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1. Introduction.
We study the existence of periodic solutions for a non-

linear non-coercive boundary value problem:

= ) =1

uy p(uXX’ uXZ’ uZZ) y
(1.1) Au=ef(x,y,2,u,u, uij) 0<y<1
u = O y = O .

Here f is 2n periodic in x,z ; ¢ is a small parameter
and we are looking for a 2n periodic in x,z solution
ulx,y,z) .

The case p(uxx, Uy, uzz) =Fu, ,F = const < 0 comes
from water wave theory (no surface tension). This problem is
commonly believed to be ill-posed, see for.example [9]. The

difficulty here is that small denominators appear in Fourier

series solution. However if we assume F > 0 we can prove
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820 KORMAN

solvability of (1.1) using simple Picard iteration even though
the problem is not coercive (see [6] for details).
For the general p.(uXX, u uzz) solvability of (1.1) is

determined by the matrix

1
/pu 59\1
X XZ
A =
X [
2 u pu
X7 Z7

If A is positive definite then the problem (1.1) is coercive
(see §5) and hence solvable by simple Picard iteration. If we
only have A > O then the problem (1.1) is not coercive in gen-
eral and then the Picard iteration fails because of the loss of
derivatives at each step. But using Nash-Moser type iteration
technique it is still possible to prove solvability of (1.1).

Namely we prove the following:

Main Theorem. Assume that for the problem (1.1) with func-

tion f 2n periodic in x and 2z we have:

(i) A>0
(ii) P(O;OJO)=OSf(X,Y,Z;O;---;O)?O

(111) p,fE€C” .

Then for e sufficiently small the problem (1.1) has a o2
golution, 2n periodic in x and =z .
In particular, this theorem covers the case = p(uXX) 5

p(0)=0, p(t)>0 (for [t| small), while simple Picard

iteration fails here.
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We can algo prove some general uniqueness results for (l.l),
(see [6]).

2. Notatlons and technical lemmata.

We consider functions of three variables x,y, z which
are 2n periodic in x,z and 0 <y <1l . By V we denote
the domain O <x,z <2n , 0 <y <1 ; its boundary we denote
by 0oV and the top part of the boundary by Vt 5
(v, =2vn (y=1) .

We shall also denote

fe
[

t

il

.Eﬁj\l [\21(
‘j ) ) flx,y,z) axdydz ,
0O O 0

21 pn27
f J\ flx,1,2) dxdz
0 0]

(In other words, j\ denotes fintegration over Vt) .

We shall write ﬂ ° "Um for m-th Sobolev norm for func-
tions in V and | Um for functions on V, .- Corresponding
Sobolev spaces we denote by H' and I respectively. We shall

also need the norms Hm: H ° »Hm + mm and

l2l,, - Y e

, N> 0, integer.
|a| < Lw -

By if ‘N we understand the same norm for functions defined on
Vt .

We shall also use the notation:

T D D 7 T

lal=r
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]Drf] = z lDaf[ 5 r,m are intergers>0 .
m lOﬂI:r m

All positive constants independent of unknown functions we

denote by ¢ .

We will need the following relations between our norms.

Temma 2.1. For any integer n > 0 and any e > 0 one has
1) Wl <lvl,,

v e(e)lvll

N

ellv

(11) vl o

n+ 1

(111) VI <elvll,,+ c@lvi

IA

Proof. Part (ii) is standard. Parts (1) and (iii) are

easily derived using Schwarz inequality (see [6]).

Lemma 2.2. Suppose T, fg ect(V), r >0 1is an integer.

Then

(1) leggll, < ellefo begll, + Iegly ley 10

(11) |2, |, Sellegly 1o, L+ 1eplg 1210
This lemma is standard now (see [5] for proof). Obviously, sim-

ilar inequalities are true for functions on V£ .

Lemma 2.3. Suppose Wy ..., W, € ¢"(v) . suppose that

P = gp(wl seeny ws) possesses continuous derivatives up to

order r > 1 bounded by B on max Iwil <1 . Then
i
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. r . T
(1) lp @(wl,..., WS)HL2 < cBlD VJULE for mgx[wil o <1
i L

.. g
(ii) |p tp(wl,...,wS)ILOo < cB h)rWILm for m?xlwi] w < 1.

