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Abstract. We derive explicit ground state solutions for several equations with the

p-Laplacian in Rn, including (here ϕ(z) = z|z|p−2, with p > 1)

ϕ (u′(r))
′
+

n− 1

r
ϕ (u′(r)) + uM + uQ = 0 .

The constant M > 0 is assumed to be below the critical power, while Q = Mp−p+1
p−1

is above the critical power. This explicit solution is used to give a multiplicity result,

similarly to C. S. Lin and W.-M. Ni (1998). We also give the p-Laplace version of

G. Bratu’s solution, connected to combustion theory.

In another direction, we present a change of variables which removes the non-autono-

mous term rα in

ϕ (u′(r))
′
+

n− 1

r
ϕ (u′(r)) + rαf(u) = 0 ,

while preserving the form of this equation. In particular, we study singular equations,

when α < 0, that occur often in applications. The Coulomb case α = −1 turned out to

give the critical power.

1. Introduction. For the equation with the critical exponent (where u = u(x), x ∈
Rn)

Δu+ u
n+2
n−2 = 0 (1.1)

there is a well-known explicit solution

u(x) =

(
an

1 + n
n−2a

2r2

)n−2
2

, (1.2)

going back to T. Aubin [1] and G. Talenti [15]. Here r = |x|, and a is an arbitrary positive

constant. This explicit solution is very important, for example, it played a central role
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2 PHILIP KORMAN

in the classical paper of H. Brézis and L. Nirenberg [4]. How does one derive such a

solution? Radial solutions of (1.1) satisfy

u′′ +
n− 1

r
u′ + u

n+2
n−2 = 0 , u′(0) = 0 , u′(r) < 0 . (1.3)

Let us set

u′ = −aru
n

n−2 . (1.4)

Then u′′ = −au
n

n−2 + n
n−2a

2r2u
n+2
n−2 , and using these expressions for u′ and u′′ in (1.3),

we get an algebraic equation for u, solving of which leads to the solution in (1.2). In

order for such an approach to work, the solution u(r) must satisfy the ansatz (1.4), and

it does!

We show that a similar approach produces the explicit solution of C. S. Lin and

W.-M. Ni [11] for the equation

u′′ +
n− 1

r
u′ + uq + u2q−1 = 0 , (1.5)

with n
n−2 < q < n+2

n−2 < 2q−1, and some other equations, and for the p-Laplace versions of

all of these equations. As an application, we state a multiplicity result for the p-Laplace

version of (1.5), similarly to C. S. Lin and W.-M. Ni [11].

While studying positive solutions of semilinear equations on a ball in Rn, we noticed

that for the non-autonomous problem (here α > 0, and a > 0 are constants)

u′′ +
n− 1

r
u′ + rαf(u) = 0 , u(0) = a , u′(0) = 0 , (1.6)

one can prove similar results as for the autonomous case, when α = 0. We wondered if

the rα term can be removed by a change of variables. It turns out that the change of

variables t = r1+α/2

1+α/2 transforms the problem (1.6) into

u′′(t) +
m

t
u′(t) + f(u(t)) = 0 , u(0) = a ,

du

dt
(0) = 0 , (1.7)

withm = n−1+α/2
1+α/2 . The point here is that this change of variables preserves the Laplacian

in the equation. This transformation allows us to get some new multiplicity results for the

corresponding Dirichlet problem, including the singular case, when α < 0. We present

similar results for equations with the p-Laplacian. Such problems, with the rα term, often

arise in applications, for example in modeling of electrostatic micro-electromechanical

systems (MEMS), see e.g., J. A. Pelesko [14], N. Ghoussoub and Y. Guo [5], Z. Guo and

J. Wei [6], or P. Korman [8].

2. Some explicit ground state solutions. For the problem

u′′ +
n− 1

r
u′ + f(r, u) = 0 , r > 0 , u′(0) = 0 , (2.1)

the crucial role is played by Pohozhaev’s function

P (r) = rn
[
u′2(r) + 2F (r, u(r))

