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Abstract

We consider positive solutions of a semilinear Dirichlet problem

�u + λf (u) = 0, for |x| < 1, u = 0, when |x| = 1

on a unit ball in Rn. For four classes of self-similar equations it is possible to parameterize the entire 
(global) solution curve through the solution of a single initial value problem. This allows us to derive 
results on the multiplicity of solutions, and on their Morse indices. In particular, we easily recover the 
classical results of D.D. Joseph and T.S. Lundgren [6] on the Gelfand problem. Surprisingly, the situation 
turns out to be different for the generalized Gelfand problem, where infinitely many turns are possible 
for any space dimension n ≥ 3. We also derive detailed results for the equation modeling electrostatic 
micro-electromechanical systems (MEMS), in particular we easily recover the main result of Z. Guo and 
J. Wei [4], and we show that the Morse index of the solutions increases by one at each turn. We also consider 
the self-similar Henon’s equation.
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1. Introduction

We consider radial solutions on a ball in Rn for four special classes of equations, the ones 
self-similar under scaling. For example, consider the so called Gelfand equation (u = u(x), 
x ∈ Rn)

�u + λeu = 0, for |x| < 1, u = 0, when |x| = 1. (1.1)

Here λ is a positive parameter. By the maximum principle, solutions of (1.1) are positive, and 
then by the classical theorem of B. Gidas, W.-M. Ni and L. Nirenberg [2] they are radially 
symmetric, i.e., u = u(r), r = |x|, and it satisfies

u′′ + n − 1

r
u′ + λeu = 0, for 0 < r < 1, u′(0) = u(1) = 0. (1.2)

This theorem also asserts that u′(r) < 0 for all 0 < r < 1, which implies that the value of u(0)

gives the L∞ norm of our solution. Moreover, u(0) is a global parameter, i.e., it uniquely iden-
tifies the solution pair (λ, u(r)), see e.g., P. Korman [9]. It follows that a two-dimensional curve 
(λ, u(0)) completely describes the solution set of (1.1). The change of variables v = u + a, 
ξ = br , with constant a and b will transform the equation in (1.2) into the same equation if 
ea = b2. Here is what this self-similarity “buys” us. Let w(t) be the solution of the following 
initial value problem

w′′ + n − 1

t
w′ + ew = 0, w(0) = 0, w′(0) = 0 (t > 0), (1.3)

which is easily seen to be negative, and defined for all t ∈ (0, ∞). It turns out that w(t) gives us 
the entire solution curve of (1.2) (or of (1.1)):

(
λ,u(0)

) = (
t2ew(t),−w(t)

)
, (1.4)

parameterized by t ∈ (0, ∞). In particular, λ = λ(t) = t2ew(t), and

λ′(t) = tew
(
2 + tw′),

so that the solution curve travels to the right (left) in the (λ, u(0)) plane if 2 + tw′ > 0
(< 0). This makes us interested in the roots of the function 2 + tw′. If we set this function to 
zero

2 + tw′ = 0,

then solution of this equation is of course w(t) = a − 2 ln t . Amazingly, if we choose a =
ln(2n − 4), n ≥ 3, then

w0(t) = ln(2n − 4) − 2 ln t
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is also a solution of the equation in (1.3)! We show that w(t) tends to w0(t) as t → ∞, 
and the issue turns out to be how many times w(t) and w0(t) cross as t → ∞. We pro-
pose to call w(t) the generating solution, and w0(t) the guiding solution. We show that 
the solution curve makes infinitely many turns if and only if w(t) and w0(t) intersect in-
finitely many times. Then we prove that for 3 ≤ n ≤ 9, w(t) and w0(t) intersect infinitely 
many times, and hence the solution curve makes infinitely many turns, which is a part of the 
classical result of D.D. Joseph and T.S. Lundgren [6], see also J. Bebernes and D. Eberly 
[1] for an exposition. D.D. Joseph and T.S. Lundgren [6] also proved that for n = 1, 2 the 
solution curve makes exactly one turn, while for n ≥ 10 there are no turns (we recover 
this result for n ≥ 10 too). Our approach provides a remarkably short route to the clas-
sical result of D.D. Joseph and T.S. Lundgren [6], and some new results for other equa-
tions.

A similar approach works for the radially symmetric solutions of the generalized Gelfand’s 
problem

�u + λ|x|αeu = 0, for |x| < 1, u = 0, when |x| = 1,

with a constant α > 0. Remarkably, the picture here turns out to be different! We show that the 
solution curve makes infinitely many turns, provided that

3 ≤ n < 10 + 4α.

We see that unlike the Gelfand equation, infinitely many turns occur for any space dimension 
n ≥ 3, for large enough α. This result is sharp, because we prove that there are at most two turns 
if n ≥ 10 + 4α.

A similar approach works for three other classes of equations, notably

u′′ + n − 1

r
u′ + λ

rα

(1 − u)p
= 0, u′(0) = u(1) = 0, 0 < u(r) < 1, (1.5)

modeling the electrostatic micro-electromechanical systems (MEMS), see J.A. Pelesko [14], 
N. Ghoussoub and Y. Guo [3], and Z. Guo and J. Wei [4] for some of the active recent research. 
We give a much shorter and more elementary proof of the main result of Z. Guo and J. Wei [4], 
which states that the solution curve makes infinitely many turns, provided that

2 ≤ n < 2 + 2(α + 2)

p + 1

(
p +

√
p2 + p

)
. (1.6)

(If 2 ≤ n ≤ 6, this inequality holds for all α ≥ 0 and p > 1.) We also show that outside of this 
range the solution curve makes at most two turns, which is a new result.

