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1. INTRODUCTION 

We continue our studies, begun in [l, 21, of global solution curves for two point 
boundary-value problems of the type 

24” + Af(x, u) = 0 on (a, b), u(a) = u(b) = 0. (1.1) 

For a given value of a real parameter A we are interested in multiplicity of solutions, and how 
solutions change with A. Typically we prove that all solutions of (1.1) lie on a single solution 
curve. This fact is important for computation of solutions. It means that all solutions of (1.1) 
can be computed by very efficient continuation algorithms, and we can start the continuation 
of solutions somewhere on a stable branch, where it is easy to compute the solution. We also 
obtain exact multiplicity results for large A, and sometimes for all i. We recall our strategy in 
[ 1, 21. We assumed the interval (a, b) to be symmetric about origin, taking (a, 6) = (-1, 1) 
without loss of generality, andf(x, u) to be even in u. Under an additional condition xf, < 0 for 
x # 0 (see Lemma 2.2 for the precise statement) we proved that any solution of (1.1) is even. 
This allowed us to prove that any nontrivial solution of the variational problem 

w” + A.fu(x, u)w = 0 on (a, 6), u(a) = u(b) = 0 (1.2) 

does not change sign inside (a, b). The last fact was in turn used to show that at any singular 
solution u(x) (i.e. where (1.2) has a nontrivial solution) a bifurcation theorem of Crandall and 
Rabinowitz [3] applies. This theorem was our basic tool, which, together with some variational 
arguments and implicit function theorem, allowed us to describe global solution curves. 

In the present paper we study along the same lines the case where f(x, u) is cubic in u with 
distinct positive roots. Here the condition xf, < 0 for x # 0 is violated, which made,the proof 
that the solution is even, and other steps in our analysis, much more complicated. In the case 
wherefis independent of x, this problem was studied by Smoller and Wasserman [4], and Wang 
and Kazarinoff [5, 61, who obtained exact multiplicity results by a very involved phase plane 
analysis. In other direction we study the case wheref(x, u) is not assumed to be symmetric, and 

$ Supported in part by the Taft Faculty Grant at the University of Cincinnati. 
11 Supported in part by a College of Science Research Grant, Brigham Young University. 

1031 



1032 P. KORMAN and T. OUYANG 

present a condition which ensures that any nontrivial solution of (1.2) is one of sign. It is then 
possible to translate a number of results from [l, 23 and from the present paper to the 
nonsymmetric case, but we refrain from doing that. 

Next we list some background results. Recall that a function $0 E C’(a, b) tl C”[a, b] is 
called a supersolution of (1.1) if 

C#I’ + Afx, 4) 5 0 on (a, b), d(Q) 2 0, +(b) 2 0. (1.3) 

A subsolution w(x) is defined by reversing the inequalities in (1.3). The following result is 
standard. 

LEMMA 1.1. Let 4(x) and w(x) be, respectively, super- and subsolutions of (1 .l), and 
4(x) L V(X) on (a, 6) with 4(x) f w(x), then 6(x) > w(x) on (a, b). 

We shall often use this lemma with either r+(x) or v(x) or both being solution of (1.1). The 
following lemma is a consequence of the first. 

LEMMA 1.2. Let U(X) be a nontrivial solution of (1.3) withf(x, 0) = 0. If u(x) 2 0 on (a, 6) then 
u > 0 on (a, 6). 

Next we state a bifurcation theorem of Crandall and Rabinowitz [3]. 

THEOREM 1.1 [3]. Let X and Y be Banach spaces. Let (j, 2) E R x X and let F be a 
continuously differentiable mapping of an open neighborhood of (j, 2) into Y. Let the 
null-space N(F,(& 2)) = span(xo] be one-dimensional and codim R(F,(I, 2)) = 1. Let 
F,(x, 2) $ R(f’(l, 2)). If 2 is a complement of span(x,) in X, then the solutions of 
F(A, x) = F(A, 2) near (x,2) form a curve (A(S), x(s)) = (1 + r(s), X + SX, + z(s)), where 
s + (T(S), z(s)) E R x Z is a continuously differentiable function near s = 0 and 
T(0) = r’(0) = z,(O) = z’(0) = 0. 