For proof of this lemma and references see [5].

Corollary 1. Assuming the conditions of the lemma 2.3 we

have (for éfx!wilo < 1)

(i) IICP<W12“‘J WS) UI‘

IA

elllwll, + 1)

(ii) '@(Wl)”-) WS) II‘

IA

c(lvvlr + 1)
Corollary 2. If in addition we assume
©(0 ,..., 0) =0

r>["%/21+ 1 (n =3, the number of spacial

dimensions).
Then

Aty o)l =l

T

where 8(t) - O as t -+ 0 . (We denote llwlb;=m§x“wiﬂ ) .

5 r

Proof. We assume s = 1 and the proof is similar for the

» general case. By lemma 2.3

Lot 1,2

]

Y, Ipte 1 2+ el
0

1<2<r

eBllwl ?+ o) |2

A
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Using Sobolev's lemma the second term is estimated as follows:

loGnll,

IN

e o(w) |, <e sup - |ele)}
#0 = i<l

¢ sup fete)] =o(lwl)

o] <clwl,

IA

Remark. Obviously lemma 2.3 and iks corollaries can also

be stated for the norms u . ﬂm » t . km and | * Hm

Temma 2.4. Let 4&,k,m be non-negative integers, k <m .
Then

e ag

@ luly, < elul

m+ £ £
k 1-k
— : fm ST/
(11) el <l Tul
k+ & m+ £ %
_ ,._....k/m ___.___l =K
(1311) [ull  <ecfull fal .
k+ 2 m+ 4 £

Proof. Inequalities (i), (ii) are standard. Inequality

(iii) easily follows from them.

3. Outliﬂé_. of the proof.
We will prove solvability of our problem (1.1) by applying
an abstract, Tmplieit Function Theorem ( IFT), We shart by intro-

ducing a (standard) concept of a scale of Banach spaces.

Definition 1. Suppose we have & family of Banach spaces

Bm indexed by the parameter mw > Q . We say that this family
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m m
forms a Banach scale if B CB ! for m> m o, and

lul, <lul, for wes”.
1

Definition 2. We call Bm a Banach scale with smoothing if

there exists a family of smoothing operators 8(t) , t >0 with

the properties (0 <r < p) :

(s) Istw)ullj<es®  lull, , wes

1

(s,) l(x-s@)ull, <ect™ Plul , ves® .

2

The following theorem is a slight modification of the one

in [8].
m m
Theorem (IFT). Let B, By, be two Banach scales; the
. . . m m-q
first one with smoothing. ILet F(u) : B, ~ B2 (0<20<m)

be a (non-linear) operator with the domain
o
D(r) = (w €B," , lul <®,8>0)} . Suppose that
(i) F(u) has two continuous Frechet derivatives both bounded
by ¢ .
(ii) For any n , m - @ < n <m there exists a map L(uw) with

l’l—Oﬂ)

domain D(L) = D(F) and range in the space B(an > By of

bounded linear operators on BEn to Bln—a , such that:

(iia) F'(u) L(wh =1, n € Ben . u € D(T)
(iib) U.L(u)h“n_a < clnll_ h € 32“ , u € D(F)

(10) [n(a) Pl o € e+ Tl o) » v €FT 0% )

