)). Since any positive
solution u(x) is an even function, we shall compute it on the half-interval (0,1), by solving

u′′ + λf (u) − h(x) = 0 for 0 < x < 1, u′(0) = u(1) = 0. (3.1)

A standard approach to numerical computations involves continuation in λ by using the
predictor-corrector methods, see e.g., E.L. Allgower and K. Georg [1]. These methods are
well developed, but not easy to implement, because the solution curve u = u(x,λ) may
consist of several parts, each having multiple turns. Here λ is a local parameter, but not a
global one.

Since α = u(0) is a global parameter, we shall compute the solution curve (λ,u(0)) of
(3.1) in the form λ = λ(α), with α = u(0). If we solve the initial value problem

u′′ + λf (u) − h(x) = 0, u(0) = α, u′(0) = 0, (3.2)

then we need to find λ, so that u(1) = 0, in order to obtain the solution of (3.1), with
u(0) = α. Rewrite Eq. (3.2) in the integral form

u(x) = α − λ

∫ x

0
(x − t)f

(

u(t)
)

dt +
∫ x

0
(x − t)h(t) dt,

and then the equation for λ is

F(λ) ≡ u(1) = α − λ

∫ 1

0
(1 − t)f

(

u(t)
)

dt +
∫ 1

0
(1 − t)h(t) dt = 0. (3.3)

We solve this equation by using Newton’s method

λn+1 = λn − F(λn)

F ′(λn)
.

We have

F(λn) = α − λn

∫ 1

0
(1 − t)f

(

u(t, λn)
)

dt +
∫ 1

0
(1 − t)h(t) dt,

F ′(λn) = −
∫ 1

0
(1 − t)f

(

u(t, λn)
)

dt − λn

∫ 1

0
(1 − t)f ′(u(t, λn)

)

uλ dt,



Families of Solution Curves for Some Non-autonomous Problems

Fig. 1 The curve of positive
solutions for the problem (3.6) at
μ = 0.9, μ = 1.5 and μ = 2.2

where u(x,λn) and uλ are respectively the solutions of

u′′ + λnf (u) − h(x) = 0, u(0) = α, u′(0) = 0, (3.4)

u′′
λ + λnf

′(u(x,λn)
)

uλ + f
(

u(x,λn)
) = 0, uλ(0) = 0, u′

λ(0) = 0. (3.5)

(As we vary λ, we keep u(0) = α fixed, that is why uλ(0) = 0.) This method is very easy to
implement. It requires repeated solutions of the initial value problems (3.4) and (3.5) (using
the NDSolve command in Mathematica).

Example Using Mathematica software, we have computed the solution curves in (λ,u(0))

plane for the problem

u′′ + λu(10 − 2u) − μ
(

1 + 0.2x2
) = 0, −1 < x < 1, u(−1) = u(1) = 0, (3.6)

at μ = 0.9, μ = 1.5 and μ = 2.2. Results are presented in Fig. 1. (The curve in the middle
corresponds to μ = 1.5.)

We now discuss numerical continuation of solutions in the secondary parameter. We
consider again

u′′ + λf (u) − μg(x) = 0, −1 < x < 1, u(−1) = u(1) = 0, (3.7)

and assume λ to be fixed, and we continue the solutions in μ. By Corollary 1, α = u(0) is
a global parameter, and we shall compute the solution curve (μ,u(0)) of (3.1) in the form
μ = μ(α). As before, to find μ = μ(α), we need to solve

F(μ) ≡ u(1) = α − λ

∫ 1

0
(1 − t)f

(

u(t)
)

dt + μ

∫ 1

0
(1 − t)g(t) dt = 0.

We solve this equation by using Newton’s method

μn+1 = μn − F(μn)

F ′(μn)
,

with

F(μn) = α − λ

∫ 1

0
(1 − t)f

(

u(t,μn)
)

dt + μn

∫ 1

0
(1 − t)g(t) dt,
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Fig. 2 The curve of positive
solutions for the problem (3.8)

Fig. 3 The curve of positive
solutions for the problem (3.9)

F ′(μn) = −λ

∫ 1

0
(1 − t)f ′(u(t,μn)

)

uμ dt +
∫ 1

0
(1 − t)g(t) dt,

where u(x,μn) and uμ are respectively the solutions of

u′′ + λf (u) − μng(x) = 0, u(0) = α, u′(0) = 0,

u′′
μ + λf ′(u(x,μn)

)

uμ − g(x) = 0, uμ(0) = 0, u′
μ(0) = 0.

