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For the Dirichlet problem on ball in R"
Aud+Axu+yyY =0 for|x]<R u=0 on|x|=R,

with p < (n+s)/(n — 2), we show existence of a critical Aq > 0, such that there are two positive radial
solutions for A € (0, Ag), one at A = Ag, and none for A > Aq.
In another direction we show that for the model problem

Au+t+rif 4+ =0 inD, u=0 onaD,

with 1 <g < (n+2)/(n—2) <p, on a bounded star-shaped domain in R", there is a A* > 0 so that the
problem has no positive solution for A < A*,
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1. INTRODUCTION

Our first result deals with the exact multiplicity of positive radially symmetric solutions
for the semilinear Dirichlet problem on a ball |x] < Rin R”

Au+Ax'u+yY =0 for|x| <R u=0 on|x|=R. (1.n

Here 4 is a positive parameter. We show that all positive radial solutions lie on a unique
smooth curve of solutions, which makes exactly one turn at some A = X¢. In particular,
we have an exact number of solutions: there are two solutions for A € (0, ), one
when A = A, and none when A > Ag. In case s > 2 we cover in particular some super-
critical non-linearities, i.e. the ones with p > (n + 2)/(n — 2). While our result is limited
to the problem (1.1), it is, to the best of our knowledge, the only known example of
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a global fold for both equations with explicit dependence on x, and for supercritical
equations.

We use bifurcation theory, as developed in [10]. Crucial to this approach is the
study of the corresponding linearized equation. It turns out that at a singular solution
of (1.1) one can solve explicitly the linearized equation, and then conclude that the
solution is positive. Then it is easy to compute the direction of bifurcation. To complete
the proof we need to show that the solution curve cannot go to infinity at a positive A.
Since our non-linearity vanishes when x = 0, we cannot use the well-known a priori
estimates of Gidas and Spruck [8]. We derive an a priori estimate by reducing our
problem to a Emden—Fowler equation.

In another direction we consider the problem

Au+rif+#¥ =0 inD, u=0 onaD (1.2)
on a bounded domain D C R”, star-shaped with respect to the origin. We assume that p

is a supercritical constant, while g is subcritical, i.e.

1< <1 <
Sa=y Tk

We show that there is a A* > 0 so that the problem (1.2) has no non-trivial non-negative
solution for A < A*. We then generalize, replacing u? and ¥ by the sums of supercritical
and subcritical powers respectively. In case ¢ = 1 the proof can be found in [3]. If D is
a ball this result appears in [1,11]. A related result is proved in [14].

2. EXACT MULTIPLICITY FOR A CLASS OF EQUATIONS

In this section we prove the following theorem.

THEOREM 2.1 Assume that s > 0 and y > 0 are constants, and p > 1 is any constant
in case n =2, and in case n > 2 it satisfies

n+s
—- (2.1)

<

Then there is a critical My, so that the problem (1.1) has exactly 2,1 or 0 positive radial
solutions, depending on whether A < ko, A = Ag or A > rg. Moreover, all solutions lie
on a unique smooth solution curve. This curve starts at (. = 0,u = 0), it makes exactly
one turn at Ay, and then it tends to infinity as A | 0.

Remark Notice that in case s > 2 the theorem allows supercritical p.

The radially symmetric solutions for the problem (1.1) satisfy (here r = |x|, u = u(r))
-1
w+174+ymm=omn<&w@=mm=m (2.2)

where f(r,u) = *(u + y¥. The crucial role will be played by the linearized problem

-1 '
w'” —l—n—’;—w’ +My(r,wyw=0 forr <R, w(0)=w(R)=0. (2.3)
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Recall that solution u(r) of (2.2) is called singular if (2.3) admits a non-trivial solution.
At a singular solution we are able to find w(r) explicitly, and to prove that it is of
one sign, i.e. we may assume it to be positive.

LemMa 2.1 Let u(r) be singular solution of (2.2). Then

2—i—s

W) = =,

(2.4)

and w(r) > 0 for all r € [0, R).