For the Gelfand problem (1.1) it was shown by K. Nagasaki and T. Suzuki [13] that at each 
turn of the solution curve the Morse index of the solution increases by one. We recover this result, 
and then prove that the same thing is true for the MEMS problem (1.5), which is a new result. 
Finally, we use the self-similar nature of Henon’s equation to discuss the exact multiplicity of 
the symmetry breaking solutions.
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2. Parameterization of the global solution curves

Consider the problem

u′′ + n − 1

r
u′ + λ

rα

(1 − u)p
= 0 for 0 < r < 1,

u′(0) = u(1) = 0, 0 < u(r) < 1, (2.1)

which arises in modeling of electrostatic micro-electromechanical systems (MEMS), see [14,3,
4]. Here λ is a positive parameter, α > 0 and p > 1 are constants. Any solution u(r) of (2.1) is 
a positive and decreasing function (by the maximum principle), so that u(0) gives its maximum 
value. It is known, see e.g., P. Korman [10], that u(0) is a global parameter, i.e., it uniquely 
identifies the solution pair (λ, u(r)) (the proof is by scaling). It follows that a two-dimensional 
curve (λ, u(0)) completely describes the solution set of (2.1). Our goal is to compute the global 
solution curve (λ, u(0)). Let 1 − u = v. Then v(r) satisfies

v′′ + n − 1

r
v′ = λ

rα

vp
for 0 < r < 1, v′(0) = 0, v(1) = 1. (2.2)

Assume that v(0) = a. We scale v = aw, and t = br . The constants a and b are assumed to 
satisfy

λ = ap+1bα+2. (2.3)

Then (2.2) becomes

w′′ + n − 1

t
w′ = tα

wp
, w(0) = 1, w′(0) = 0. (2.4)

It is easy to see that the solution w(t) of (2.4) is an increasing function, defined for all t > 0. We 
can compute it numerically (over a large interval). It turns out that this particular solution w(t)

gives us the entire solution curve of (2.1)! We have

1 = v(1) = aw(b),

and so a = 1
w(b)

, and then λ = bα+2

wp+1(b)
. The global solution curve is

(
λ,u(0)

) =
(

bα+2

wp+1(b)
,1 − 1

w(b)

)
, (2.5)

parameterized by b ∈ (0, ∞). This parameterization was pointed out previously in [14], and was 
then used in [3].

Example. Using Mathematica, we have solved the problem (2.1) with p = 2, n = 2 and α = 0.2. 
The global solution curve, obtained through the parameterization (2.5), is given in Fig. 1.
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Fig. 1. Solution curve for the problem (2.1).

We now show that the situation is similar for three other important classes of equations. Con-
sider the problem

u′′ + n − 1

r
u′ + λrα(1 + u)p = 0 for 0 < r < 1, u′(0) = 0, u(1) = 0. (2.6)

We set v = 1 + u, followed by v = aw, and t = br , where a = v(0) = 1 + u(0). The constants a
and b are assumed to satisfy

λ = bα+2

ap−1
. (2.7)

Then (2.6) becomes

w′′ + n − 1

t
w′ + tαwp = 0, w(0) = 1, w′(0) = 0. (2.8)

The solution of this problem is easily seen to be a decreasing function, which, for sub-critical p, 
vanishes at some t0 > 0. (If p ≥ n+2+2α

n−2 , then w(t) has no roots on (0, ∞), see e.g., T. Kusano 
and M. Naito [11], or E. Yanagida and S. Yotsutani [18].) As before, a = 1

w(b)
, and then λ =

bα+2wp−1(b). The global solution curve is

(
λ,u(0)

) =
(

bα+2wp−1(b),−1 + 1

w(b)

)
,

parameterized by b ∈ (0, t0).
Next, we consider the generalized Gelfand’s equation

u′′ + n − 1
u′ + λrαeu = 0 for 0 < r < 1, u′(0) = 0, u(1) = 0. (2.9)
r
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We set u = w + a, t = br , with a = u(0). The constants a and b are assumed to satisfy

λ = bα+2e−a.

Then (2.9) becomes

w′′ + n − 1

t
w′ + tαew = 0, w(0) = 0, w′(0) = 0.

We compute numerically the solution of this problem w(t), which is a negative decreasing func-
tion, defined for all t > 0. We have

0 = u(1) = a + w(b),

i.e., a = −w(b), and then λ = bα+2ew(b). The global solution curve for (2.9) is

(
λ,u(0)

) = (
bα+2ew(b),−w(b)

)
,

parameterized by b ∈ (0, ∞). Moreover, u(r) = −w(b) + w(br) is the solution of (2.9) at λ =
bα+2ew(b).

Finally, we consider

u′′ + n − 1

r
u′ + λrαe−u = 0 for 0 < r < 1, u′(0) = 0, u(1) = 0. (2.10)

We set u = w + a, t = br , with a = u(0). The constants a and b are assumed to satisfy

λ = bα+2ea.

Then (2.10) becomes

w′′ + n − 1

t
w′ + tαe−w = 0, w(0) = 0, w′(0) = 0.

We compute numerically the solution of this problem w(t), which is a negative decreasing func-
tion, tending to −∞ at some t1 > 0. We have

0 = u(1) = a + w(b),

i.e., a = −w(b), and then λ = bα+2e−w(b). The global solution curve for (2.10) is

(
λ,u(0)

) = (
bα+2e−w(b),−w(b)

)
,

parameterized by b ∈ (0, t1).
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3. A generalization of Joseph and Lundgren’s result

As we saw above, for Gelfand’s problem

u′′ + n − 1

r
u′ + λeu = 0 for 0 < r < 1, u′(0) = 0, u(1) = 0 (3.1)

the solution curve (λ, u(0)) is given by (t2ew(t), −w(t)), parameterized by t ∈ (0, ∞), where 
w(t) is the solution of

w′′ + n − 1

t
w′ + ew = 0, w(0) = 0, w′(0) = 0 (t > 0). (3.2)

In particular, λ = t2ew(t), and the issue is how many times this function changes its direction of 
monotonicity for t ∈ (0, ∞). Compute

λ′(t) = tew
(
2 + tw′), (3.3)

so that we are interested in the roots of the function 2 + tw′. If we set this function to zero

2 + tw′ = 0,

then solution of this equation is of course w(t) = a −2 ln t . Amazingly, if we choose a = ln(2n −
4), n ≥ 3, then

w0(t) = ln(2n − 4) − 2 ln t

is a solution of the equation in (3.2)! It turns out that the solution of (3.2) tends to w0(t) as 
t → ∞, and the issue is how many times w(t) and w0(t) cross as t → ∞. We shall only consider 
n ≥ 3, since for n = 1, 2 the problem (3.1) can be explicitly solved, see e.g., [1].