]
+ (n− 2)rn−1u′(r)u(r) ,

where we denote F (r, u) =
∫ u

0
f(r, t) dt. One computes that any solution of (2.1) satisfies

P ′(r) = rn−1 [2nF (r, u(r))− (n− 2)u(r)f(r, u(r)) + 2rFr(r, u(r))] . (2.2)
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EXPLICIT SOLUTIONS AND MULTIPLICITY RESULTS 3

In case f(r, u) = up, we have P ′(r) = 0 for p = n+2
n−2 , P ′(r) < 0 for p > n+2

n−2 , and

P ′(r) > 0 for p < n+2
n−2 . (Integrating (2.2), one shows that the Dirichlet problem for (2.1)

on any ball has no solutions if p > n+2
n−2 .) The critical exponent n+2

n−2 is also the cut-off for

the Sobolev embedding. In case f(r, u) = rαup, with a constant α, we have P ′(r) = 0

for p = n+2+2α
n−2 , the new critical exponent. Integrating (2.2), one sees that the Dirichlet

problem for the equation (2.3) below, on any ball, has no solutions if p > n+2+2α
n−2 .

Let us look for positive ground state solutions of (n > 2)

u′′ +
n− 1

r
u′ + rαu

n+2+2α
n−2 = 0 , r > 0 , u′(0) = 0 . (2.3)

Here by ground state we mean solutions which tend to zero as r → ∞. Denoting

p = n+2+2α
n−2 , we let (observing that u′(r) < 0)

u′ = −ar1+αu
p+1
2 = −ar1+αu

n+α
n−2 , (2.4)

where a > 0 is a constant. Then

u′′ = −(1 + α)arαu
p+1
2 +

p+ 1

2
a2r2+2αup .

Using these expressions for u′ and u′′ in (2.3), we get an algebraic expression, which we

solve for u:

u(r) =

[
an+ aα

1 + p+1
2 a2r2+α

] 2
p−1

=

[
an+ aα

1 + n+α
n−2 a

2r2+α

]n−2
2+α

. (2.5)

In order for this function to be a solution of (2.3), it must satisfy the ansatz (2.4), which

might look unlikely. But is does, for any constant a! By choosing a, we can satisfy the

initial conditions u(0) = A, u′(0) = 0, for any A > 0. When α = 0, the ground state

solution in (2.5) is the same as the well-known one in (1.2).

Proposition 1. The formula (2.5) provides ground state solutions of (2.3), for any

constant a > 0.

We consider next the problem (n > 2, p > 1)

u′′ +
n− 1

r
u′ + rα

(
−up + u2p−1

)
= 0 , r > 0 , u′(0) = 0 . (2.6)

We set

u′ = −ar1+αup , (2.7)

where a > 0 is a constant. Then

u′′ = −(1 + α)arαup + a2pr2+2αu2p−1 .

Using these expressions for u′ and u′′ in (2.6), we obtain

u(r) =

[
a n+ aα+ 1

1 + p a2r2+α

] 1
p−1

. (2.8)

This function satisfies the ansatz (2.7) provided that

a =
p− 1

α− np+ n+ 2p
. (2.9)
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4 PHILIP KORMAN

In order to have a > 0, we need p < n+α
n−2 , and then 2p − 1 < n+2+2α

n−2 , i.e., both powers

are sub-critical. Conclusion: the function u(r) in (2.8), with a given by (2.9) provides a

ground state solution for (2.6).

Finally, we consider the problem (n > 2, p > 1)

u′′ +
n− 1

r
u′ + rα

(
up + u2p−1

)
= 0 , r > 0 , u′(0) = 0 . (2.10)

Using the ansatz (2.7) again, we obtain

u(r) =

[
a n+ aα− 1

1 + p a2r2+α

] 1
p−1

. (2.11)

This function satisfies the ansatz (2.7) provided that

a =
p− 1

np− n− 2p− α
. (2.12)

In order to have a > 0, we need p > n+α
n−2 , and then 2p − 1 > n+2+2α

n−2 , the critical

exponent. Conclusion: the function u(r) in (2.11), with a given by (2.12) provides a

ground state solution for (2.10). In case α = 0, this solution was originally found by

C. S. Lin and W.-M. Ni [11].

Proposition 2. The formula (2.11), with the constant a given by (2.12), provides a

ground state solution of (2.10).

