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1 INTRODUCTION

In their ground-breaking paper B. Gidas, W.-M. Ni and L. Nirenberg® showed that

positive solutions of a Dirichlet problem in a ball in R",
Au+ f(r,u)=0 for r=|z|<R, uw=0 when |z|=R (1.1)

are necessarily radially symmetric with uw/(») < 0, provided f(r,u) is decreasing
in r. In Gidas, Ni, and Nirenberg? a similar symmetry result is proved in R™ for
two general classes of functions f(u). This work was continued by several authors,
particularly Y. Li and W.-M. Ni, see Li and Ni® for a review. It turned out that in
the case f(u) < 0 for u > 0 one needs to place additional assumptions, either on
f{u) or on the behavior of the solution u(z) at infinity, in order to prove symmetry.

In this paper for the B! case we prove symmetry for very general f(z,u), without

making any assumptions on the behavior of solutions. For a bounded interval we
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prove symmetry in a case when f(z,«) is not decreasing in z. We also give symmetr'y
-results for a class of singular problems on an interval (u(%1) = o), and an anti-
symmetry result. While it is not particularly surprising that one can obtain stronger
results in one dimension, we feel it might be of interest that we obtain our results by
a technique different from the moving plane method of Gidas, Ni, and Nirenbergl?
and of later papers. Moreover, in all cases we prove that different positive solutions
do not intersect. This property is useful in studying multiplicity of solutions, see

Korman and Ouyang®?,
2 DIRICHLET PROBLEM ON AN INFINITE INTERVAL
Theorem 1 Consider the boundary value problem
W+ f(n,u) =0 for @€ (=00,00), u(=00)=mn(o0)=0. (2.1)

Assume that the function f € C*(R x Ry) is such that

f(=z,u) = f{z,u) forall =& (-oc0,00) and u >0, (2.2)
zfz(t,u) <0 for z € (—o0,00)\{0} and u >0, (2.3)
There is an M > 0 such that |f(z,u)] < M (2.4)

for large |z| and small u.

Then any positive solution of (2.1) is an even function with u'(z) < 0 on (0, 00).
Moreover, any two positive solutions of (2.1) cannot intersect on (—oo0,00) (and

hence they are strictly ordered).

Proof. We begin by showing that a positive solution of (2.1} cannot have points

of local minimum. Assume on the contrary that 7 is a point of local minimum of
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u(z). Let § be the smallest number greater than #, such that u(§) = u(z). On
the .interval (Z,7) let z1 be the largest point of local minimum, and 1 > z1 be the
smallest number with u{y1) = u{z1) (it may happen that z; = 7, and then y; = 7).
Let ¢ € (z1,y1) be the unique point of local maximum of u(z) on (z1,y1) and denote
u1 = u(z1) = u(y1) and 4 = u(¢). Multiply (2.1) by »' and integrate from = to €.
Obtain

@

Flz(u),u)du =0, (2.5)

uy
where z = z1(u) is the inverse function of u(z) on (z1,¢). Proceeding similarly on

(E: yl))

Uy

%11.’2 (y1) + A I (zo(u),u)du = 0. (2.6)

Adding (2.5) and (2.6),

U

%u’z(yl) +/ [flz1(u),u) — flza(u),w)] du = 0. (2.7

uy
Since za(u) > z1(u) for all u € (u1,4), we see that the integral term in (2.7) is
positive, which obviously leads to a contradiction. It follows that u(z) has no local
minimums, and hence it has only one point of local maximum zg, which is the point

of global maximum.

Notice that v(z) = u(—=z) is also a solution of (2.1) with »(0) = v(0) = up and
()] = W/ (O)]. (28)

Assume that the solution u(z) is not even, i.e., v(z) 2 u(z). If we now assume that
the point of maximum zg = 0, then »/(0) = v'(0) = 0, and we get an immediate
contradiction, since by uniqueness theorem for initial-value problems we would have

u(z) = v(z). So we may assume that zg > 0.
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Let ¢ denote the point where «(¢) = »(0). Then arguing as in derivation of (2.7)

(see also Korman 'and Ouyang®) we easily conclude that
[u'(0)] > |u'(€)]. (2.9)