Lemma 3.1. Assume that w(t) and w0(t) intersect infinitely many times. Then the solution curve 
of (3.1) makes infinitely many turns. On the other hand, assume that w(t) and w0(t) intersect 
only a finite number of times, and (w − w0)

′(t) is of one sign for t > T , with a point T coming 
after the last point of intersection. Then λ(t) is monotone for t > T .

Proof. Indeed, assuming that w(t) and w0(t) intersect infinitely many times, let {tn} denote 
the points of intersection. At {tn}’s, w(t) and w0(t) have different slopes (by uniqueness for 
initial value problems). Since 2 + tnw

′
0(tn) = 0, it follows that 2 + tnw

′(tn) > 0 (< 0) if w(t)

intersects w0(t) from below (above) at tn. Hence, on any interval (tn, tn+1) there is a point t0, 
where 2 + t0w

′(t0) = 0, i.e., λ′(t0) = 0, and t0 is a critical point. Since λ′(tn) and λ′(tn+1) have 
different signs, the solution curve changes its direction over (tn, tn+1).

On the other hand, assume that w(t) and w0(t) intersect only a finite number of times, and 
(w − w0)

′(t) is of one sign for t > T , say w′(t) > w′
0(t). Then 2 + tw′(t) > 2 + tw′

0(t) = 0, i.e., 
λ′(t) > 0, and the solution curve is monotone for t > T . �
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The linearized equation for (3.2) is

z′′ + n − 1

t
z′ + ewz = 0.

At the solution w = w0(t), this becomes

z′′ + n − 1

t
z′ + 2n − 4

t2
z = 0, (3.4)

which is Euler’s equation! Its characteristic equation has the roots

r = −n + 2 ± √
(n − 2)(n − 10)

2
. (3.5)

When 3 ≤ n ≤ 9, the roots are complex, and hence z(t) changes sign infinitely many times. We 
shall show that w(t) tends to w0(t), and oscillates infinitely many times around w0(t), which 
implies infinitely many turns of the solution curve. For other n, the solution curve turns at most 
once. We obtain a remarkably short route to the classical result of D.D. Joseph and T.S. Lundgren 
[6].

We shall present the details for the more general problem (α > 0)

u′′ + n − 1

r
u′ + λrαeu = 0 for 0 < r < 1, u′(0) = 0, u(1) = 0. (3.6)

The solution curve (λ, u(0)) is now given by (t2+αew(t), −w(t)), parameterized by t ∈ (0, ∞), 
where w(t) is the solution of

w′′ + n − 1

t
w′ + tαew = 0, w(0) = 0, w′(0) = 0 (t > 0). (3.7)

In particular, λ = t2+αew(t), and the issue is how many times this function changes the direction 
of monotonicity for t ∈ (0, ∞). Compute

λ′(t) = tα+1ew
(
2 + α + tw′),

so that we are interested in the roots of the function 2 + α + tw′. If we set this function to zero

2 + α + tw′ = 0,

then the general solution of this equation is w(t) = a − (2 + α) ln t . If we choose a = ln(2 +
α)(n − 2), n ≥ 3, then

w0(t) = ln(2 + α)(n − 2) − (2 + α) ln t

is a solution of the equation in (3.7). It turns out that the solution w(t) of (3.7) tends to w0(t) as 
t → ∞, and the issue is how many times w(t) and w0(t) cross as t → ∞.
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The linearized equation for (3.7) is

z′′ + n − 1

t
z′ + tαewz = 0.

At the solution w = w0(t), this becomes

z′′ + n − 1

t
z′ + (2 + α)(n − 2)

t2
z = 0, (3.8)

which is Euler’s equation. Its characteristic equation has the roots

r = −n + 2 ± √
(n − 2)(n − 10 − 4α)

2
.

When 3 ≤ n < 10 + 4α, the roots are complex. Hence, z(t) changes sign infinitely many times. 
We shall show that this implies infinitely many turns of the solution curve, while for other n at 
most two turns of the solution curve is possible.

We shall need the following version of Sturm’s comparison theorem.

Lemma 3.2. Consider the following two equations

y′′ + n − 1

t
y′ + a(t)

t2
y = 0, (3.9)

v′′ + n − 1

t
v′ + b(t)

t2
v = 0. (3.10)

Assume that b(t) > a(t) for all t ∈ R. Then v(t) has a root between any two consecutive roots of 
y(t).

Proof. Assume that y(t1) = y(t2) = 0, y(t) > 0 on (t1, t2), while on the contrary v(t) > 0 on 
(t1, t2). From Eqs. (3.9) and (3.10)

[
tn−1(y′v − yv′)]′ = tn−3(b(t) − a(t)

)
y(t)v(t) > 0 on (t1, t2).

Integrating over (t1, t2),

tn−1
2 y′(t2)v(t2) − tn−1

1 y′(t1)v(t1) > 0,

which is a contradiction, since both terms on the left are non-positive. �
Lemma 3.3. Consider the equation (here a, a1, a2 are constants)

y′′ + n − 1

t
y′ + a + f (t)

t2
y = 0. (3.11)

Assume that Eq. (3.9), with a(t) = a, has infinitely many roots for all a ∈ [a1, a2], while 
f (t) → 0, as t → ∞. Then Eq. (3.11) has infinitely many roots for all a ∈ (a1, a2).
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Proof. Choose an ε > 0, so that a − ε > a1. Since a + f (t) > a − ε > a1 for t large, the proof 
follows by Lemma 3.2. �
Lemma 3.4. Consider Eq. (3.11), with n ≥ 3, a > 0, and limt→∞ f (t) = 0. Assume that its 
solution y(t) is bounded on some interval (t0, ∞). Then limt→∞ y(t) = 0.