Then if F(0) is small enough F(D(F)) contains the origin.
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To apply this theorem we define an operator . A Priori Estimates for the Linearized Problem
m m-q
F(u) : B, 7 BE as follows: Proposition 4.1. Consider the problem
u - p(a_,u ,u )
v xx’ xz’ “zz ‘
(3.1) F(u) = : (k.1a) Vv -1V T V. =TV _ =g, y=1,
Au-ef(x,y,z,ll,u_,\l_ -)J Y 1 xx 2 xz 3 zz
i iJ
L.1b - ec..v,, - €C,V, - = 0 <
where ( ) Av - e 1JV13 Vi GCOV f, y<1,
o . (k.1c) v =0 y=20.
Bl = {u EHm(V) s Uu“m <% and U.(X, o, Z) = 0} 2 ’
(3.2) Here X‘i , g are functions of x, % ; Cij 5 C5 s CO ,£f of x,y, z.
m-o m - -
B2 = H (v) X H" (Vi) . _ A1l functions in (h.1) are assumed to be 2n-periodic in x and
) . . 7 . We have denoted: v, =Vv_ , V.=V _, V,=V_, V., =7V B
The constants m>2a , & > 5 and .8 small will be specified 1 X 2 ¥y 3 z 1 XX
. n m etc. Summation in i and J is implied.
later. It is well known that both Bl and B2 form Banach
. . For k > 0 integer denote:
scales with smoothing. -
Now we can solve the original problem (1.1) by proving the ¢ = max (Icolk , lcilk , ‘Cﬂmlk)
i, 4,m
solvability of 2T
(’4—.2) I"k = max (Irl!k ) ‘rgik ) |r3lk>
(3.3) F(u) = 0 .
' pk = Ck_ + I'k
This will be done by checking the conditions of the IFT for the
operator F(u) . and
Notice that condition (iib) of IFT requires an a priori
P, =9
3 3
estimate for the linearized problem and (iia) its solvability.
These facts are established in §4 and §5 correspondingly. Actu- (4.3) p, = 93P3 0y
allj,lwe prove the estimates and the solvability for the linear- D TrrrrrrTtt ’
= + .
L N N L 2 * T PPzt Py

ized problem under rather general conditions, and in §6 we check

that these are satisfied if u € Blm with & sufficiently small. The scalars @, I, can be easily distinguished from the func-

Also in 86 we verify the condition (iic), completing the proof. tions in (4.1), based on the context.
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Assume thab:
' 2 2
(4.4) rlg + rggﬂ + r3ﬂ >0,
for all £, 1 real and all x, z .

(4.5) v, <8 (r, as defined by (k.2))

2 2

s <M, M>0 a constant.

Then for e and & sufficiently small we have the follow-

ing a priori estimate

(+.6) | vun+ 15 c[mn+ Pmn -].+thn—2+ et PnH—F—l—L2}

(n>3 is an integer).

Proof. Let « be any derivative in x, z, |cx| =n .

Differentiating (4.1b) we get:

(4‘73) rV(;;=I’VO‘:+2+rlvOH—1+1’2VO£+ ...+raV2+ ga
1 -1, .2 a-2 a
b.b) (AT =e (e, v +c v RN
( 7 ) ( 22 yy 22 yy 20" vy CQQV:\/';Y)
re(e! W+l Treraf-2 g re!% )

< 13' ij ij 13 ij i3 ij i3

1051 2062

+e(c va+c
€1¥4

Foet L)
11

1o - -
v l+c2va 2 +...+c%v)+fa

o
+e:(cov +cy o

(.7c) L =0 .

NONLINEAR NON-COERCIVE PROBLEMS 829

We have introduced the notation:

bo-A+2 . A -4 4 a-£ 4 x-£
= > o< g<
v ]V +.r2 Ve + 3 Y2z ( _;?_n) ,

where
f ?{X— L Z avr;/_v?m Y (a,_-const) .
fvl =2
¥y <a
. : L0 -4 £o-4
and the same notation is employed for r2vXZ y rBVZZ 5

Lok J&a £ La-4
C. COV

LV 5 5 (a, are multindmial constants ).
i3'i iVi v

Summation in 1 and § is implied (L<i,3<3) , end cflj
gignifies that the 1 =] =2 term is omitted.

Multiplying (L4.7b) by W and integrating by parts we get:

(4.8) —j‘lvvaler{vav(;: eI, + eI, + eI3+eIh+vaifa,

where the integrals Il N I2 R I3 R ILL are defined and

estimated below (integrals over the bottom and side parts of the
boundary disappear by (4.lc) and periodicity of < Y.