Proof Let v(r) = ri(r) + pu + o, with the positive constants y and « to be specified.
One sees that v(r) satisfies

W+E%iﬂ+kﬂmuﬁ=kPQf+MMﬂ—f)+W%—%J
=3[+ Y uput ap) + @+ yF (=2 - p =] (2.5
Setting
o= [y, (2.6)
we rewrite the right hand side of (2.5) as
A+ y)P (=2 — 1~ 5+ pi). 2.7)

The quantity in (2.7) vanishes, provided we set u = (2 + s5)/(p — 1), and then from (2.6)
a = y(2+s)/(p —1). It follows that the function

2435
%)+Vp I

v(r) = 1l (r) +

satisfies the linearized equation in (2.3).

Since v/(0) = 0, and w(r) is defined up to a constant factor, it follows by the unique-
ness results for the initial value problems of the type (2.3) (see [13]) that w(r) = v(r). To
see that w(r) is positive, it suffices to show that it is a decreasing function, since w(0) > 0
and w(R) = 0. In view of the condition (2.1) we have

W) = rd(r) _]_&

u(;)<1(u”(1)+ u(r))—~—)uf(1 u) < 0,

completing the proof.

LeMMA 2.2 Any positive solution of (2.2) is a strictly decreasing function, i.e.

W) <0 forall r €[0,R).
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Proof Tt is clear from the Eq. (2.2) that local maximum must occur at any critical
point of u(r).

LemMA 2.3 Assume that ) € [A1, 2] for some O < Ay < Aq, and the condition (2.1) holds.
Then there is a constant ¢ > 0, so that any positive solution of the problem (2.2) satisfies

u(r) <c foralrel0,R), and all A € [A1, 2]

Proof Without loss of generality we assume that R = 1. In case 7 > 2 we set ¢ = r>™"
and v = u + y, transforming (2.2) into (with v = v(z))

Vi+a()¥ =0, te(l,00)
)=y, V(0)=0 (2.8)
V() >0, te(l,00),

where

2
a(t):k—lz—t"‘ and cx:——Z-—S_l_ .
n—-2) n—2

This is a well studied Emden—Fowler equation. Since o +p + 1 < 0, it follows by the
Theorem 6 on p. 152 in [4], that lim,, o W(¢) = v(co) is finite. In the rest of the proof
(which is partly a repetition of the one in [4]) we clarify that v(co) is uniformly bounded.

Denote v'(1) = §. Using shooting arguments, we show next that § is uniformly
bounded (i.e. the bound holds for all A € [A1, A;] and all positive solutions of (2.8)).
On say interval [1, 2] we have

0 <a <a(t) <ay, (2.9)
with some constants ¢; and a,. Let z(f) be solution of
=0, z(D=y, (1) =34 (2.10)

By direct integration one sees that z(z) will reach its maximum value at some 7; > 1, and
then decrease and become zero at some 1, > t;. Also one sees that z(#;) ~ c8@/®+D) and
that 7, gets small for § large. Since v'(1) > z(1), it follows that v(z) is larger than z(%)
for # close to 1. We claim that this inequality is preserved so long as both functions
are increasing. Indeed, assume on the contrary that w§) = z(§) at some & > 1, with
Z/(&) > v/(§) > 0. Multiplying (2.10) by z' and integrating, we have

l 2 _l 2 +1 +1
370 —58 + 2@ -y =0 @11)

Since v'(£) + ¥ > 0, we derive similarly

Cl

l 12 _}_ 2 p+1 p+1
SV7E) — 2 TP > 0. 2.12)

But the left hand side of (2.12) is smaller than that of (2.11), a contradiction.
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Since v(#) rides on top of z(¢), we will have v(z;) > 8@/ with 1; close to 1 for &
large. Since w(f) is concave, we have V/(#;) <4§. From the Eq. (2.8), we have
V(1) < —c8@/®+D) for all ¢ > t;, so long as v(f) is increasing. So either v(¢) will even-
tually become a decreasing function, contradicting (2.8), or else

¢
V() = V(1) + f V(1) dr < 8 — 8@/t — 1)),

o

It follows that for § large v'(¢) will become negative for some ¢ € (1,2), again contra-
dicting (2.8). We conclude that v/(1) = § is uniformly bounded.
Integrating (2.8)

f
V20 + / a()VV dz:-;-az. (2.13)
1

Integrating by parts in (2.13)

Ve
T

/2

f ()——dt —-52+a(1) (2.14)

Since 4'(¥) < 0, we conclude

V(1) < eyt @D, (2.15)

where c1, and later ¢, ... will denote positive constants independent of A and & = v'(1).
Integrating the Eq. (2.8) over (¢, c0), and using (2.14)