Proof. Letting t = es , we transform (3.11) to

yss + (n − 2)ys + ay = g(s), (3.12)

with g(s) ≡ −f (es)y → 0, as s → ∞. The roots of the corresponding homogeneous equation 
are either α ± iβ , with α < 0, or both roots are negative. Let us assume it is the former case, and 
the other case is similar. The general solution of (3.12) is

y(s) = c1e
αs cosβs + c2e

αs sinβs + 1

β

s∫
0

eα(s−ξ) sinβ(s − ξ)g(ξ) dξ,

and

∣∣∣∣∣
s∫

0

eα(s−ξ) sinβ(s − ξ)g(ξ) dξ

∣∣∣∣∣ ≤ eαs

s∫
0

e−αξ
∣∣g(ξ)

∣∣dξ → 0, as s → ∞,

concluding the proof. �
Theorem 3.1. Assume that

3 ≤ n < 10 + 4α.

Then the solution curve of (3.6) makes infinitely many turns.

Proof. In view of Lemma 3.1, we need to show that w(t) oscillates infinitely many times 
around w0(t). We claim that these functions get close to each other, as t increases. Denote 
p(t) = w0(t) − w(t). It satisfies

p′′ + n − 1

t
p′ + tαa(t)p = 0, (3.13)

where a(t) = ∫ 1
0 esw0(t)+(1−s)w(t) ds > 0. We have p(ε) > 0 and p′(ε) < 0, for ε > 0 small. 

From (3.13),

(
tn−1p′)′ = −tn+α−1a(t)p < 0, while p(t) > 0.

Hence, p′(t) < 0, while p(t) > 0. So either p(t) becomes zero at some t1, or else p(t) re-
mains positive, and limt→∞ p(t) = b ≥ 0. In the latter case, w(t) = w0(t) + b + o(1), and then 
tαa(t) = a0+f (t)

2 , with a0 = (2 + α)(n − 2) 
∫ 1

e(1−s)b ds > 0, and limt→∞ f (t) = 0. Since p(t)

t 0
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is bounded, by Lemma 3.4, p(t) → 0 as t → ∞, i.e., b = 0, and so w(t) −w0(t) → 0, as t → ∞. 
In case p(t1) = 0, we show by the same argument that the linear equation (3.13) has either the 
second root at some t2 > t1, or else p(t) remains negative, and limt→∞ p(t) = 0. (We have 
(tn−1p′)′ > 0, when p < 0, from which it is easy to deduce that p(t) remains bounded.)

Next, we rule out the possibility of p(t) keeping the same sign and tending to zero over an 
infinite interval (tk, ∞). We have

tαa(t) = tαew0

1∫
0

e(1−s)(w(t)−w0(t)) ds = (2 + α)(n − 2)

t2

(
1 + o(1)

)
, as t → ∞.

Since Euler’s equation (3.8) has infinitely many roots on (tk, ∞), we conclude by Lemma 3.3
that p(t) must vanish on that interval too. It follows that p(t) changes sign infinitely many times. 
(p(t) cannot remain positive, so that it has its first root, after that p(t) cannot remain negative, 
so that it has its second root, and so on.) �

We see that unlike the Gelfand equation (α = 0), infinitely many turns are possible for any 
n ≥ 3, for large enough α.

We now turn to the case when n ≥ 10 + 4α. In that case both roots of the characteristic 
equation of Euler’s equation (3.8) are negative, and so any solution of (3.8) may have at most 
one root. By a simple comparison argument we shall show that w(t) and w0(t) intersect at most 
twice, and then (in the case α = 0) we will show that w(t) and w0(t) do not intersect at all. We 
have

ew(t) − ew0(t) > ew0(t)
(
w(t) − w0(t)

) = (2 + α)(n − 2)

t2+α

(
w(t) − w0(t)

)
.

Denoting p(t) = w(t) − w0(t), we then have from (3.7)

p′′ + n − 1

t
p′ + (2 + α)(n − 2)

t2
p < 0. (3.14)

This inequality implies that p(t) oscillates slower (faster) than z(t), the solution of Euler’s equa-
tion (3.8), provided that p(t) < 0 (> 0). The following lemma makes this observation precise.

Lemma 3.5. Assume that z(t) is a solution of (3.8), such that z(t0) = p(t0) and z′(t0) = p′(t0) at 
some t0 ∈ (0, ∞), and z(t) < 0 on (t0, ∞). Then p(t) < 0 on (t0, ∞).

Proof. Assume, on the contrary, that p(ξ) = 0 at some ξ ∈ (t0, ∞), while p(t) < 0 on (t0, ξ). 
From Eqs. (3.8) and (3.14) (keep in mind that z(t) < 0)

(
pz′ − p′z

)′ + n − 1

t

(
pz′ − p′z

)
< 0 on (t0, ξ), (3.15)

and so the function Q(t) ≡ tn−1(pz′ −p′z) is decreasing on (t0, ξ). But Q(t0) = 0, while Q(ξ) =
−ξn−1p′(ξ)z(ξ) ≥ 0, a contradiction. �
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Theorem 3.2. In case n ≥ 10 +4α the solution curve of the generalized Gelfand’s equation (3.6)
admits at most two turns.

Proof. Let again p(t) = w(t) − w0(t). In view of Lemma 3.1, we need to show that p′(t)
changes its sign at most twice, i.e., p(t) changes its monotonicity at most twice. Since p(t)

satisfies the linear equation (3.13), p(t) cannot have points of positive local minimum, and of 
negative local maximum, and hence p(t) changes its monotonicity once between two consec-
utive roots, and once after its last root (since p(t) tends to zero as t → ∞, which follows by 
Lemma 3.4, the same way as in the proof of Theorem 3.1), and no other changes of monotonicity 
are possible. We will show that p(t) has at most two roots, which will imply that p(t) changes 
its monotonicity at most twice.