A similar approach can be tried for the equations of the form

u′′ +
n− 1

r
u′ +Aψ(u) +Bψ(u)ψ′(u) = 0 , r > 0 , u′(0) = 0 , (2.13)

where ψ(u) is a given function, with monotone ψ′(u), so that the inverse function

(ψ′)−1(u) exists. Here A and B are given constants. Setting

u′ = −arψ(u) , (2.14)

with u′′ = a2r2ψ(u)ψ′(u)− aψ(u), we obtain from (2.13)

u(r) = (ψ′)
−1

(
a n−A

a2r2 +B

)
. (2.15)

This function gives a solution of (2.13), provided it satisfies (2.14). If we select here

n = 2, A = 0, and ψ(u) =
√
2eu/2, then the last formula gives

u(r) = 2 ln
2
√
2a

a2r2 +B
. (2.16)

One verifies that for any a > 0, and any B > 0 the function in (2.16) solves

u′′(r) +
1

r
u′(r) +Beu(r) = 0 , u′(0) = 0 .

This is the famous G. Bratu’s [2] solution. It immediately implies the exact count of

solutions for the corresponding Dirichlet problem on the unit ball in R2.
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EXPLICIT SOLUTIONS AND MULTIPLICITY RESULTS 5

Proposition 3. The problem

u′′(r) +
1

r
u′(r) +Beu(r) = 0 , u′(0) = u(1) = 0 (2.17)

has exactly two solutions for 0 < B < 2, exactly one solution for B = 2, and no solutions

if B > 2.

Proof. According to the formula (2.16), the boundary condition u(1) = 0 is equivalent

to

a2 − 2
√
2 a+B = 0 .

This quadratic equation has two solutions for 0 < B < 2, one solution for B = 2, and

none if B > 2. It is known that the value of u(0) uniquely identifies the solution pair

(B, u(r)); see [9]. Since solutions in (2.16) cover all possible values of u(0), no other

solutions are possible. �
The equation (2.17), known as the Gelfand equation, is prominent in combustion

theory; see J. Bebernes and D. Eberly [2].

Another example: the equation

u′′ +
n− 1

r
u′ + (n− 2)eu +Be2u = 0 , r > 0 , u′(0) = 0,

has a solution u = ln 2
r2+B , for any real B.

The class of ψ(u), for which this approach works is not wide. Indeed, writing (2.15)

as ψ′(u) = n−A
r2+B , differentiating this equation, and using (2.14), we see that ψ(u) must

satisfy

ψ′′(u)ψ(u) =
2

n−A
ψ′2(u) . (2.18)

Solutions of the last equation are exponentials and powers (of c1u + c2). If A = 0, a

solution of (2.18) is ψ(u) = uk, with k = n
n−2 , which leads to the ground state solution

for the critical power n+2
n−2 , that we considered above.

3. Explicit ground states in case of the p-Laplacian. For equations with the

radial p-Laplacian in Rn (n ≥ p)

ϕ (u′(r))
′
+

n− 1

r
ϕ (u′(r)) + f(u) = 0 , (3.1)

Pohozhaev’s function

P (r) = rn [(p− 1)ϕ(u′(r))u′(r) + pF (u(r))] + (n− p)rn−1ϕ(u′(r))u(r)

was introduced in P. Korman [7]. Here ϕ(z) = z|z|p−2, with p > 1, and F (u) =
∫ u

0
f(t) dt.

For the solutions of (3.1) we have

P ′(r) = rn−1 [npF (u)− (n− p)uf(u)] .

Comparing this P (r) to the one in case p = 2, it was relatively easy for us to make the

adjustments, except for the p − 1 factor, which we found only after a lot of experimen-

tation, using Mathematica. In case f(u) = uq, one calculates the critical power (when

P ′(r) = 0) to be q = (p−1)n+p
n−p .
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6 PHILIP KORMAN

We look for positive ground state solutions of (n > p)

ϕ (u′(r))
′
+

n− 1

r
ϕ (u′(r)) + uq = 0 , u′(0) = 0 , (3.2)

where q is the critical power q = (p−1)n+p
n−p . Then P ′(r) = 0, so that P (r) = constant = 0,

which simplifies as

r

[
(p− 1)|u′|p + p

uq+1

q + 1

]
+ (n− p)ϕ(u′(r))u(r) = 0 . (3.3)