(a) Consider

_ a1 -1 2 a-2
I -f CCEBVyy* C22vyy +C22vyy + ...+ 22 Y.Y’)V

The first term of Il is integrated by parts

P , . f o o
[ ooV yy = f (v ) j(cgg yvyv : CopV Vy
I + f c v v

: ¥

1,17 4 e
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and by (L.5)
1, ol <eelol?,y <elvlE,,
Also
(.9) |1y | f (epp ayyl nggy_% 2oy ERTTE A g
<%f(va)2+% (Cégv(;g:lJr cgzvo;s;2+ ee. ot 02‘2 yy)2
cuvu§+1+ ElvlE g eflvIE BV G
So that we express
(1.10) L=1) 1 +T , +f c22v3v0‘
t
and
(k.11) lil, 1T 2[
<ol vl r BV el e el
(vb) Consider
f(clJ ij 13% " i? iy T
f 1Jvlav + 12’2
The first term of I is integrated by parts in x or =
1 or ‘3)

cl
ij 1;]

80 that

oA AP
f(ZLJJ iV jcijvivj (3=
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' — 2 2
I fcijvaijva = Clu v “n+ 1S CU v um+ 10
The term 12, 5 is estimated exactly as the term Il, 5 - So
that
2
wa2) 1y <clvl?, v e2lvl? e clwlf _po.ox ElVIG

(¢) Estimating as before we get:

IA

|I3+Iql cuvﬂ§+ cluvﬂi_l+ ee. crelﬂvng .

If we now let + 12 + 13 + Il# , then

1,17 71,2
(x.13) |T| <rES (k.11)

Now we can rewrite (4.8) as

(3.24) —jlvVO‘ e

Using (L.7a) we write (with 1 - ec,, ¥ )

(1—ec22 vav?r = el +!vafa .

oo
(h.15) f (1 - ecgz)v v
t
=f E(rva+2+rlva+l4~r2va+...+ro£v2+kga)va
t

I

I T, T fvaga ,

t

J J J are defined and estimated

where the integrals 12 Y97 93

below.
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(a) Integrating by parts we get:

- o+
= j cr Va EVCX = -
t

— o4
c(rleX +or vt rsv )v

d‘Mﬂ

= ..j c[r (v) +12VO£V(;‘+I‘ (V) ]
t

+% ] [(Erl)m+(EI-E)XZ+(Er3)ZZ](va)2

ot

[H]
oy
+
ey
-

where

J - - IE[T (VO‘)2 +r O (voc)E] |

1,1 i’z 2 X 7 3tz ?

+
(4.16)
1 — —

91,2732 'tf]:(crl>x3£+ (erpy),, + (erg), ](v .

Clearly

(17) |3, ol < ceyr [v° < alv]? .
, .
{b) The second integral is also integrated by parts:

Jd =

- lao+lo
5 cr” v v o=

-j (crl) - f Tt

“t t t

The first term on the right is bounded by c6ﬂ vui . The second

one is of the same type as the original J2 . Integrate it by
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parts in the same way. Eventually we will rearrange derivatives

so as to get

(%.18) Iy =+
/

(v + R =I% ] r'(vy)2+ R,
t

where R is collection of terms each bounded by CBH ug 5
[y[ =n and " ' " denotes a derivative in x or =z . It is
clear from (4.18) that
(4.19) lo| <alvlE .
: 2 n
(c) As before we estimate
(% .20) I.ng = f —C_(I'QVOL%" r3va_l+ R )v
t
T2 T2, T R o2
< ellvun+ c(rgllvlln+r3i vn 17 ce-tr Vu2) .
If we now denote
J=4J +J +J
1,2 2 3
then (4.15) takes the form
oo . _ a0 =
(&.21) f (l—eceavv _J1,1+I (1—ec22)vg + T,

and

(k.22) |3] <cl(c+ el)uvﬂi + r%ﬂv[li_l et T

Now we can rewrite (&.14) as
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)[r (va)2+r vava +r (v )2