Assume we can find 4 < ug, with u(8) = v(a) =4 and
W/(8)] 2 [v'(@)] (0<a<p). (2.10)

In particular this will happen if 8 = «, i.e. the graphs of u(z) and v(z) intersect.
Multiply (2.1) by ' and integrate from ¢ to 5. Obtain

%u’z B) - l'u,’é &+ flza(u),u)du =0, (2.11)

2 o
where = = z4(u) is the inverse of u(z) on (¢, 8). Similarly, integrating over (0, a),

%vﬂ(a) - %U'z(o) + /u : F(wa(v), 0)dv = 0, (2.12)

where z = z3(v) is the inverse of v(z) on (0, ). From (2.11) subtract (2.12),

-;- (0 —u©) + 5 (4" 8) ~ " @) (2.13)
/ﬁuﬂ [f (za(u),u) — fza(u),w)]du = 0.

The first term in (2.14) is positive by (2.8) and (2.9), the second one is nonnegative
by (2.10), and the integral term is positive because z4(u) > z3(u) for all u € (&, up).
This is a contradiction.

It remains to handle the possibility that
[o'(w)] > |u'(u)] forallu <4 andz > 0. (2.14)

We claim that mllnéolu/(m)l = éLIXéQ'U/(T” = 0. Assume on the contrary that
|u/(zn)| > € > 0 for some sequence {xn} — oco. Since by (2.4) v”(z) is uniformly

bounded, we would have |u'(z)| > €/2 over (zn,zn +§)) for some § > 0. But this is
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clearly impossible, since lim u{z) =0 and v/(z) < 0 for > =o (u(z) drops by at
=6 -

least % over (zn,2n + §)). We now obtain a formula similar to (2.13) by integrat-

ing the equations for u(z) and v(z) over (£,c0), and a similar contradiction. This

completes the proof that u(z) is even.

That u' < 0 for z > 0 easily follows by differentiating (2:1). For the final claim,
assume that two even solutions u(z) and v(z) intersect at &€ > 0, and |u/(¢)] < |v/(£)].
By the previous arguments we can find £ < a < 8 so that (2.10) holds. Integrating

(2.1) times ' over (¢, «) and over (¢, 8), we obtain a contradiction as before.

Remark. Clearly, it suffices for the inequality (2.3) to hold almost everywhere
(and a similar generalization applies to all other results of this paper). In case
f = f(u) it is easy to prove that any positive solution of (2.1) is even about its
point of global maximum, call it =g, and «/(z) < 0 for £ > zg. To see this, we
begin by remarking that if w/(y1) = 0 then u(z) is even with respect to y1, which
follows by observing that v(z) = u(2y; — =) is another solution of (2.1), satisfying
the same initial condition. If now yi is the point defined in the proof above, then
u” {(y1) > 0. Repeating the argument leading to (2.7), we conclude that u(z) can
Have no points of local minimum. If zg is the unique point of global maximum
of u(z), then (229 — =) = u(z) by the uniqueness for the initial-value problems,

completing the proof.

Remark. Examining the proof we see that under our conditions (2.2-2.4) any
nonnegative solution of (2.1) is in fact positive, and hence all conclusions of the

theorem hold for nonnegative solutions.
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Remark. Under the additional assumption that u/(—oco) = wu’(oo) (homoclinic

solutions) a similar result was proved in Korman and Lazer®

3 SYMMETRY FOR A CLASS OF SINGULAR PROBLEMS

We establish symmetry of solutions for a class of singular problems considered re-
cently in a number of papers, see e.g. recent preprints of A.C. Lazer and P. McKenna
and the references therein. Since the proof is similar to that of the theorem 1 we
only sketch some of the steps. Notice that solution is not required to be positive,

and that we write u(1) = +o0 to signify that linlx u(z) = +o0.
t =1

Theorem 2 Consider the problem

w4 flz,u)=0 on (—1,1), u(-1)=u(l) = +oo. (3.1)
Assume that the function f € C1([=1,1] x R) is such that

Fl=z,u) = f(z,u) forall z€(~1,1) andallu, (3.2)

folz,u) >0 for z€(0,1) andallu. (3.3)

Then any solution of (8.1) is an even function with u'(z) > 0 for z > 0. Moreover,

any two solutions of (8.1) cannot intersect.