By maximum principle, positive solutions of (3.2) satisfy u′(r) ≤ 0, for all r. In (3.3) we

set (a > 0 is a constant)

ϕ (u′(r)) = −arus(r) , (3.4)

with the power s to be specified. Writing (3.4) as ϕ (−u′(r)) = arus(r), or (−u′(r))p−1 =

arus(r), we express −u′(r) = a
1

p−1 r
1

p−1 u
s

p−1 (r). Then (3.3) becomes

(p− 1)a
p

p−1 r
p

p−1 u
sp

p−1 +
p

q + 1
uq+1 = a(n− p)us+1 . (3.5)

We now choose s to get the equal powers of u on the left: sp
p−1 = q + 1, giving

s =
(q + 1)(p− 1)

p
=

n(p− 1)

n− p
.

Then solving (3.5) for u, we get

u(r) =

[
a(n− p)

n−p
n + (p− 1)a

p
p−1 r

p
p−1

]n−p
p

. (3.6)

One verifies that this u(r) satisfies the ansatz (3.4) for any a > 0, and so it gives a ground

state solution of (3.2). By choosing a, we can satisfy the initial conditions u(0) = A,

u′(0) = 0, for any A > 0.

We consider next the equation of Lin-Ni type with the p-Laplacian

ϕ (u′(r))
′
+

n− 1

r
ϕ (u′(r)) + uM + uQ = 0 . (3.7)

Here M > p− 1 is a positive constant, and

Q =
Mp− p+ 1

p− 1
> M . (3.8)

Looking for a positive ground state, we set in (3.7)

ϕ (u′(r)) = −aruM (r) , (3.9)

with the constant a > 0 to be determined. As above, we express

−u′(r) = a
1

p−1 r
1

p−1 u
M

p−1 (r),

so that
d

dr
ϕ (u′(r)) = −auM − arMuM−1u′ = −auM +Ma

p
p−1 r

p
p−1 uQ .

Then (3.7) gives

u(r) =

(
an− 1

1 + a
p

p−1Mr
p

p−1

) p−1
M−p+1

. (3.10)
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EXPLICIT SOLUTIONS AND MULTIPLICITY RESULTS 7

In order for this function to be a solution of (3.7), it must satisfy the ansatz (3.9). This

happens if

a =
M − p+ 1

Mn− pn+ n−Mp
. (3.11)

Observe that an > 1, provided that both the numerator and denominator are positive in

(3.11), or when

M >
np− n

n− p
, (3.12)

which implies that Q > (p−1)n+p
n−p , the critical power. Conclusion: the function u(r) in

(3.10), with a from (3.11), gives a ground state solution of (3.7), provided that (3.12)

holds.

Similarly to C. S. Lin and W.-M. Ni [11] the existence of an explicit ground state

solution implies a multiplicity result.

Theorem 3.1. Suppose that p > 1, n > p, M > p − 1, the condition (3.12) holds, and

Q is defined by (3.8). Then there exists R∗ > 0, so that for R > R∗ the problem

ϕ (u′(r))
′
+ n−1

r ϕ (u′(r)) + uM + uQ = 0 , for 0 < r < R, (3.13)

u′(0) = u(R) = 0,

has at least two positive solutions.

Proof. Recall that (3.12) implies: p− 1 < M < (p−1)n+p
n−p < Q. Similarly to C. S. Lin

and W.-M. Ni [11], we employ “shooting”, and consider

ϕ (u′(r))
′
+ n−1

r ϕ (u′(r)) + uM + uQ = 0 , for 0 < r < R, (3.14)

u(0) = a , u′(0) = 0 .

