Numerical computation of global solution curves using global parameters

Philip Korman and Dieter S. Schmidt University of Cincinnati

The shoot-and-scale method

By classical theorem of B. Gidas, W.-M. Ni and L. Nirenberg, any positive solution of the semilinear Dirichlet problem (here u = u(x), $x \in \mathbb{R}^n$, λ a positive parameter)

(1)
$$\Delta u + \lambda f(u) = 0 \text{ for } |x| < 1, \quad u = 0 \text{ when } |x| = 1$$

is necessarily radially symmetric, i.e., u = u(r), with r = |x|, and so the problem turns into an ODE

(2)
$$u''(r) + \frac{n-1}{r}u'(r) + \lambda f(u(r)) = 0 \text{ for } 0 < r < 1, \ u'(0) = u(1) = 0.$$

Moreover, this theorem asserts that the function u(r) is strictly decreasing, and hence u(0) gives the maximum value of solution. A simple scaling argument shows that the value of u(0) > 0 is a global parameter, uniquely identifying the solution pair $(\lambda, u(r))$.

Lemma The value of u(0) uniquely identifies the solution pair $(\lambda, u(r))$.

Proof: (Sketch) Assume that $(\mu, v(r))$ is another solution pair, $\mu \neq \lambda$, so that

(3)
$$v''(r) + \frac{n-1}{r}v'(r) + \mu f(v(r)) = 0 \text{ for } 0 < r < 1, \ v'(0) = v(1) = 0,$$

and u(0) = v(0). The substitution $r = \frac{1}{\sqrt{\lambda}}t$ takes (2) into

(4)
$$u''(t) + \frac{n-1}{t}u'(t) + f(u(t)) = 0.$$

The first root of u(t) is at $t = \sqrt{\lambda}$. Similarly, the substitution $r = \frac{1}{\sqrt{\mu}}t$ takes (3) into into

$$v''(t) + \frac{n-1}{t}v'(t) + f(v(t)) = 0,$$

with the first root at $t = \sqrt{\mu}$. By uniqueness u(r) = v(r), a contradiction.

Computations follow the same idea.

$$u''(t) + \frac{n-1}{t}u'(t) + f(u(t)) = 0, \ u(0) = \alpha, \ u'(0) = 0.$$

"Shooting". NDSolve. If ξ is the first root, then the corresponding $\lambda = \xi^2$. Plot many points (λ_n, α_n) to get a bifurcation diagram. The shoot-and-scale method.

Traditional approach: curve following, $\lambda_n \to \lambda_{n+1}$, using Newton's method.

Very short Mathematica program. Also, have a program for Neumann B.C.

The p-Laplace case

(5)
$$\varphi(u')' + \frac{n-1}{r}\varphi(u') + \lambda f(u) = 0, \quad u'(0) = u(1) = 0,$$

where $\varphi(v) = v|v|^{p-2}$, p > 1. As in case p = 2, the value of u(0) uniquely identifies the solution pair $(\lambda, u(r))$, so that the solution curves can be drawn in the $(\lambda, u(0))$ plane. Write (5) as

$$u'' + \frac{n-1}{(p-1)r}u' + \lambda \frac{f(u)}{(p-1)|u'|^{p-2}} = 0.$$

If p > 2, then u''(0) does not exist, $u(r) \neq C^2$. The singularity is also a problem with computations. Regularizing transformation:

$$z = r^{\frac{p}{2(p-1)}}.$$

Obtain

$$av''(z) + \frac{A}{z}u'(z) + \frac{z^{p-2}}{(p-1)|v'(z)|^{p-2}}f(v) = 0,$$

with some positive constants a and A. Conclude $v(z) \in C^2$. So that solutions of p-Laplace equation (5) is of the form $u = v\left(r^{\frac{p}{2(p-1)}}\right)$, with $v \in C^2$. (Say, p = 3. Then $u = v(r^{3/4})$.) Have a *Mathematica* program.

Non-homogeneous problems

$$u''(r) + \frac{n-1}{r}u'(r) + \lambda f(r, u(r)) = 0 \text{ for } 0 < r < 1, \ u'(0) = u(1) = 0.$$

Can "shoot", but not scale. In some cases u(0) is still a global parameter. Have a *Mathematica* program, using Newton-like method.

Solution curves for the elastic beam equation

Displacements of an elastic beam, clamped at both end points,

(6)
$$u''''(x) = \lambda f(u(x)), \text{ for } x \in (-1,1)$$
$$u(-1) = u'(-1) = u(1) = u'(1) = 0.$$

For positive solutions u(0) is a global parameter, Korman (2004) (if f(t) > 0 and f'(t) > 0 for t > 0). Simple "shooting" does not work here. (The knowledge of $u(0) = \alpha$ alone is not enough to shoot.)

Figure 1: The global solution curve for the problem (6), with $f(u) = e^{\frac{5u}{5+u}}$

What other quantities can be used a global parameter?

Continuation in First Harmonic

We describe numerical computation of solutions for the problem

(7)
$$u'' + f(u) = \mu \sin x + e(x), \quad 0 < x < \pi, \quad u(0) = u(\pi) = 0,$$

although similar results hold for the corresponding PDE's on general domains. Here $\int_0^{\pi} e(x) \sin x \, dx = 0$, μ a real parameter. Writing $u(x) = \xi \sin x + U(x)$, with $\int_0^{\pi} U(x) \sin x \, dx = 0$, we shall compute the solution curve of (7): $(u(\xi), \mu(\xi))$, by using Newton's method to perform continuation in ξ . If $f'(u) < \lambda_2 = 4$, the value of ξ is a global parameter, uniquely identifying the solution pair $(\mu, u(x))$.

Example We solved

(8)
$$u'' + \sin u = \mu \sin x + x - \frac{\pi}{2}, \quad 0 < x < \pi, \quad u(0) = u(\pi) = 0.$$

Observe that $\int_0^{\pi} (x - \frac{\pi}{2}) \sin x \, dx = 0$.

Figure 2: The global solution curve for the problem (8)

Look at the points of intersection with the ξ -axis, where $\mu = 0$. The picture suggests that the problem

$$u'' + \sin u = x - \frac{\pi}{2}, \ 0 < x < \pi, \ u(0) = u(\pi) = 0$$

has exactly three solutions, one of which has zero first harmonic.