Assume that p(t) has at least two roots, and let t1 and t2 denote the first two roots (if there 
are less than two roots, there are less than two turns). Then p(t) is negative on (0, t1), positive 
on (t1, t2), and again negative after t2. Pick any point t0 ∈ (0, t1), and let Z(t) be the solution of 
Euler’s equation (3.8), such that Z(t0) = p(t0) < 0, Z′(t0) = p′(t0). We claim that Z(t) vanishes 
on (0, t1). Indeed, assuming that Z(t) < 0 on (0, t1), we argue as in Lemma 3.5, and conclude that 
the function Q(t) ≡ tn−1(pZ′ − p′Z) is decreasing on (t0, t1), with Q(t0) = 0, while Q(t1) =
−tn−1

1 p′(t1)Z(t1) ≥ 0, a contradiction. At its root Z(t) changes to being positive, and it stays 
positive after its root, since Z(t) is a solution of Euler’s equation with two negative characteristic 
roots (the roots coincide when n = 10 + 4α). In particular,

Z(t) > 0 for t > t1. (3.16)

We now return to p(t). After its second root t2, it will either have the third root at some t3, or 
stay negative and tend to zero as t → ∞. We now consider these cases in turn.

Case 1. p(t2) = p(t3) = 0, p(t) < 0 on (t2, t3). In place (3.15), we now have (because of 
(3.16))

(
pZ′ − p′Z

)′ + n − 1

t

(
pZ′ − p′Z

)
> 0 on (t1,∞). (3.17)

Integrating this over (t2, t3), we get

−tn−1
3 p′(t3)Z(t3) + tn−1

2 p′(t2)Z(t2) > 0,

which is a contradiction, since (using (3.16)) both terms on the left are non-positive.
Case 2. We have p(t) > 0 on (t2, ∞), and p(t) → 0, as t → ∞. This case is possible (or 

rather, we are unable to rule this case out). Then p(t) changes its monotonicity twice, and the 
solution curve has two turns. �

It is natural to expect that in the case n ≥ 10 + 4α the solution curve does not turn at all 
(if α = 0, this is part of D.D. Joseph and T.S. Lundgren’s result [6]). Surprisingly, we found 
this hard to prove. We shall prove this only if α = 0 (with a computer assistance at one step), 
so that we recover the classical result of D.D. Joseph and T.S. Lundgren [6]. By a different 
method, the case n ≥ 10 + 4α was covered by J. Jacobsen and K. Scmitt [5], who proved that 
for 0 < λ < (n − 2)(α + 2), the problem (3.6) has a unique solution, and no solution exists for 
λ ≥ (n − 2)(α + 2).
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So we consider now the case α = 0. The linearized equation at w0(t) is then Euler’s equation 
(3.4), whose characteristic exponents are given by (3.5). In case n ≥ 10, both characteristic ex-
ponents are negative and hence z(t) → 0 as t → ∞. This solution will either vanish once or keep 
the same sign depending on the initial conditions. Assume that the initial conditions are given at 
some A > 0. By scaling we may assume that z(A) = 1. The following lemma says that in order 
for z(t) to vanish, z′(A) must be negative and sufficiently large in absolute value.

Lemma 3.6. For n ≥ 10 consider the problem

z′′ + n − 1

t
z′ + 2n − 4

t2
z = 0, z(A) = 1, z′(A) = q ( for t > A > 0). (3.18)

Assume that

qA >
−n + 2 − √

(n − 2)(n − 10)

2
. (3.19)

Then z(t) > 0 on (A, ∞).

Proof. If n = 10, the general solution of the equation in (3.18) is

z(t) = t−4(c1 + c2 ln t).

From the initial conditions

c2 = A4(qA + 4) > 0,

since (3.19) reads: qA > −4. If c1 ≥ 0, then z(t) > 0 for all t > 0. If c1 < 0, then the function 
c1 + c2 ln t has a root, but it is smaller than A (observe that c1 + c2 lnA = A4 > 0). So that 
z(t) > 0 on (A, ∞). If n > 10, the general solution of (3.18) is

z(t) = c1

(
t

A

)r

+ c2

(
t

A

)s

=
(

t

A

)r(
c1 + c2

(
t

A

)s−r)
,

where r = −n+2−√
(n−2)(n−10)
2 and s = −n+2+√

(n−2)(n−10)
2 > r . From the initial conditions

c2 = Aq − r

s − r
> 0,

in view of (3.19). If c1 ≥ 0, then z(t) > 0 for all t > 0. If c1 < 0, then the function c1 + c2(
t
A

)s−r

has a root, but it is smaller than A (at A this function equals 1). So that z(t) > 0 on (A, ∞). �
Let now t0 denote the root of w0(t), i.e., t0 = √

2n − 4. With p(t) = w(t) − w0(t), we have 
p(t0) = w(t0) < 0. By Lemma 3.5 we shall have p(t) < 0 on (t0, ∞), provided the solution of 
the linearized equation (3.18) with the initial conditions z(t0) = p(t0) and z′(t0) = p′(t0) satisfies 
z(t) < 0 on (t0, ∞). By Lemma 3.6 (with A = t0) this will happen if
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t0w
′(t0) + 2

w(t0)
>

−n + 2 − √
(n − 2)(n − 10)

2
. (3.20)

When n = 10, a numerical computation shows that the quantity on the left in (3.20) is ap-
proximately −1.72324, while the one on the right is −4. When one increases n, numerical 
computations show that the quantity on the left in (3.20) is monotone increasing, while the one 
on the right is decreasing rapidly. It follows that p(t) < 0, i.e., w(t) < w0(t) for all t > 0. We 
conclude that p′(t) > 0 for t > 0, since we would get a contradiction in (3.12) at any point of 
local maximum. From (3.3), λ′(t) > 0 for all t > 0, i.e., the solution curve always travels to the 
right in the (λ, u(0)) plane.