Let ρ(a) denote the first root of u(r), and we say ρ(a) = ∞ if u(r) is a ground state

solution. When a is small, one sees by scaling that a multiple of the solution of (3.14) is

an arbitrarily small perturbation of

ϕ (z′(r))
′
+

n− 1

r
ϕ (z′(r)) + zM = 0 , z(0) = a , z′(0) = 0 . (3.15)

Indeed, setting u = aw, and r = βs, with β = a−
M−p+1

p , the problem (3.14) is trans-

formed into

d

ds
ϕ

(
dw

ds

)
+

n− 1

s
ϕ

(
dw

ds

)
+ wM + εwQ = 0 , w(0) = 1 , w′(0) = 0 ,

with ε = aQ−M . Solutions of the last equation are decreasing (while they are positive),

and so the εwQ term is bounded by εwQ(0) = ε.

For the problem (3.15) it is known (see e.g., [7] or [9]) that for any a > 0, the solution

z(r) has a unique root, this root tends to infinity as a → 0 (by scaling), and z(r) is

negative and decreasing after the root (because z′ < 0 at any root by uniqueness of

IVP). The first root exists because the corresponding Dirichlet problem has a positive

solution, as follows by the mountain pass lemma. By the continuity in ε, it follows that

ρ(a) < ∞ for a small, and ρ(a) → ∞ as a → 0. Now denote A = {a > 0
∣∣ ρ(a) < ∞}.

The set A is open, but since we have an explicit ground state, it follows that there exists
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Fig. 1. The solution curve for the problem (3.17)

a maximal interval (0, β̄) ⊆ A, with β̄ /∈ A. By the continuous dependence on the initial

data, lima↑β ρ(a) = ∞, and the theorem follows, with R∗ = inf{ρ(a)
∣∣ a ∈ (0, β̄)}. �

We now discuss the problem (3.13) in case p = 2, when Q = 2M − 1. By scaling, we

can transform it to a Dirichlet problem on a unit ball

u′′ +
n− 1

r
u′ + λ

(
uM + u2M−1

)
= 0 , 0 < r < 1 , u′(0) = u(1) = 0 , (3.16)

with a positive parameter λ. The result of C. S. Lin and W.-M. Ni [11] (extended above),

together with the bifurcation theory developed in [10], [13] and [9], implies the existence

of a curve of solutions in the (λ, u(0)) plane. Along this curve λ → ∞, when u(0) → 0,

and when u(0) → β. This curve has a horizontal asymptote at u(0) = β; see [13]. Based

on the numerical evidence, we conjecture that the solution curve makes exactly one turn

to the right in the (λ, u(0)) plane, and it exhausts the set of positive solutions of (3.16);

see Figure 1. However, the picture changes drastically even if the lower power M is

perturbed; see Figure 2. This surprising phenomenon is similar to the one observed by

H. Brézis and L. Nirenberg [4], in case f(u) = λu+ u
n+2
n−2 .

Example 1. We solved numerically the problem (3.16), with n = 3, M = 4, 2M−1 =

7

u′′ +
2

r
u′ + λ

(
u4 + u7

)
= 0 , u′(0) = u(1) = 0 . (3.17)

(See [9] for the exposition of the shoot-and-scale algorithm that we used.) The solution

curve is presented in Figure 1. Observe that the λ’s in this picture are larger than for most

other f(u); see [9]. We have verified this numerical result by an independent computation.

Taking an arbitrary point (λ̄, ū) on the solution curve, we solved numerically the initial

value problem for the equation in (3.17), with λ = λ̄, using the initial conditions u(0) = ū,

u′(0) = 0. The first root of the solution was always at r = 1.

We conjecture that there is critical λ0 so that the Lin-Ni problem (3.16) has no positive

solutions for λ < λ0, exactly one positive solution at λ = λ0, and exactly two positive

solutions for λ > λ0.
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Fig. 2. The solution curve for the problem (3.18)

Example 2. We solved numerically the problem

u′′ +
2

r
u′ + λ

(
u3 + u7

)
= 0 , u′(0) = u(1) = 0 . (3.18)

Compared with Example 1, only the lower power is changed from 4 to 3. Not only the

solution curve, presented in Figure 2, has a different shape, λ’s are now much smaller,

while u(0)’s go higher. We conjecture that there are still exactly two positive solutions

for λ large enough.