00 00
V() = / a@W’ dt < ¢ f 2~ ep/@+D) gy
4 t

(2.16)
< C3t(a/(p+1))+1 = te’
where 6 = (@+p+ 1)/(p + 1) < 0. Hence
t
W) =y + f V(O dt < v+ et < st (2.17)
1

If 6 < —1, we are done. So assume that —1 < 6 < 0. Using the estimate (2.17) in (2.16)
V(1) < cg f PP g < oq et PTHPY < o9 (2.18)
t

The power of ¢ in (2.18) is less than it was in (2.16). Using (2.18) in (2.17), we obtain |
an improved bound for v(z), which we will use in (2.16). Eventually we shall obtain
an estimate like (2.16), with @ < —1. Then (2.17) will give us a uniform bound.

Incasen =2, weset i = —Inr, and v(¥) = u(?) + y, and proceed similarly (the proofis
easier in this case).
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Proof of the Theorem 2.1 For small A the problem (2.2) has a positive radial solution,
since it has a subsolution ¥ = (Ay?/(s + 2)(s + n))(R°+? — r*+?) and a supersolution
¢ = (1/2n)(R? — r?), with ¥ < ¢ for all r € [0, R). We now continue this solution for
increasing A. This can be done using the implicit function theorem in case the solution
is non-singular. In case the solution is singular, we have in view of Lemma 2.1

R
f Fr,ww(y™tdr > 0,
0

which means that the Crandall-Rabinowitz [5] bifurcation theorem applies, see [10] or
[12] for more details.

This curve of positive solutions cannot be continued indefinitely. Indeed, as in [10]
we can show that solutions are increasing in A, and so by Lemma 2.2 the solutions
are bounded away from zero in any interval [0, p), with p < R. If the curve continued
for all A > 0, the quantity A(f (r,u)/u) would get large say in the interval (0.1R,0.5R),
and then by the Sturm comparison theorem the solution would have to vanish in this
interval, contradicting the fact that it is positive. Since by Lemma 2.3 solutions stay
bounded, away from A = 0, arguing as in [10] (or [12]), we see that the solution curve
must reach a critical solution, at which a turn to the left will occur.

After the turn the solution curve continues to the left with no more turns. Indeed,
since f(r,u) is convex in u, it follows as in [10] (or [12]) that only turns to the left
are possible. As A | 0, infinity is the only place for the solution to go. (It cannot go
to zero, since the implicit function theorem holds at (A = 0,u = 0), which implies
uniqueness of solutions in a neighbourhood.) Finally, we claim that the solution
curve just described exhausts all positive solutions. Indeed, any other solution would
have to lie on a similar curve, which will produce multiple solutions in a neighbourhood
of (A = 0,u = 0), contradicting the implicit function theorem.

Remark Tt is natural to expect that any positive solution of (1.1) is radially symmetric.

However, since here f;(r, ) > 0, this equation is not covered by the well-known results
of Gidas et al. [7].

3. ON THE EXPONENTIAL NON-LINEARITIES
For the problem (1.1) we were able to compute explicitly the solution of the linearized
equation at a turning point. It is natural to ask if the same is possible for other f(u).

It turns out that there is only one more such case, albeit an important one, when

f(u) = e* (the Gelfand problem). Indeed consider positive solutions of the Dirichlet
problem

Au+r(w)=0 forlx]<R, u=0 on|x|=R.

In view of [7] positive solutions are radially symmetric, i.e. # = u(r), and hence they
satisfy

u’ +ﬁf’}iu’ +Af)=0 forr<R, w(0)=u(R)=0. 3.1)
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Consider the test function v = ru, + pu + . Then

LD = V' P 40 Gy = =200+ e ')~ ) + of ).

Setting the right hand side to zero, we see that either f(1) = (u + y)¥ or f(u) = ™, with
some constant a. In particular for the Gelfand problem, when f(u) = ¢, we see that at
any turning point, w = ru, 4+ 2 is the solution of the corresponding linearized equation.