4. Micro-electromechanical systems (MEMS)

Recall that for the problem (with constants α ≥ 0, and p > 1)

u′′ + n − 1

r
u′ + λ

rα

(1 − u)p
= 0 for 0 < r < 1, u′(0) = 0, u(1) = 0 (4.1)

the solution curve (λ, u(0)) is given by ( tα+2

wp+1(t)
, 1 − 1

w(t)
), parameterized by t ∈ (0, ∞), where 

w(t) is the solution of

w′′ + n − 1

t
w′ = tα

wp
, w(0) = 1, w′(0) = 0 (t > 0), (4.2)

with w(t) > 0 and w′(t) > 0 for all t > 0. In particular, λ(t) = tα+2

wp+1(t)
. Compute

λ′(t) = tα+1wp[(α + 2)w − (p + 1)tw′]
w2(p+1)

.

To study the direction of the solution curve we are interested in the sign of λ′(t), or in the roots 
of the function (α + 2)w(t) − (p + 1)tw′(t). If we set this function to zero

(α + 2)w − t (p + 1)w′ = 0,

then the general solution of this equation is w(t) = ctβ , with β = α+2
p+1 . One verifies that

w0(t) = c0t
β, with c0 = 1

[β(β + n − 2)] 1
p+1

is a solution of the equation in (4.2) (the guiding solution). The linearized equation for (4.2) is

z′′ + n − 1

t
z′ = −ptαw−p−1z.

At the solution w = w0(t), this becomes

z′′ + n − 1
z′ + pβ(β + n − 2)

z = 0, (4.3)

t t2
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which is again Euler’s equation. Its characteristic equation has the roots

r = −n + 2 ± √
(n − 2)2 − 4pβ(β + n − 2)

2
.

The roots are complex, if β satisfies

4pβ2 + 4p(n − 2)β − (n − 2)2 > 0. (4.4)

When n = 1, this happens when β >
p+√

p2+p

2p
, the larger root for the quadratic on the left, i.e., 

when α >
(p+1)(p+√

p2+p)

2p
−2. If p = 2, this becomes α > 6+3

√
6

4 −2. This is the same inequality 

as α > − 1
2 + 1

2

√
27
2 , obtained on p. 900 in J.A. Pelesko [14]. When n = 2, the inequality (4.4)

holds for all α ≥ 0, which will imply (as we show below) infinitely many turns of the solution 
curve, as was previously proved for the case p = 2 in [14], and for any p > 1 in [4].

We now assume that n ≥ 3. The inequality (4.4) holds if β is greater than the larger root for 
the quadratic on the left, i.e., for

β >
n − 2

2

1

p + √
p2 + p

. (4.5)

This inequality is equivalent to the condition (1.6).

Remark. Since β = α+2
p+1 > 2

p+1 , we shall see that in the lower dimensions (4.5) holds automati-
cally, i.e., without restricting α. Indeed, we rewrite the inequality

2

p + 1
>

n − 2

2

1

p + √
p2 + p

as

p + 1

p + √
p2 + p

<
4

n − 2
. (4.6)

On the left we have a decreasing function, which takes its maximum at p = 1. So that (4.6) will 
follow if

2

1 + √
2

<
4

n − 2
,

which happens for 3 ≤ n ≤ 6.

Similarly to Lemma 3.1 we prove the following lemma.

Lemma 4.1. Assume that w(t) and w0(t) intersect infinitely many times. Then the solution curve 
of (4.1) makes infinitely many turns.
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Theorem 4.1. Assume that β = α+2
p+1 satisfies (4.4) (i.e., either n = 2, or n ≥ 3, and the condition 

(1.6) holds). Then the solution curve of (4.1) makes infinitely many turns.

Proof. In view of Lemma 4.1, we need to show that w(t) oscillates infinitely many times around 
w0(t). We show first that these functions get close to each other, as t increases. Denote P(t) =
w(t) − w0(t). It satisfies

P ′′ + n − 1

t
P ′ + a(t)P = 0, (4.7)

where a(t) = ptα
∫ 1

0
1

[sw(t)+(1−s)w0(t)]p+1 ds > 0. As in the proof of the Theorem 3.1, we see that 
either P(t) has infinitely many roots, or else P(t) keeps the same sign over some infinite interval 
(tk, ∞), and tends to a constant as t → ∞. We now rule out the latter possibility. Write

a(t) = p tα
1

w
p+1
0

1∫
0

1

[s w(t)
w0(t)

+ (1 − s)]p+1
ds = pβ(β + n − 2)

t2

(
1 + o(1)

)
,

as t → ∞. (Observe that w(t)
w0(t)

= 1 + P(t)
w0(t)

→ 1, as t → ∞.) Since Euler’s equation (4.3) has 
infinitely many roots on (tk, ∞), we conclude by Lemma 3.3 that P(t) must vanish on that 
interval too. It follows that P(t) changes sign infinitely many times. �
Theorem 4.2. Assume that n ≥ 2 + 2(α+2)

p+1 (p+√
p2 + p). Then the solution curve of (4.1) admits 

at most two turns.

Proof. We follow the proof of Theorem 3.2. With P(t) = w(t) − w0(t), we need to show that 
P(t) changes its monotonicity at most twice. Since P(t) satisfies the linear equation (4.7), P(t)

cannot have points of positive local minimum, and of negative local maximum, and hence P(t)

changes its monotonicity once between two consecutive roots, and once after its last root (since 
z(t) tends to zero as t → ∞), and no other changes of monotonicity are possible. We will show 
that P(t) has at most two roots, which will imply that P(t) changes its monotonicity at most 
once. Under our conditions Euler’s equation (4.3) has at most one root, while P(t) satisfies

P ′′ + n − 1

t
P ′ + pβ(β + n − 2)

t2
P < 0,

since the nonlinearity in (4.1) is convex in u. The rest of the proof is identical to that of Theo-
rem 3.2. �
5. Morse index of solutions to the Gelfand and MEMS problems

We now use the generating solution to show that all turning points of the Gelfand problem 
are non-degenerate, and that the Morse index of solutions increases by one at each turning point, 
thus recovering a result of K. Nagasaki and T. Suzuki [13]. Recall that positive solutions of the 
Gelfand problem

�u + λeu = 0, for |x| < 1, u = 0, when |x| = 1 (5.1)
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are radially symmetric, i.e., u = u(r), r = |x|, with u′(r) < 0, and that the solution curve in the 
(λ, u(0)) plane is given by (1.4) and (1.3). In particular, λ(t) = t2ew(t), where w(t) is the solution 
of (1.3), the generating solution.