We turn next to the p-Laplace version of Bratu’s equation

ϕ (u′(r))
′
+

n− 1

r
ϕ (u′(r)) +Beu = 0 , (3.19)

where ϕ (z) = z|z|n−1 (i.e., p = n), and B > 0 is a constant. Set here

ϕ (u′(r)) = −are
n−1
n u ,

where a > 0 is a constant. Then −u′ = a
1

n−1 r
1

n−1 e
1
nu. It follows that

ϕ (u′(r))
′
= −ae

n−1
n u − n− 1

n
are

n−1
n uu′ = −ae

n−1
n u +

n

n− 1
a

n
n−1 r

n
n−1 eu .

We use these expressions in (3.19), and solve for u:

u(r) = n ln

(
a n

B + n
n−1a

n
n−1 r

n
n−1

)
. (3.20)

One verifies that this function is a solution of (3.19) for any a > 0, B > 0, and n > 1.

This family of exact solutions immediately implies the exact count of solutions for the

corresponding Dirichlet problem on the unit ball in Rn.

Proposition 4. For the problem

ϕ (u′(r))
′
+

n− 1

r
ϕ (u′(r)) +Beu = 0 , u′(0) = u(1) = 0 ,

where ϕ (z) = z|z|n−1 (i.e., p = n), there is a constant B(n) > 0, so that there are exactly

two solutions for 0 < B < B(n), exactly one solution for B = B(n), and no solutions if

B > B(n).
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10 PHILIP KORMAN

Proof. According to the formula (3.20), the boundary condition u(1) = 0 is equivalent

to a satisfying
n

n− 1
a

n
n−1 +B = n a .

On the left we have a convex superlinear function of a, so that there is a constant

B = B(n), such that this equation has two solutions for 0 < B < B(n), one solution for

B = B(n), and none if B > B(n). �
We remark that exact multiplicity results are rare for equations involving the p-

Laplacian.

4. A change of variables. For the non-autonomous problem (here α, and a > 0

are constants)

u′′ +
n− 1

r
u′ + rαf(u) = 0 , u(0) = a , u′(0) = 0 , (4.1)

we present a change of variables which essentially eliminates the non-autonomous term

rα (although it changes the spatial dimension).

Proposition 5. Let u(r) ∈ C2(0, b) ∩ C1[0, b] be a solution of (4.1), with some b > 0,

and assume that α > −1. The change of variables t = r1+α/2

1+α/2 transforms the problem

(4.1) into

u′′(t) +
m

t
u′(t) + f(u(t)) = 0 , u(0) = a ,

du

dt
(0) = 0 , (4.2)

with m = n−1+α/2
1+α/2 .

Proof. We have ur = utr
α/2, urr = uttr

α + α
2 utr

α
2 −1, and (4.1) becomes

uttr
α +

α

2
utr

α
2 −1 + (n− 1)utr

α
2 −1 + rαf(u) = 0 .

Dividing by rα, we get the equation in (4.2).

To see that du
dt (0) = 0, we rewrite (4.1) as

(
rn−1u′)′ + rα+n−1f(u) = 0, and then

express

u′(r) = − 1

rn−1

∫ r

0

zα+n−1f(u(z)) dz .

We have

du

dt
(0) = lim

r→0

u′(r)

rα/2
= − lim

r→0

1

rn−1+α/2

∫ r

0

zα+n−1f(u(z)) dz = 0 .

�
Observe that in case n = 2, we have m = n − 1 = 1, which means that the rα term

is eliminated without changing the dimension. We also remark that for α ≤ −1, we do

not expect the problem (4.1) to have solutions of class C2(0, b) ∩ C1[0, b], as an explicit

example below shows.

Example. The problem

u′′(t) +
1

t
u′(t) + eu = 0 , u(0) = a , u′(0) = 0,

has a solution u(t) = a − 2 ln
(
1 + ea

8 t2
)
going back to the paper of G. Bratu [3] from

1914 (we were dealing with this solution in another form above); see also J. Bebernes
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and D. Eberly [2]. (Letting here a = ln 8
(
3± 2

√
2
)
, one gets two solutions of the

corresponding Dirichlet problem on the unit ball, with u(1) = 0.) Setting here t = r1+α/2

1+α/2 ,

we see that

u(r) = a− 2 ln

(
1 +

ea

8
(
α
2 + 1

)2 rα+2

)
(4.3)

is the solution of the problem

u′′(r) +
1

r
u′(r) + rαeu = 0 , u(0) = a , u′(0) = 0 . (4.4)