Proof. As before we show that w(z) has no local maximums on (—1,1). This
implies that u(z) has only one (global) minimum, say at # = wxg. The function
v(z) = u(—=z) is also a solution of (3.1) with v(0) = u(0) = ug and v/(0) = —u/(0).
If 2o, then v(x) = u(z) and solution is even, so assume that zg > 0. Define £ > 0

to be the point where u(0) = u(£) = ug. As before we show that

' (0)] > |u'(€)]- (3.4)
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Assume we can find 4 > ug with u(8) = u(a) =4 and
Ww'(B) > (@) (82 a) (3.5)

In particular this will happen if 8 = o, i.e. u(z) and v(z) intersect (notice that for
small = the graph of v(z) is above that of u(z)). Then multiplying (3.1) by «’ and
integrating over (¢, ) and multiplying (3.1) by v’ and integrating over (0,«), we

obtain respectively

1, 1 p g
U Z(ﬂ) — 5'{1, &+ /uo fzg(u),uw)du =0, (3.6)
1 p 1 p g
7V (o) = oY O+ | f(zi(u),u)du =0, (3.7)

Here « = x1(u) is the inverse function of u{z) on (¢, 8), and = = zg(u) is the inverse

of v(z) on (0,a). Subtracting

-;- (") - () + % (w(8) =" (@) (3.8)
+ u: [f(walu),u) = fz1(u),u)] du = 0.

Since zg(u) > w1(u) for all u € (ug, @) it follows by (3.3-3.5) that the left hand side
of (3.9) is positive, a contradiction.

To prove the evenness of solution it remains to exclude the possibility that (3.5)
cannot be achieved, i.e. the possibility that for all u > wug, v’y > w/|. In such a

case we would have

dut

_— = > ==

dxo 1 1
du, u! '

for all u > wug.
v

Denoting w(u) = zg(u) —z1{u), we have that for u > ug, w(u) > 0, w'(u) > 0, while
lim w(u) = Jim zg(u) — Jim z1{u) =1 — 1 = 0, which is impossible.

U-—00

The remaining claims follow as before.
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4 SYMMETRY ON A BOUNDED INTERVAL

Consider the boundary value problem

W'+ f(z,u)=0 on (=1,1), u(-1)=u(l)=0. (4.1)
We again assume that f € C1([~1,1] x R4) and

f(=z,u) = f(z,u) forall ze€(-1,1) and u> 0. (4.2)

If f(z,u) is decreasing in z for z > 0 (or @f; < 0 for all z) then the well-known
theorem of B. Gidas, W.-M. Ni and L. Nirenberg® applies, and so any positive
solution of (4.1) is even. Next we consider a class of nonlinearities where this
condition (zf; < 0) is violated. Namely we assume that f(z,u) = (u — a)g(z,u),

where a is a positive constant and the function g(z,u) € C([-1,1] x Ry) satisfies

g(—x,u)=g(z,u) forall ze(~1,1) and u>0, (4.3)
zyg(z,u) <0 forall z€(=1,1) and u >0, (4.4)
g(z,u) <0 and g, >0 for 0<u<a and z € (-1,1). (4.5)

{(Notice that zfz > 0 for 0 < u < a.)

Theorem 3 Under the assumptions (4.3-4.5), any positive solution of (4.1) is an
even function with u'(z) < 0 for = € (0,1). Moreover, any two positive solutions of

(4.1) cannot intersect.
Proof. Notice that (4.5) implies that
flz,u) >0 and fu(z,u)<0 for uwe (0,a) and =€ (-1,1). (4.6)

We need the following lemma. It says that among two monotone solutions near

z = 1, the larger one is steeper.
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Lemma. Assume that u(z) and v(z) are two positive solutions of (4.1), such that

for some v € (~1,1)

(1) v(z) <wu(z) <a on (y,1),
(i) uw'(2) <0 and w'(z)<0 on (v,1).