Theorem 5.1. Let u(tn) be a singular solution of (5.1), i.e., λ′(tn) = 0. Then u(tn) is non-
degenerate, i.e., λ′′(tn) 
= 0.

Proof. Compute λ′(t) = tew(t)(2 + tw′(t)). Since λ′(tn) = 0, we have 2 + tnw
′(tn) = 0. Then

λ′′(tn) = tne
w(tn)

(
w′(tn) + tnw

′′(tn)
)
, (5.2)

and we need to show that w′(tn) + tnw
′′(tn) 
= 0. For the guiding solution w0(t) = ln(2n − 4) −

2 ln t we have

w′
0(tn) + tnw

′′
0(tn) = 0.

Since w′(tn) = w′
0(tn) (= − 2

tn
), it suffices to show that

w′′(tn) 
= w′′
0(tn). (5.3)

The function p(t) = w0(t) − w(t) satisfies the linear equation (3.13), with p′(tn) = 0. It follows 
that w(tn) 
= w0(tn), since otherwise p(t) ≡ 0, which is impossible. Since both w(t) and w0(t)

satisfy the same equation (1.3), we conclude (5.3) by expressing the second derivatives from the 
corresponding equations. �

By C.S. Lin and W.-M. Ni [12], any solution of the linearized problem for (5.1) is radially 
symmetric, and hence it satisfies

ω′′ + n − 1

r
ω′ + λeuω = 0, for 0 < r < 1, ω′(0) = ω(1) = 0. (5.4)

We call u(r) a singular solution of (5.1) if the problem (5.4) has a non-trivial solution. (Differ-
entiating (5.1) in t , and setting t = tn, it is easy to see that a solution is singular iff λ′(tn) = 0.) 
The following lemma was proved in P. Korman [8].

Lemma 5.1. Let u(r) be a singular solution of (5.1). Then

ω(r) = ru′(r) + 2

gives a solution of (5.4).

We now recover the following result of K. Nagasaki and T. Suzuki [13].

Theorem 5.2. As one follows the solution curve of (5.1) in the direction of increasing u(0), the 
Morse index of solution increases by one at each turn.
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Proof. The Morse index of solution is the number of negative eigenvalues μ of

�ω + λeuω + μω = 0, for |x| < 1, ω = 0, when |x| = 1.

By [12] solutions of this problem are radially symmetric. At a singular solution μ = 0, and then 
ω(r) = ru′(r) + 2 by Lemma 5.1. Assume that at a singular solution u(tn), μ(tn) = 0 is the k-th 
eigenvalue. Following [13], we will show that μ′(tn) < 0, which means that for t < tn (t > tn) 
the k-th eigenvalue is positive (negative), i.e., the Morse index increases by one through t = tn. 
We shall show that the sign of μ′(tn) is the same as that of −(λ′′(tn))2, which is negative by 
Theorem 5.1. Recall the following known formulas (here u = u(tn), ω is a solution of (5.4), and 
B is the unit ball around the origin in Rn):

μ′(tn)
∫
B

ω2 dx = −λ(tn)

∫
B

euω3 dx (p. 11 in [9]),

−λ(tn)

∫
B

euω3 dx = λ′′(tn)
∫
B

f (u)ω dx (p. 3 in [9]),

∫
B

f (u)ω dx = 1

2λ(tn)
u′(1)ω′(1) (p. 5 in [9]).

Since u′(1) < 0, it follows from these formulas that the sign of μ′(tn) is opposite to that of 
λ′′(tn) ω′(1). Using Lemma 5.1, we have ω′(r) = u′ + ru′′, ω′(1) = u′(1) + u′′(1). Recall that 
u(r) = w(t) + a, with t = br (where w(t) is the generating solution). Observing that b = tn for 
r = 1, we have u(r) = u(0) + w(tnr), and then

ω′(1) = tn
(
w′(tn) + tnw

′′(tn)
)
,

which by (5.2) has the same sign as λ′′(tn). It follows that the sign of μ′(tn) is the same as that 
of −(λ′′(tn))2 < 0. �

For the MEMS problem (p > 0)

�u + λ
1

(1 − u)p
= 0, for |x| < 1, u = 0, when |x| = 1 (5.5)

the situation is similar, which is a new result.

Theorem 5.3. Let u(tn) be a singular solution of (5.5), i.e., λ′(tn) = 0. Then u(tn) is non-
degenerate, i.e., λ′′(tn) 
= 0. Moreover, when one follows the solution curve of (5.5) in the 
direction of increasing u(0), the Morse index of solution increases by one at each turn.

As before, by [12] solutions of the linearized problem corresponding to (5.5) are radially 
symmetric, and hence they satisfy

ω′′ + n − 1

r
ω′ + λ

p

(1 − u)p+1
ω = 0, 0 < r < 1, ω′(0) = ω(1) = 0. (5.6)
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Lemma 5.2. Let u(r) be a singular solution of (5.5). Then

ω(r) = ru′(r) − 2

p + 1
u(r) + 2

p + 1

gives a solution of (5.6).

Proof. The function v(r) ≡ ru′(r) − 2
p+1u(r) + 2

p+1 solves (5.6), and we have v′(0) = 0, 
v(0) > 0 (since solutions of (5.5) are smaller than 1). By scaling of ω(r), we may assume that 
ω(0) = v(0), and then by the uniqueness result for this type of initial value problems (see [15]), 
it follows that ω(r) ≡ v(r). �
Proof of Theorem 5.3. The proof is similar to that of Theorem 5.2. This time λ(t) =
t2w−p−1(t). Compute

λ′(t) = tw−p−2(t)
(
2w(t) − (p + 1)tw′(t)

)
.