(%.23) -[IVvl j (1-
—ef+3+j (l-ec22)vaga= jfava

t

Notice that for e sufficiently small the second term on the

left is non-positive by (L4.4). Then using (%.13), (L.22) and

Lemma 2.1 we estimate the left-hand side of (4.23) as follows:

n.20) |1se.23)] > flo®]? -ecl v 2, o Bl vl e eal vl

-c[(d+e )hV

N2 IR o o

2
-%jl"valg -c f(ga)2
t

e L K O B R R R e

1
+pnllVU‘22] -c f(ga)g

t 1
And

(h25) [ms(ren)| <z [(F 43 [ (52

f(fa)E EIIVV

Combining (%.24) and (L.25) and swmming in all o , Ia] <n we

get:

(4.26) Z

la] <n

o _2
Jiloei2< ctelv i, o e T

SIS
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2 O 3 el

In order to prove our estimate (4.6) we also need to esti-
mate the derivatives of v which include more than one

differentiation in y . By the definition of Sobolev norms we

have:
o) ) flvo‘le V12, - 2 W% I2-
lof <n laf <n-2
g I}; guv?,wug ST LA
= R Y [

(In all sums « denotes derivates in x and z only.) To

estimate || v ”2 we use the equation (4.1b).

yy ‘n-1

(1.28) v un T R R T e T

+
zz"n -1

2

vl vl®, v <2 IvlE) < rus(s.26)

Using (4.27) and (4.28) in (4.26) we get:

-+

(1.29) 11v11§+15c[e11vu§+1+<5+el>M§+p@1§_l+

oo olledE + 7[5

For ¢, €5 8 sufficiently small using lemma (2.1) we can absorb

the highest two terms of RHS(L.29) into IHS(L.29) . So that



836 KORMAN

(4.30) vl + vl <ellZl + o 5T, +...v o Iv ]

Iterating the inequality (4.30) we get the desired inequality
(4.6).

Remark. BExamining the proof we see that for n=0,1,2

<cm

the estimates are: H V“m 1S ChE

Proposition (4.2). Consider the problem (o > 0)

v - - - - _ _
vy O‘(VXX+VZZ) 7 r v TV =g, yv=1

(4.31)<Av-e c..v.j-e c,v, -ec v="~ , O0<y<1l

v=0, y=0

.Y

Assume that all definitions and assumptions of Proposition k.1
are true for (4.31). Then we have exactly the same a priori est-

{
imate (L.6) (for the problem L.31) with the right hand side

independent of @

Proof. Proceed exactly as in Proposition 4.1. Then the

formula (4.23) will contain an extra term

o2 o 2
=g
[ D7+ 97
t
in the left hand side. This term is non-positive so that it drops

out in the estimate (h.el&). The rest of the proof 1s the same ag

in Proposition L.1.
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5. Existence of Solutions for the Linearized Problem

Proposition 5.1. Consider the linear problem (4.,1). Suppose

. e k
that conditions (L.Lk), (Lk.5) are satisfied; g, f€H (k>5) and
Cy s rkfc- 5 r2<8 (Ck , Ty were defined by (4.2)) . Then for e
and & sufficiently small the problem (4.1) has a unique e

solution.

Proof. The proof consists of the following steps.

(o). Show that the problem (o > 0)

= =1
(5.1a) v, - G(VXX—I— VZZ) - t(rleXJr TVt r3vzz) g, v
- -8 Y - = 1 'l <1
{(5.1b) Av ceyVig meCyTy ecyv="f (1<3), 0<y<
(5.1c) v=0, y=0

is coercive for 0<t<1,0<e Sel 5 € sufficiently small. This
is the content of Lemma 5.1 which is proved at the end of the
paragraph.

(B). Since the problem (5.1) is coercive its index is de-
fined and ig invariant of the homotopy transformations which do
not take the problem out of the coercive class. Letting

t+0 , e +0 we see that the index of (5.1) is the same as that of

(5.2):
v - ofv +VZZ)‘—'8§
(5.2) Av = £
vV o= 0 .
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(¢). By elementary Fourier analysis we see that (5.2) is
uniquely solvable, so that its index is O . Hence the index of
(5.1) is also O . 8ince by Proposition 4.2 we have uniqueness
for (5.1) we derive that (5.1) is solvable (uniquely). Denocte
its solution for t =1 by v°

(D). By the estimate (4.6) of Proposition (4%.2) we have:

Ivl, , , <e .

o
Hence {v } is compact in Hk and as & - O there exists a sub-
sequence converging to some v € Hk . Passing to the limit in
(5.1) as 8+ 0 and t =1, we see that v is solution of

(.1) which establishes the Proposition (5.1).