(As we vary μ, we keep u(0) = α fixed, that is why uμ(0) = 0.)

Example We have continued in μ the positive solutions of

u′′ + u(4 − u) − μ
(

1 + x2
) = 0, −1 < x < 1, u(−1) = u(1) = 0. (3.8)

The curve of positive solutions is given in Fig. 2.

Example We have continued in μ the positive solutions of

u′′ + 2.4u(4 − u) − μ
(

1 + x2
) = 0, −1 < x < 1, u(−1) = u(1) = 0. (3.9)

The curve of positive solutions is given in Fig. 3. At μ ≈ 2.28634, the solutions become
sign changing, negative near x = ±1.
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4 Diffusive Logistic Equation with Harvesting

Recall that the eigenvalues of

u′′ + λu = 0, −1 < x < 1, u(−1) = u(1) = 0

are λn = n2π2

4 , and in particular λ1 = π2

4 , λ2 = π2.
We consider positive solutions of

u′′ + λu(1 − u) − μ = 0, −1 < x < 1, u(−1) = u(1) = 0, (4.1)

with positive parameters λ and μ. It is easy to see that no positive solutions exist if λ ≤ λ1 =
π2

4 , and by maximum principle any positive solution satisfies 0 < u(x) < 1. The following
result gives a complete description of the set of positive solutions.

Theorem 4.1 For any fixed μ the set of positive solutions of (4.1) is a parabola-like curve
opening to the right in (λ,u(0)) plane (the λ-curves). The upper branch continues for all
λ after the turn, while the solutions on the lower branch become sign-changing after some
λ = λ̄ (ux(±1, λ̄) = 0, see Fig. 1). For any fixed λ the set of positive solutions of (4.1) is a
parabola-like curve opening to the left in (μ,u(0)) plane (the μ-curves). Different λ-curves
(and different μ-curves) do not intersect. The λ-curves and the μ-curves share the turning
points. Namely, if at μ = μ0, the λ-curve turns at the point (λ0, α), then at λ = λ0, the
μ-curve turns at the point (μ0, α).

If λ ∈ (λ1, λ2], then the μ-curve joins the point (0,μ1), with some μ1 > 0, to (0,0), with
exactly one turn to the left at some μ0 (as in Fig. 2). If λ > λ2, then the μ-curve joins the
point (0,μ1), with some μ1 > 0, to some point (μ̄ > 0, α > 0), with exactly one turn to the
left at some μ0 > μ̄ (as in Fig. 3). Solutions on the lower branch become sigh-changing for
μ < μ̄.

We remark that in case λ ∈ (λ1, λ2], a more general result was given in J. Shi [16], by a
more involved method.

The proof will depend on several lemmas, which we state for a more general problem

u′′ + λf (u) − μ = 0, −1 < x < 1, u(−1) = u(1) = 0. (4.2)

Lemma 4.1 Assume that f (u) ∈ C1(R̄+) satisfies f (0) = 0, and f (u(x)) > 0 for any posi-
tive solution of (4.2), for all x ∈ (−1,1). Assume that u(x,λ) arrives at the point λ0 where
the positivity of solutions is lost (i.e., ux(±1, λ0) = 0) with the maximum value u(0, λ)

decreasing along the solution curve. Then the positivity is lost forward in λ at λ0. (I.e.,
u(x,λ) > 0 for all x ∈ (−1,1) if λ < λ0, and u(x,λ) is sign-changing for λ > λ0.)

Proof Since for positive solutions ux(x,λ0) < 0 for x ∈ (0,1), the only way for solutions to
become sign-changing is to have ux(±1, λ0) = 0. Assume, on the contrary, that positivity is
lost backward in λ. Then by our assumption

uλ(0, λ0) ≥ 0. (4.3)

Differentiating Eq. (4.2) in λ, we have

u′′
λ + λf ′(u)uλ = −f (u), −1 < x < 1, uλ(−1) = uλ(1) = 0. (4.4)
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Differentiating Eq. (4.2) in x, gives

u′′
x + λf ′(u)ux = 0. (4.5)

Combining Eqs. (4.4) and (4.5),

(

u′
λu

′ − uλu
′′)′ = −f (u)ux > 0, for x ∈ (0,1).

