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We begin by reviewing the Fredholm alternative, and the “nonlinear

Fredholm alternative” of Landesman-Lazer.

Given a bounded domain D ⊂ Rn, with a smooth boundary, we denote
by λk the eigenvalues of the Dirichlet problem

∆u+ λu = 0, x ∈ D, u = 0 on ∂D ,

and by ϕk(x) the corresponding eigenfuctions. For the resonant problem

∆u+ λku = f(x), x ∈ D, u = 0 on ∂D ,(0.1)

with a given f(x) ∈ L2(D), the following well-known Fredholm alternative
holds: the problem (0.1) has a solution if and only if

∫

D
f(x)ϕk(x) dx = 0 .(0.2)

One could expect things to be considerably harder for the nonlinear problem

∆u+ λku+ g(u) = f(x), x ∈ D, u = 0 on ∂D ,(0.3)

However, in the classical paper of E.M. Landesman and A.C. Lazer (1970)

an interesting class of nonlinearities g(u) was identified, for which one still
has an analog of the Fredholm alternative. Namely, one assumes that the

finite limits g(−∞) and g(∞) exist, and

g(−∞) < g(u) < g(∞), for all u ∈ R .(0.4)

Let us assume for simplicity that k = 1. It is known that λ1 is simple (1-d
eigenspace) and ϕ1(x) > 0. Multiply

∆u+ λ1u+ g(u) = f(x), x ∈ D, u = 0 on ∂D

by ϕ1(x) and integrate to obtain

∫

D
g(u)ϕ1(x) dx =

∫

D
f(x)ϕ1(x) dx ,(0.5)

1



which implies, in view of (0.4) that

g(−∞)

∫

D
ϕ1(x) dx <

∫

D
f(x)ϕ1 dx < g(∞)

∫

D
ϕ1(x) dx

This is a necessary condition for solvability. It was proved by E.M. Landes-
man and A.C. Lazer (1970) that this condition is also sufficient for solvabil-

ity. For general (sign-changing ) ϕk this condition takes the form:

g(−∞)
∫

ϕk>0
ϕk dx+ g(∞)

∫

ϕk<0
ϕk dx <

∫

D f(x)ϕk dx(0.6)

< g(∞)
∫

ϕk>0
ϕk dx+ g(−∞)

∫

ϕk<0
ϕk dx .

However, one still needs to assume that λk is simple. E.M. Landesman and
A.C. Lazer result is the following.

Theorem 0.1 Assume that λk is a simple eigenvalue, while g(u) ∈ C(R)

satisfies (0.4). Then for any f(x) ∈ L2(D) satisfying (0.6), the problem
(0.3) has a solution u(x) ∈W 2,2(D) ∩W 1,2

0 (D).

What if λk is not simple. In the same year when Landesman-Lazer was

published (1970), S.A. Williams proved:

Theorem 0.2 Assume that g(u) satisfies (0.4), f(x) ∈ L2(D), while for

any w(x) belonging to the eigenspace of λk

∫

D
f(x)w(x) dx < g(∞)

∫

w>0

w dx+ g(−∞)

∫

w<0

w dx .(0.7)

Then the problem (0.3) has a solution u(x) ∈W 2,2(D)∩W 1,2
0

(D). Condition

(0.7) is also necessary for the existence of solutions.

However, no examples for multiple eigenvalues were known for a while,

until we observed in 2016 that another classical result of A.C. Lazer and
D.E. Leach (1969) on periodic solutions of semilinear harmonic oscillator

provides an example to Theorem 0.2 in case of double eigenvalues.

In this paper we prove a similar result for a disc in R2, thus providing
the first PDE example for Theorem 0.2 in case of a multiple dimensional

eigenspace. Even for simple domains the eigenspace of a multiple eigenvalue
can be very complicated, and multiplicity of eigenvalues may vary in non-

obvious ways. So that verifying the inequality (0.7) for any element w(x)
of the eigenspace appears to be next to impossible for other domains (the

integrals
∫

w>0
w(x) dx and

∫

w<0
w(x) dx are unlikely to remain constant over

an eigenspace).
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Example Let D = (0, π)× (0, π) in R2. The eigenvalues of

∆u+ λu = 0 , in D u = 0 on ∂D

are λnm = n2 + m2 with positive integers n and m, corresponding to the
eigenfunctions sinnx sinmy. These eigenfunctions are obtained by separa-

tion of variables, and there are no other eigenfunctions since these eigen-
functions form a complete set in L2(D). The principal eigenvalue λ1 = 2

is simple, with the corresponding eigenfunction sinx sin y > 0. The eigen-
value λ2 = 5 = 12 +22 has multiplicity two, with the eigenspace spanned by

sinx sin2y, sin 2x siny. The eigenvalue λ3 = 8 = 22 + 22 is simple, with the
eigenspace spanned by sin 2x sin 2y. The eigenvalue 50 = 12 + 72 = 52 + 52

is triple, with the eigenspace

w = c1 sinx sin 7y + c2 sin 7x sin y + c3 sin 5x sin 5y .

The set where w > 0 appears to to be complicated, and
∫

w>0
w dxdy will

depend on a particular choice of eigenvector w.

Remarkably, the eigenvalues of Laplacian on a disc B : x2+y2 < a2 in two

dimensions, with zero boundary condition, all have multiplicity two, except
for the principal eigenvalue, which is simple. The eigenvalues are λn,m =
α2

n,m

a2
(n = 0, 1, 2, . . .; m = 1, 2, . . .), with the corresponding eigenfunctions

Jn

(

αn,m

a
r

)

(A cosnθ + B sinnθ) ,

where αn,m is the m-th root of Jn(x), the n-th Bessel function of the first
kind, r =

√

x2 + y2 (A and B are arbitrary constants). The principal eigen-

value is simple, while all other eigenvalues have multiplicity two, because
any two Bessel functions with indices different by an integer do not have

any roots in common, see G.N. Watson, p. 484 for the following result.

Proposition 1 For any integers n ≥ 0 and m ≥ 1, the functions Jn(x) and

Jn+m(x) have no common zeros other than the one at x = 0.

This result was apparently once a long standing conjecture, known in
the 19-th century as Bourget’s hypothesis (after the 19th-century French

mathematician), until it was proved in 1929 by C.L. Siegel, see a very infor-
mative Wikipedia article on the Bessel functions. The name “hypothesis”

suggests that it was used to prove other results. It immediately implies the
following result that we need.
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We show that the following integrals are independent of the choice of

eigenfunction w:
∫

w>0

w(r, θ) rdrdθ ≡ Jn,m ,

∫

w<0

w(r, θ) rdrdθ = −Jn,m .

Then the theorem of Williams above applies, giving the result described
next. Let λk = λn,m, and ϕk, ψk corresponding eigenfunctions. Denote

ϕk = Jn

(

αn,m

a
r

)

cosnθ ,

ψk = Jn

(

αn,m

a
r

)

sinnθ ,

Ak =

∫

B
f(x, y)ϕk dxdy ,

Bk =

∫

B
f(x, y)ψk dxdy .

The numbers Ak and Bk can be easily approximated by Mathematica for
any f(x, y) and k.

Theorem 0.3 Assume that g(u) satisfies the condition (0.4). Then the

condition
√

A2
k +B2

k < Jn,m (g(∞)− g(−∞))(0.8)

is both necessary and sufficient for the existence of solution u(x) ∈W 2,2(D)∩

W
1,2
0 (D) of (0.3).

As an application, we get an unboundness result for the corresponding
semilinear heat equation, when the inequality sign in (0.8) is reversed.

4