Lemma 5.1. The problem (5.1) is coercive for 0 <t <1,

8>0, 0<e <e € sufficiently small.

1771

Proof. Clearly it suffices to check coerciveness of the top
boundary condition (5.1a). According to Agronovich [1] this is
equivalent to checking that a certain ODE with an initial condi-
tion has a unique stable as t =+ © solution. The algorithm is as
follows. Throw away the lower order terms in (5.1a) and (5.1b).
Let (X, 1, z) be an arbitrary point on the top boundary. Freeze
)5 T Tos Gy at it. Take Fourier transforms of (5.1a), (5.1b)
in x and =z . We get:

(5.3) (1 —ecgg)v"(t) + ie (c12§l+ c23§3)v’ (t)
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+ [-(§§+ §§)+ e(cll§§+ c 58185t c33§§)]v(t) =0,t>0 .

(5.8) [0(E2+E9)+t(r &5+ 1,8 8,4 7 85)Iv(0) =h , h=const.

Set

a=1-c¢cC

o
1

e}
Il

= ig(c, & + ¢

2 2 2
‘(§1 + 53) + e(cllgl + c13§l§3 + 03353

22

(i=4-1)

1051 * Cp383)

.

2y

Characteristic exponents of (5.3) are:

For

e sufficiently small a > 0 , b

a - —bihfbe—lkac

1,2 2a

2 hac > O ‘and for any

§' = (5, &) with g%+ z-;§ 4 0, the unique stable as +t » @

golution of (5.3), (5.4) is

v(t) =

h -b - bz—hc

o(€2+65) + t(r 87+ v B Bt v Bl

® exp t
%) 2a

This proves the lemma.

Remark.

The original linearized problem (4.1) is non-

coercive in general. Indeed in this case instead of (5.4) we have

(5.5)

2 2
(rlgl + r2§1g3 + r3§3)v(0) =h
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If §1, 53 are.such that Ei +.§§ % 0 and rl§§4~r2§l€34—r3§§=

= 0 , then the problem (5.3), {5.5) has no nontrivial stable as

t > @ golution. So that (4.1) is non-coercive.

6. Proof of the Main Theorem

As was indicated in §3 we consider an operator

Flu) :B. "+ B "¢

1 o defined by

u - ;
V. p(uxx’ Ugy 2 uzz)

(6'1) F(u) =

Au - ¢ flx,y,z,u, Uy Uy

The Banach scales B , B " were defined by {(3.2); the con-

1 2
stants o > 5 and m> 2w will be specified later. We sghall

get solution of our problem by solving
{6.2) Flu) = 0

This will be done by verifying the conditions of IFT.

Denote --

ry = puxx(uxx"gxz’ uzz)’ r, = puXZ(uXXJ Y ? uzz) s
r3 - puzz(u x? Vxz? uZZ> ?
(6.3)
g = t.(x,y,2,u,0, uij)’ Cuv = fuv(x, Y%, 0,0, uij),
cwr:fu (X:YJZJUDui>u13} > LE Vs, T3

W
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We shall also consider constants Ty Cp pk as defined by

(4.2). These are estimated in the following lemma.

Lemma 6.1. Suppose that all the functions defined by (6.3)

possess continuous derivatives in all variables up to order

k> 1 . Assume also

(6.1) lals <5 -
Then for ©® sufficiently small we have:

Ty G Py S c(llullk+5 + 1),
(6.5)

Ewl, <clinl, o+ v

Proof. Condition (6.4) guarantees that u and all its
derivatives up to order two are bounded by 1 1in V . Then the

estimates (6.5) follow from the lemma 2.3.