This explicit solution is of particular importance for singular equations, when α < 0,

showing us what to expect for more general non-linearities than eu. In the mildly singular

case, when −1 < α < 0, the function in (4.3) is still a solution of (4.4), although it is

not classical, but only of class C1,1+α. In the strongly singular case, when α < −1, the

function in (4.3) has unbounded derivative as r → 0. The case of Coulomb potential,

when α = −1, is very special. The corresponding solution from (4.3)

u(r) = a− 2 ln

(
1 +

ea

2
r

)

still satisfies u(0) = a, but not u′(0) = 0. Instead, we have u′(0) = −ea = −eu(0). We

see that the initial value problem

u′′(r) +
1

r
u′(r) +

1

r
eu = 0 , u(0) = a , u′(0) = −eu(0), (4.5)

is a natural substitute of the problem (4.4) in case of the Coulomb potential. Problems

with the Coulomb potential occur in applications; see J. L. Marzuola et al. [12]. (The

application in [12], as well as many others, involve convolution with Coulomb potential.

However, singularities as in (4.5) also occur in applications.)

We can now extend all of the known multiplicity results for autonomous equations

to the non-autonomous equation (4.1). For example, we have the following result for a

cubic non-linearity, which is based on a similar theorem for α = 0 case; see [10], [13], [9].

Theorem 4.1. Assume that c > 2b > 0, and α > 0. Then there is a critical λ0, such

that for λ < λ0 the problem

u′′ +
n− 1

r
u′ + λrαu(u− b)(c− u) = 0, r ∈ (0, 1), u′(0) = u(1) = 0,

has no positive solutions, it has exactly one positive solution at λ = λ0, and there are

exactly two positive solutions for λ > λ0. Moreover, all solutions lie on a single smooth

solution curve, which for λ > λ0 has two branches, denoted by u−(r, λ) < u+(r, λ), with

u+(r, λ) strictly monotone increasing in λ, and limλ→∞ u+(r, λ) = c for all r ∈ [0, 1).

For the lower branch, limλ→∞ u−(r, λ) = 0 for r 
= 0. (All of the solutions are classical.)

A similar transformation works for the p-Laplace case

ϕ (u′(r))
′
+

n− 1

r
ϕ (u′(r)) + rαf(u(r)) = 0 , u(0) = a , u′(0) = 0 , (4.6)

where ϕ(z) = z|z|p−2, with p > 1.
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12 PHILIP KORMAN

Proposition 6. Let u(r) ∈ C2(0, b) ∩ C1[0, b] be a solution of (4.6), with some b > 0,

and assume that α > −1. The change of variables t = r1+α/p

1+α/p transforms the problem

(4.6) into

ϕ (u′(t))
′
+

m

t
ϕ (u′(t)) + f(u(t)) = 0 , u(0) = a ,

du

dt
(0) = 0 , (4.7)

with m = n−1+α−α/p
1+α/p .

Proof. We have ur = utr
α/p, ϕ (ur) = rα−α/pϕ (ut), and

d

dr
ϕ (ur) = (α− α/p)rα−α/p−1ϕ (ut) + rα−α/p d

dt
ϕ (ut) r

α/p ,

which leads us to (4.7).

To see that du
dt (0) = 0, we rewrite (4.6) as

(
rn−1ϕ (u′)

)′
+ rα+n−1f(u) = 0, and then

express

−u′(r) =

[
1

rn−1

∫ r

0

zα+n−1f(u(z)) dz

] 1
p−1

. (4.8)

We have

−du

dt
(0) = lim

r→0

−u′(r)

rα/p
= lim

r→0

[
(−u′(r))

p−1

r
α
p (p−1)

] 1
p−1

,

and by (4.8)

lim
r→0

(−u′(r))
p−1

r
α
p (p−1)

= − lim
r→0

1

rn−1+α−α/p

∫ r

0

zα+n−1f(u(z)) dz = 0 ,

completing the proof. �
In case n = p, we have m = n−1, which means that the rα term is eliminated without

changing the dimension.
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