Remarks

1. For the dimensions 3 < n < 9 it was shown by Joseph and Lundgren [9] that in case
f(u) = ¢* the solution curve for (3.1) makes infinitely many turns. At each of these
turns the “tangent direction” is given by w = ru, + 2. Using rather involved phase
plane analysis, Joseph and Lundgren [9] gave a complete picture for f(u) = ¢ and
S@) = (u+ vy, exactly the same two equations that we found to be special for the
bifurcation approach.

2. The test function v(r) above is a linear combination of three basic test functions:
v1 =ru,, v, =u and v3 = 1. In all cases L[v;] does not contain derivatives of u. It
is natural to wonder if there are any other test functions. New test functions
would probably imply new exact multiplicity results. We suspect that the answer
is “no”.

3. Similarly to the Theorem 2.1, we could give an exact multiplicity result for the
two-dimensional problem

u’ —{—%u’ +Aret =0 forr <R, 4 (0)=uR)=0. (3.2)

We did not pursue this, since the problem (3.2) can also be explicitly integrated
(following [2]) by setting ¢ = —Inr, followed by v = u — (s + 2)t.

4. NON-EXISTENCE OF POSITIVE SOLUTION FOR A SUPERCRITICAL PROBLEM

We begin with a model problem, then generalize.

THEOREM 4.1 Consider the problem
Au+ruf+1# =0 inD, u=0 ondD. 4.0

Here D is a bounded domain in R", n > 2, with a smooth boundary, and ) is a positive
parameter. Assume that p is a supercritical constant, while q is subcritical, i.e.

1<g< nt2 <
q — p.
Assume also that D is star-shaped, i.e.

x-n(x) =0 forall x on 8D,
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where n(x) denotes the unit normal vector at x € 0D, pointing outside. Then that there is
a M > 0 so that the problem (4.1) has no non-trivial non-negative solutions for A < A*.

Proof Assume on the contrary that there is a sequence A — 0 for which the problem
(4.1) is solvable. Recall that any solution of the problem

Au+fwy=0 inD, u=0 onaD
satisfies the Pohozhaev’s identity, see e.g. [3] (here F(u) = [i f(?) d7)

(gm 1>fD|Vu12 dx+%/an-n(x)qulz ds =n/DF(u)dx. 4.2)

Since x - n(x) > 0 on 8D, for our problem (4.1) we have

no 5 Wt
(2 1>wau| dx5;1fD(xq+1+p+l dx. (4.3)

By the Sobolev inequality

2/(g+1)
/ |Vu dx > ¢ ( / uit! dx) , 4.4
D D

where c; is a positive constant independent of u. From the Eq. (4.1)

/ |Vul® dx = f (it + ) dx. (4.5)
D D

Combining (4.3) with (4.5)

‘ 2n uttl gt
Jaud Pt A +
fp(w ¥ )dx<n—-2fp( g+1 p+1>dx’

or
czf Wt dx < C3A/ ut dx, (4.6)
D D

where ¢ =1-2n/(n—2D@+1)) >0 and c3=2n/((n—2)g+1))-1> 0. Using

(4.4)~(4.6)
2/(g+1) e
1 ( / u4+1dx) <A f Wt g + 2= / u? dx. 4.7)
D D ¢2Jp

If ¢ = 1, we have a contradiction in (4.7), as A — 0, and the proof is complete. (Actually
for g = 1 this proves non-existence of any non-trivial solutions, not just non-negative
ones. Up to this point we followed the argument of Brezis and Niremberg [3].)
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So assume that g > 1. Then (4.7) implies

(g—1)/(g+1)
/ uttl dx >
D —a7

ie.
/ W dx — oo as L — 0. (4.8)
D

By the Holder inequality

(g+1)/(+1)
/ wit dx < C5< f ut! dx) ) (4.9)
D D

Using this in (4.6), we conclude that [}, Wt dx is bounded as A — 0. But then from
(4.9) [t dx is also bounded, contradicting (4.8).

Examining the proof, we see that in the same way we can prove the following more
general result.

TuroreM 4.2 Consider the problem
Au+k2aiu‘”+2bgupi=0 inD, u=0o0naD (4.10)

on a bounded domain in R, n > 2, with a smooth boundary. Assume that p; are super-
critical constants, while q; are subcritical, i.e.

| < _<n+2 _
= 4qi n_2<Pu

and a;, b; are positive constants.

Then there is a A* > 0 so that the problem (4.10) has no non-trivial non-negative
solutions for A < A*.
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