It follows that the function q(x) ≡ u′
λu

′ − uλu
′′ is increasing, with q(0) ≥ 0 by (4.3), and

q(1) = 0, a contradiction. �

Lemma 4.2 Assume that f (u) ∈ C1(R̄+) satisfies f (0) = 0, and f (u(x)) > 0 for any posi-
tive solution of (4.2), for all x ∈ (−1,1). Assume that u(x,μ) arrives at the point μ0 where
the positivity is lost (i.e., ux(±1,μ0) = 0) with the maximum value u(0,μ) decreasing along
the solution curve. Then the positivity is lost backward in μ at μ0. (I.e., u(x,μ) > 0 for all
x ∈ (−1,1) if μ > μ0, and u(x,μ) is sign-changing for μ < μ0.)

Proof Assume, on the contrary, that positivity is lost forward in μ. Then by our assumption

uμ(0,μ0) ≤ 0. (4.6)

Differentiating Eq. (4.2) in μ, we have

u′′
μ + λf ′(u)uμ = 1, −1 < x < 1, uμ(−1) = uμ(1) = 0. (4.7)

Combining Eqs. (4.5) and (4.7),

(

u′
μu′ − uμu′′)′ = ux < 0, for x ∈ (0,1).

It follows that the function r(x) ≡ u′
μu′ − uμu′′ is decreasing, with r(0) ≤ 0 by (4.6), and

r(1) = 0, a contradiction. �

Lemma 4.3 Assume that f (u) ∈ C1[0,∞), f (0) = 0, and f ′(u) is a decreasing function
for u > 0. Then for any λ > 0 there is at most one solution pair (μ,u(x)), with u′(±1) = 0.

Proof Assume, on the contrary, that there are two solution pairs (μ1, u(x)) and (μ2, v(x)),
with μ2 > μ1, satisfying

u′′ + λf (u) − μ1 = 0, −1 < x < 1, u(±1) = u′(±1) = 0, (4.8)

v′′ + λf (v) − μ2 = 0, −1 < x < 1, v(±1) = v′(±1) = 0. (4.9)

Since v′′(1) = μ2 > μ1 = u′′(1), we have v(x) > u(x) for x close to 1. Two cases are possi-
ble.

(i) v(x) > u(x) for x ∈ (0,1). Differentiating Eqs. (4.8) and (4.9), we get

u′′
x + λf ′(u)ux = 0, ux < 0 on (0,1), ux(0) = ux(1) = 0,

v′′
x + λf ′(v)vx = 0, vx < 0 on (0,1), vx(0) = vx(1) = 0.

Since f ′(u) > f ′(v), we have a contradiction by Sturm’s comparison theorem.
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(ii) There is ξ ∈ (0,1) such that v(x) > u(x) for x ∈ (ξ,1), while v(ξ) = u(ξ) and
u′(ξ) ≤ v′(ξ) < 0. Multiply Eq. (4.8) by u′, and integrate over (ξ,1) (with F(u) =
∫ u

0 f (t) dt )

−1

2
u′2(ξ) − λF

(

u(ξ)
) + μ1u(ξ) = 0.

Similarly, from (4.9)

−1

2
v′2(ξ) − λF

(

u(ξ)
) + μ2u(ξ) = 0.

Subtracting

(μ2 − μ1)u(ξ) = 1

2

(

v′2(ξ) − u′2(ξ)
)

.

The quantity on the left is positive, while the one on the right is non-positive, a contradic-
tion. �

Lemma 4.4 For any α ∈ (0, 3
4 ) there exists a unique pair (λ̄, μ̄), with λ̄ > λ2 and μ̄ > 0,

and a positive solution of (4.1) with u(0) = α and u′(±1) = 0. Moreover, if μ̄ → 0, then
λ̄ ↓ λ2 = π2.

Proof Multiplying Eq. (4.1) by u′, we see that the solution with u′(±1) = 0 satisfies

1

2
u′2 + λ̄

(
1

2
u2 − 1

3
u3

)

− μ̄u = 0. (4.10)

Evaluating this at x = 0

λ̄

(
1

2
α − 1

3
α2

)

= μ̄. (4.11)

We also express from (4.10)

du

dx
= −

√

2μ̄u − λ̄

(

u2 − 2

3
u3

)

, for x ∈ (0,1).

We express μ̄ from (4.11), separate the variables and integrate, getting

∫ α

0

du
√

(α − 2
3α2)u − (u2 − 2

3u3)

=
√

λ̄.