2. POSITIVITY FOR THE LINEARIZED EQUATION 

LEMMA 2.1. Consider the problem 

2.4’ + f(x, u) = 0 on (a, b), U(Q) = U(b) = 0. (2.1) 

Assume that f, f, E C’([a, b] x R,), and that one of the following three conditions holds: 

f,(x, U) 5 0 for all x E (a, b), u > 0; (2.2) 

f,(x, u) 2 0 for all x E (a, b), u > 0; (2.3) 

there is a point c, a < c < 6, such that for all u > 0 
f,(x, U) L 0 for all x E (a, c) and f,(x, U) s 0 for all x E (c, b). (2.4) 

Moreover, f,(x, U) # 0 for almost all x E (a, b) and u > 0. Then any positive solution of (2.1) 
has only one maximum. 
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Proof. Assume that (2.2) holds. If a solution U(X) has more than one maximum, it must have 
at least one local minimum on (a, b). Let x1 be the largest point of local minimum, let x2 > x1 
be such that 24(x2) = u(x,), and let X be the point of maximum of U(X) on (xi, x2). Since U(X) is 
increasing on (x1, f), we can represent its graph on that interval by a function x = xi(u). 
Similarly, on (2, x2) we can represent U(X) by x = x2(u), with x2(24) > xi(u) for all 
u E (u(x,), u(Z)). Multiplying (2.1) by U’ and integrating from x1 to x2, we obtain 

d2(x2) + ‘j *X2 

2 \ 
f(x, u)u’ dx + 

. XI i 
f(x, u)u’ dx = 0. x 

Changing the variables in the integrals, we rewrite (2.5) as 

fP(x,) + u(a 
2 [f(x,(u)> u) - f(x,(u), @I du = 0. 

WI) 

(2.5) 

(2.6) 

Since the integral in (2.6) is positive, we have a contradiction. 
If now (2.3) holds, then assuming the lemma to be false, we denote by x2 the smallest point 

of local minimum, by xi < x2 the point where u(xJ = u(x,), and by X the point of maximum 
of u(x) on (xi, x2). As above we obtain 

[f(x,(u), u) - f(x,(u), ~11 du = 0. (2.7) 

Since the integral in (2.7) is negative, we have a contradiction. 
Finally, if the lemma is false in case of (2.4), the solution U(X) will have a point of local 

minimum in either [c, 6) or (a, c] (or both). In the first case we obtain a contradiction as in 
(2.6), and in the second one as in (2.7). 

To prove positivity of any nontrivial solution of the linearized equation for (2.1), we shall 
need an extra condition, which will force the maximum of U(X) to occur at x = c, under the 
assumption (2.5). We accomplish this by assuming f(x, U) to be even in x with respect to (a, b). 

After shifting and resealing x, we may consider the problem 

uN + f(x, 2.4) = 0 on (-1, I), 24(-l) = U(1) = 0. (2.8) 

LEMMA 2.2 [l]. Consider the problem (2.8) and assume that f(x, U) E C’([-1, l] x R,) satisfies 
(i) f(-x, U) = f(x, U) for all x E (-1, 1) and u > 0; 

(ii) xf,(x, U) < 0 for all x E (-1, l)\ 10) and u > 0. 
Then any positive solution of (2.8) is an even function with u’(x) < 0 on (0, 11. Moreover, any 
two positive solutions cannot intersect on (-1, 1). 

Condition (ii) of the above lemma fails for a class of cubic nonlinearities considered in this 
paper. However, the corresponding result still holds. 

We consider 

1.4” + 3424 - a)(24 - b(x))(c(x) - u) = 0 on (-1, l), U(-1) = U(1) = 0. (2.9) 
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Assume that the constant a and the even functions b(x) and c(x), of class 
C’(-1, 1) n C”[-1, 11, satisfy the following conditions 

0 < a < b(x) < c(x) for all x E (-1, 1); (2.10) 

c”(X) < 0 for all x E (-1, 1); (2.11) 

b’(x) + c’(x) 2 0 for x E (0, 1); (2.12) 

c’(x) < 0 for x E (0, 1). (2.13) 

Notice that by the maximum principle any nontrivial solution of (2.9) is positive. 

LEMMA 2.3. Consider the problem (2.9) under the conditions (2.10)-(2.13). Then any positive 
solution of (2.9) has only one maximum. 