(i)  Assume &, € (v,1) are such that (& < 8) v(&) = u(B).
Then

ul(,é) < 'UI(&) (i.e. Iu’(ﬁ)] > w'(@)]). (4.7)

Proof. On (3,1) we consider w = u — v > 0. Then

w4+ elx)w =0 on (3,1), w(l)=0, (4.8)
where, using (4.6)
1
e(z) = / Julz, 6u + (1 — 8)v)dd < 0.
0
Multiplying (4.8) by w and integrate from Btol,
o 1, 1
—w(B)w'(B) —/_ w' dz +-/_ e(x)w?dz = 0. (4.9)
8 B

Since the integral terms in (4.9) are negative, it follows that w'(8) <.0, i.e. w'(8) <

o' (B). But by (4.6) v = —f(z,v) < 0 when v(z) < a, and hence
W' (B) < V' (B) < v'(@),

concluding the proof of the lemma.
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Corollary. Let u(z) and v(z) be two positive solutions of (4.1) with v(z) < u(z)
near z = 1. Then these solutions cannot intersect so long as v < a and they are-

both decreasing.

Proof. If u(6) = v(6) < a, then |u'(6)| < |v'(6)]. On the other hand, passing to the
limit in (4.7) as &,/ — §, |[«/(6)| = |v/(6)].

Returning to the proof of the theorem, we claim that any positive solution of
(4.1) cannot have local minimums, and hence it has only one (global) maximum.
Indeed, if 21 is a point of local minimum, then f(z1,u(z1)) = —u”(z1) < 0, ie.
u(z1) > a. But then u(z) > a on the interval (z1,y1) defined in the proof of the
theorem 1, and we obtain the same contradiction as we did there.

Assume now that a solution u(z) is not even. As in theorem 1 we may assume
that it takes its global maximum at Z > 0, and v(x) = u(—x) is a different solution

with u(0) = v(0) = ug, and |u/(0)] = |»'(0)|. We can assume that
a > a, (4.10)

for otherwise we would have two different solutions of (4.1) in the region where

fu < 0, which easily leads to a contradiction. We claim that
v(z) < u(z) forall =z e (0,1) (4.11)

Assume (4.11) to be violated. Then there are three cases.

Case i. v(z) > u(z) near z = 1. Let 0 < a, 8 < 1 be such that u(8) = v(a) = a.
Since v(z) has the same maximum as u(z), v(z) must intersect u(x) on (z,1). Since
these functions cannot intersect where u < a, it follows that § < « and there is

n € (%, ) such that

w(n) = o) =ur >a, W) > [ H)] (4.12)
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By lemma, reversing the roles of u and v,
o' (@)] > [u'(8)]. (4.13)

Multiplying (4.1) by v’ and integrate over (7, 3),

1 . Q
20 (6) - %1/2(7)) + /u f @2, u)du =0, (4.14)

where z = z1(u) is the inverse function of u(x) on (7, 8). Similarly, integrating over

(n, @)

%wz (a) = %v,z (n) + /,: Fflzo(u),u)du =0, (4.15)

with za(u) > z1(u) for u € (a,u1). Subtracting (4.15) from (4.14), and using (4.12)

and (4.13), we obtain the same contradiction as previously.

Case ii. v(z) < u(z) near z = 1, but u(z) and v(z) intersect somewhere on

(%,1). Reversing the roles of u and v, we obtain the same contradiction as in case i.

Case iii. v(z) < u(z) near z = 1, but u(z) and v(z) intersect on (0,z). Let
¢ € (0,7) be the point of intersection. Since v(¢) > v(0) and v(—zg) > v(0), it
follows that v(z) has point(s) of local minimum, which is impossible. The claim

(4.11) is proved.

In view of (4.10) there are two possibilities.

1) uwo < a < i,

(i1) a < ug < i

Assume (i) holds. We can find v < 0 < p < g < 1, such that u(p) = u(q) = u(y) = a.