Since λ′(tn) = 0, we have

2w(tn) − (p + 1)tnw
′(tn) = 0. (5.7)

Then

λ′′(tn) = −tnw
−p−2(tn)

(
(p − 1)w′(tn) + (p + 1)tnw

′′(tn)
)
, (5.8)

and we need to show that

S ≡ (p − 1)w′(tn) + (p + 1)tnw
′′(tn) 
= 0,

to conclude that λ′′(tn) 
= 0. Using Eq. (4.2), and then (5.7), we express

S = −[
(p + 1)(n − 1) − (p − 1)

]
w′(tn) + (p + 1)tn

wp(tn)

= −2[(p + 1)(n − 1) − (p − 1)]w(tn)

(p + 1)tn
+ (p + 1)tn

wp(tn)
.

For the guiding solution w0(t) = c0t
β , β = 2

p+1 , we have

−2[(p + 1)(n − 1) − (p − 1)]w0(tn)

(p + 1)tn
+ (p + 1)tn

w
p

0 (tn)
= 0.

Observing that S is a decreasing function of w(tn) we conclude that S 
= 0, once we show that

w(tn) 
= w0(tn). (5.9)

The function p(t) = w0(t) − w(t) satisfies the linear equation (4.7), with p′(tn) = 0. Then (5.9)
is true, since otherwise p(t) ≡ 0, which is impossible.
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We see as before that the sign of μ′(tn) is opposite to that of λ′′(tn)ω′(1). By Lemma 5.2,

ω′(1) = p − 1

p + 1
u′(1) + u′′(1).

In terms of the generating solution w(t), we have u(r) = 1 − aw(t), t = br , with b = tn at the 
singular solutions. Then u(r) = 1 − aw(tnr), and we have

ω′(1) = − atn

p + 1

[
(p − 1)w′(tn) + (p + 1)tnw

′′(tn)
]
.

Comparing this with (5.8), we conclude that ω′(1) has the same sign as λ′′(tn), and then the sign 
of μ′(tn) is the same as that of −(λ′′(tn))2 < 0, concluding the proof as before. �
6. The Henon equation

We study positive solutions of the Dirichlet problem for the Henon equation

u′′ + λ|x|αup = 0, −1 < x < 1, u(−1) = u(1) = 0. (6.1)

Here α > 0 and p > 1 are constants, λ > 0 is a parameter. This problem has both symmetric 
(even) and non-symmetric positive solutions, see D. Smets et al. [16], R. Kajikiya [7]. The exact 
multiplicity of the positive solutions is not known. We shall approach this problem by using 
“shooting”, scaling and numerical computations.

For a variable ξ > 0 we consider the initial value problem

z′′ + |x|αzp = 0, z(ξ) = 1, z′(ξ) = 0. (6.2)

Let a(ξ) denote the first root of z(x) which is greater than ξ , and b(ξ) the first root of z(x) which 
is to the left of ξ .

Theorem 6.1. Assume that the equation

a(ξ) = −b(ξ) (ξ > 0) (6.3)

has a unique solution ξ0 > 0. Then for any positive λ the problem (6.1) has exactly three positive 
solutions: u1(x) which is an even function, u2(x) which has its point of maximum at ξ = ξ0

a(ξ0)
, 

and u3(x) = u2(−x). Moreover, if b denotes the maximum value of u2(x) (i.e., b = u2(ξ)), then 

λ = a(ξ0)
α+2

bp−1 .

Proof. Denote η = a(ξ0). In (6.2) we let x = ηt , z = 1
b
v, obtaining

v′′ + ηα+2

bp−1
|t |αvp = 0 = 0, v(±1) = 0,

i.e., v(t) is a solution of (6.1), with λ = ηα+2

bp−1 . The maximum value of this solution is equal to b, 

and it occurs at ξ = ξ0 . Solutions of (6.1) at other λ’s are obtained by scaling of u.

η



P. Korman / J. Differential Equations 257 (2014) 2543–2564 2563
Fig. 2. The functions a(ξ) and −b(ξ).

We now show that there is exactly one positive solution, which takes its maximum value at a 
positive x. Let u3(x) be another solution of (6.1), with the maximum value achieved at ξ1 > 0. 
Assume first that ξ1 = ξ0. By scaling of u and x, we obtain from u3(x) a solution of (6.1) (at the 
same λ), which at ξ0 has the same initial data as u1(x) (and so is identical to u1(x)), but it has 
its first root at some x 
= 1, a contradiction. Next, assume that ξ1 
= ξ0. Again, we scale u = Av, 
x = Bt . Choose A = u(ξ1), then v(ξ1) = 1. Now choose B , so that λB2+αAp−1 = 1. Then we 
get a solution of (6.2), for which a(ξ1) = 1

B
, b(ξ1) = − 1

B
, a contradiction with the uniqueness of 

solution of (6.3). �
For particular α and p one can verify computationally that (6.3) has a unique solution.

Example. α = 2, p = 3. The graphs of a(ξ) and −b(ξ), computed using Mathematica, are given 
in Fig. 2. For ξ > 0 and small, we have −b(ξ) > a(ξ), as a graph on a smaller scale shows. 
We see that the graphs of a(ξ) and −b(ξ) intersect exactly once for ξ > 0. This computation 
provides a computer assisted proof that the problem

u′′ + λx2u3 = 0, −1 < x < 1, u(−1) = u(1) = 0

has exactly three positive solutions for any λ > 0.

We have seen a similar picture for many other α > 0 and p > 1 that we tried. For particular 
α and p one can produce a computer assisted proof, based on these calculations. However, some 
restrictions on α and p appear to be necessary. For example for α = p = 2 the graph of −b(ξ)

is below that of a(ξ), which indicates that there are no symmetry breaking solutions. In a recent 
paper S. Tanaka [17] proved that symmetry breaking solutions exist, provided that α(p − 1) ≥ 4. 
For symmetric (even) solutions existence and uniqueness is known for all α > 0 and p > 1, see 
e.g., [9].
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