Remark. Similar estimates hold for higher order derivatives

of the functions T, 75> r3, Chs Cy Cij

We now proceed to verify the conditions of the IFT.

condition (i). Compute (p = pla, B, v))

Vyf'pa(uxx’ Yxz uzz)v '-pﬁ(uxx’ Yxz 2 uzz)vxz -]

_pv(uxx"uxz’ uzz)véz

F'(u)v =

.Avu-efu(x, Yo%, 0, uij)v.—g:fuivi--efu,ijvij
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Using lemmae 2.2 and 6.1 we estimate:

[r (= sw  [r(v]
vl <2
= H Sﬁp<1 | R A RS e A R A Um—ot

o+ Av—ecijvij -ec,v, -ecyv “m-a)
+
m-o+ 2 m -

<o s (mm_ b2 V1 e,

e mw [lvl gy gt Grluly g, Dlvl]
vl <1

A

- <ec (as a>5, m>2q)
The boundness of F'"(u) is proved similarly.

Condition (iia). Solvability of the linearized problem,
i.e., existence of the operator L(u) follows directly from the
Proposition 5.1. Indeed since H u “m <3 we get by lemmae 6.1

and 2.3

+1) <e, p,= o(8) ,

T ;e Pm_agc(lluum ,

m-o -a’ -0+ 5

fulfilling the conditions of Proposition 5.1.

Condition (iib). Let h € B2n ,m-a<n<m.
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By the Proposition 4.1 we have:

n L(w)n un —ocfc[mn —a+p3mn -a -1

+
+
s
Q——-‘-
-
D

By lemma 6.1

p<cllul,, grD) <ellul <o, =34, om-a

., n~-a and hence

which implies Py <c¢ ,k=3,k,..

loenl, _<clnl, , <elnl

which verifies (iib).

condition (iic). By the Proposition 4.1 we have:

(6.6 L@r@ ], og< | lE@ L, oo +pslE@ L, 062

Notice that u uH7 <% <1, since m> 10 . If we now denote
-
m+ 10@ -7

7= ul then by lemma 2.4t we have:

m+ 10Q ?
k-7 1 - 1
m+ 10 -7 m+ 10 -7 k-7
Jul <er T,

bl <clal ;s

Then by lemma 6.1

pkfc(llu[lk+5+1)§c(*rk—2+l),k: 3,4, ..., 0+ 90

Hence

p3=p3§c(-=r+ 1)
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(6.7)

Similarly by lemma 6.1 we estimate

Ir@) g Selially, gpy gD Selr

(6.8) +nvemenes e e e
m§ <cllullyg+ 1) <elr+ 1)
mkfc, k=4,3,2

(Here we used that p , £ € ¢®F 2%

Using (6.7) and (6.8) in (6.6) we get for T > 1 .

_<_C[’rm+905_h+7"°-rm+9a"5+...+‘1"m+9a—5 .

(6.9) [ rw o

+_Tm+9a—h+prm+9oc-3+ Tm+9oc—2+l]

mn+ Q-2
m+ 10y -7

m+ Qx -2
T uun+1oo¢

<c(

+1)=c(] +1)

<c(ull

= nt 100t

since m+ 9o -2<m+ 100 - 7 (as o> 5)

Tn the case 7T < 1 (6.9) holds by choosing c sufficiently large,
and (iic) is verified.
Finally, by fixing =5, m= 2 = 10 and & suffi-

clently small we complete the proof.
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1. Tntroduction. Our goal is to study the asymptotic behavior

as ¢ - o' of solutions of the Dirichlet problem for the elliptic

differential equation

(1.1) ehu = AGou)equ + h(xu), X N0 C R,

when the vector A = (algg,u),,qo,aNgg,u)) depends strongly on u

in a sense that we will make precise later. Here

x = (xl""’XN)’ v = (a/axl,.a.,B/BxN), » 1ig the usual Euclidean

inner product, A = ¥sV is the Laplacian, and (Q is a bounded

pends weakly on u, provided the boundary [7 is noncharacter-

847
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region in IQI whose boundary T is an (N-1)~dimensional manifold.

Many results are known if A is independent of u or if A de-

istic, in that éﬁg,u)igﬁg) 4 0 for all u of interest, where 1
is the unit outer normal at the point x om T. The reader can
consult [161, [18]1, [5] and [11] for details and for further ref-

erences to the literature., Recently the author [12, 14] has ex~
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