Setting here u = αv, we express

λ̄ =
(∫ 1

0

dv
√

(1 − 2
3 α)v − (v2 − 2

3 αv3)

)2

. (4.12)

The formulas (4.12) and (4.11) let us compute λ̄, and then μ̄, for any α ∈ (0, 3
4 ). (For α ∈

(0, 3
4 ), the quantity inside the square root in (4.12), which is v(1 − v)[1 − 2

3α(1 + v)], is
positive for all v ∈ (0,1).)
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If μ̄ → 0, then from (4.11), α → 0 (recall that λ > λ1), and then from (4.12)

λ̄ ↓
(∫ 1

0

dv√
v − v2

)2

= π2,

completing the proof. �

Proof of Theorem 4.1 It is easier to understand the λ-curves, so we assume first that μ

is fixed. It is well known that for λ large enough the problem (4.1) has a positive stable
(“large”) solution, with u(0, λ) increasing in λ (see e.g., [14]). Let us continue this solution
for decreasing λ. This curve does not continue to λ’s ≤ λ1, and it cannot become sign-
changing while continued to the left, by Lemma 4.1, hence a turn to the right must occur.
After the turn, standard arguments imply that solutions develop zero slope at ±1, and be-
come sign-changing for λ > λ̄μ, see e.g., [10]. By Theorem 2.2, exactly one turn occurs on
each λ-curve, and by Lemma 4.4, infμ λ̄μ = λ2 = π2.

Turning to the μ-curves, for any fixed λ̃ > λ1 we can find a positive solution on the curve
μ = 0 (the curve that bifurcates from the trivial solution at λ = λ1). We now slide down from
this point in the (λ,u(0)) plane, by varying μ. As we increase μ (keeping λ̃ fixed), we slide
to different λ-curves. At some μ we reach a λ-curve which has its turn at λ = λ̃. After that
point, μ begins to decrease on the λ-curves. If λ̃ ∈ (λ1, λ2], we slide all the way to μ = 0,
by Lemma 4.4. Hence, the μ-curve at λ̃ is as in Fig. 2. In case λ̃ > λ2, by Lemma 4.4, we
do not slide all the way to μ = 0, and hence the μ-curve at λ̃ is as in Fig. 3. By Lemma 4.3,
this curve exhausts the set of all positive solutions of (4.1) (any other solution would lie on
a solution curve with no place to go, when continued in μ). �

Remark Our results also imply that the μ-curves described in Theorem 4.1 continue without
turns for all μ < 0. (Observe that Lemma 2.4 holds for autonomous problems, regardless
of the sign of μ, see e.g., [10].) Negative μ’s correspond to “stocking” of fish, instead of
“fishing”. In Fig. 4 we present the solution curve of the problem

u′′ + 6u(1 − u) − μ = 0, −1 < x < 1, u(−1) = u(1) = 0. (4.13)

Observe that u(0) > 1 for μ < μ0, for some μ0 < 0.

For the non-autonomous version of the fishing problem

u′′ + λu(1 − u) − μg(x) = 0, −1 < x < 1, u(−1) = u(1) = 0 (4.14)

we were not able to extend any of the above lemmas. Still it appears easier to understand the
λ-curves first. Here we cannot rule out the possibility of the λ-curves losing their positivity
backward, and thus never making a turn to the right.

We prove next that a turn to the right does occur for solution curves of (4.14) that are close
to the curve bifurcating from zero at λ = λ1. Let λ̄μ be the value of λ, at which positivity is
lost for a given μ (so that ux(±1, λ̄μ) = 0). We claim that infμ>0 λ̄μ > λ1. Indeed, assuming
otherwise, we can find a sequence {μn} → 0, with λ̄μn → λ1. By a standard argument,
u(x,λ̄μn )

u(0,λ̄μn )
→ w(x) > 0, where

w′′ + λ1w = 0, w(±1) = w′(±1) = 0,
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Fig. 4 The solution curve for the
problem (4.13)

which is not possible. It follows that for a fixed λ ∈ (λ1, infμ>0 λ̄μ], the μ-curve for (4.14) is
as in Fig. 2. (Notice that this also implies that the λ-curves for small μ do turn.) A similar
result for general PDE’s was proved in S. Oruganti, J. Shi, and R. Shivaji [14]. In case
λ > infμ>0 λ̄μ, the μ-curves are different, although we cannot prove in general that they are
as in Fig. 3. (For example, we cannot rule out the possibility that the μ-curves consist of
several pieces.)
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