By the definition of v(z), v = —p and |v’'(y)| = |«/(p)]. By lemma,

[ (p)] = [v'(M] < [u'(g)]-
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On the other hand, arguing as in the theorem 1,

u'(p)] > |4'(q)],
a contradiction.
Assume now (ii) ¢ < ug < 4. Define £ € (0,1) by u(¢) = u(0) = up, and

0<oa<f <1byuv(e)=u(f)=a By the argument from the theorem 1, just

mentioned,

o'(0)] = |u'(0)] > [ (€)]. (4.16)

‘We now multiply (4.1) by v/ and integrate over (¢, 8), then multiply the correspond-

ing equation for v by v/ and integrate over (0, o), then subtract,
1 2 1/ p 2
s ("B - @) +5 ("0 -"©) (417)
10
+/ [f(z1(u),u) — f(za(u),u)ldu =0,

where z1(u) and z2(u) are inverse functions of u(z) and v(z) on the intervals (¢, )
and (0, @) respectively. The first term in (4.18) is positive by lemma, the second
one by (4.16), and the third one is positive, since zz(u) > z1(u) for all u € (a, up).
We have a contradiction, proving that any solution of (4.1) is even.

That any two even and positive solutions of (4.1) cannot intersect follows by

essentially the same argument as the one leading to (4.15).

Example. v” + (u — a)(u — b(z))(c(z) —u) = 0 on (-1,1), u(1) = 0. Here b(z)
and c(z) are even functions, a is a positive constant. We assume that ¢/(z) < 0,
b (z)+c'(z) > 0 and ¢”(z) < 0 for z € (0,1), and a < b(z) < ¢(x) for all z € (~1,1).
Then the theorem applies. indeed, using maximum principle, we easily conclude

that u(z) < c(z) for all =, and then

z = —Ve—u)+c(u—b8)=—bc—b+ +cu
g
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< =be—bd+ (b +)e=c(c—b) <0,

for z € (0,1). This example was considered in Korman and Ouyang?.

5 ODD SOLUTIONS

With a constant A > 0, we consider the problem
u’ + f(z,u) =0 on (=1,1), u(-1)=-4,u(l)=A.

We assume that f € C1([~1,1] x [-4, A]) and
f(~z,u)=—~f(z,u) forall z€(~1,1) and e (-4,A4),
flz,—u) = f(z,u) forall ze€(~1,1) and u € (—A4,A)
f(z,u) >0 for z€(0,1) and u € (—4,A4),
fe(z,u) >0 for z € (-1,1) and u € (~A4,A).

We are interested in solutions satisfying

—A<u(z)< A forall ze(-1,1).

363

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

Theorem 4 Under the conditions (5.2-5.5) the problem (5.1) has at most one so-

lution satisfying (5.6). This solution is an odd strictly increasing function.

Proof. Arguing as in theorem 3, we use the conditions (5.3) and (5.5)

to show

that u(z) has no local maximums. It follows that u(z) is an increasing function on

(—1,1). The function v(z) = —u(—=z) is also a solution of (5.1) with v(0)

= -u(0)

and v'(0) = v/(0). If u(0) = O then u(z) = v(z) proving that u(z) is odd, so assume

that w(0) > 0. Let ¢ € (0,1) be such that v(¢) = u(0) = ug. By (5.4)

v'(€) < 2'(0) = '(0).

(5.7)
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Multiply (5.1) by u’ and integrate over (0,1),

1 p 1 p 4
Fu 1) - U (0) + flz1(u),v)du =0, (6.8)

where = = z1(u) is the inverse of u(z) on (0,1). Similasly,

1 1

2 2 A
—2—'0’ (1) - 5'0/ &+ 3 f(mg(?t),‘u)(l’lx =0, (5.9)

where © = z9(u) is the inverse of v(z) on (£,1). Subtracting (5.9) from (5.8), and
using (5.5) and (5.7) we obtain a contradiction, as we did before.
Uniqueness of the odd solution follows by essentially the same argument (inte-

grating over (0, 1)).

Remark. H. Berestycki and L. Nirenberg” have a more general result: they
consider the PDE case in cylindrical domains. Our Theorem 4 provides a very

simple proof in one-dimensional case.

Example. u” + sinzu®? = 0 on (—1,1),u(#1l) = £1. If p is an even integer,
the theorem applies. We computed the odd solutions satisfying —1 < u(z) < 1 for
p = 2 and 4 (they are stable). For p = 3 we computed a monotone solution with

—1 < u(z) < 1, which is however not odd.
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