Proof. We begin by noticing that 

44 < c(x) for all x E (-1, 1). (2.14) 

Indeed, letting u = c(x) - U, we obtain 

c” - u” + A(c -a - u)(c - b - v)u = 0 on (-1, l), u(+l) = c(k1) > 0. (2.15) 

If (2.14) were violated, we would get a contradiction in (2.15) at the point of nonpositive 
minimum of u(x). 

Let x0 be now a point of local maximum of u(x). Since u”(x,) 5 0, it follows in view of (2.14) 
and Lemma 1.1 that either b(x,) 5 u(xo) < c(xo) or u(xo) < a. In the first case we claim that in 
fact 

Wo) < Wo) < 4x0). (2.16) 

Indeed, if one assumes u(xo) = b(x,) then u”(x,) = 0, and differentiating the equation (2.9), 
we obtain 

LP(x,) = nb’(xo)(u(xo) - a)(c (x0) - 24(x0)) # 0, 

which is impossible at a point of maximum. 
Letting 

f(x, u) = (u - a)(u - b(x))(c(x) - 4, (2.17) 

we obtain 

f, = (u - a)[-b’(c - u) + c’(z.4 - b)]. (2.18) 

In case u(xo) < a we have f > 0 for all x E (-1, l), and so U(X) cannot have interior minima. 
It remains to consider the case when (2.16) holds. Examining the proof of Lemma 2.1, one sees 
that it suffices for the condition (2.4) to be satisfied when x E (x1, x2), the interval defined in 
the proof. In other words, it is enough to have f, > 0 for x E (x1, x2) when x < 0, and f, < 0 
on (x1, x2) when x > 0. Since x1 is a point of local minimum, u”(x,) 2 0, which implies that 
a I u(x,) I b(x,), and in fact u(xr) > a, since assuming u(x,) = a, u’(x,) = 0, we would 



Two classes of boundary-value problems 1035 

have two solutions of the equation (2.9) satisfying the same initial conditions at x1 (u(x) and a), 
a contradiction. Using the conditions (2.12) and (2.13), 

-b’(c - u) + c’(u - 6) = -b’c - c’b + (6’ + c’)u I -b’c - c’b + (b’ + c’)c = c’(c - b). 

This implies by (2.18) that f, < 0 (> 0) when x > 0 (< 0) over the interval (xr , x2), and so the 
Lemma 2.1 applies. 

LEMMA 2.4. Assume that u(x) and u(x) are two solutions of (2.9) such that for some y E (- 1, l), 
(i) u(x) < u(x) I a on (y, l), 

(ii) u’(x) I 0, v’(x) 5 0 on (y, l), 
Assume ol, j? E (y, 1) are such that Cr < p and 

(iii) u(p) = u(G). 
Then 

u’(p) < u’(G) (i.e. lu’(p)I > Ju’(Cr)l). (2.19) 

Proof. We begin by proving that, with f(x, u) as defined in (2.17), 

f, < 0 for u < a and x E (-1,l). 

Indeed, 

When u < a, 

f,(x, u) = -3u2 + 2(a + b + c)u - (all + ac + bc), 

f,,(x, u) = -6u + 2(a + b + c), 

fU(x,a) = -a2 + ab + ac - bc = (b - a)(a - c) < 0. 

f.,>-6a+2(a+b+c)=4(?-a)>O. 

(2.20) 

(2.21) 

(2.22) 

From (2.21) and (2.22) the claim (2.20) follows. On (p, 1) we consider w  = u - u > 0. Then 

w” + c(x)w = 0 on (p, l), w(1) = 0, (2.23) 

where, in view of (2.20), 

(2.24) 

Multiply (2.23) by w, 

(2.25) 

Since the last two terms in (2.25) are negative, it follows that w’(p) < 0, i.e. 

u’(p) < u’(P). 

Since f(x, u) > 0 for all x E (-1, 1) when u < a, it follows that 

(2.26) 

Combining this with (2.26), we conclude the proof of the lemma. 
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COROLLARY 1. Let u(x) and u(x) be two different solutions of (2.9) and V(X) < U(X) near x = 1. 
Then these solutions cannot intersect so long as u I a, and they are both decreasing. 

Proof. If u(6) = u(6) I a, then [u’(6)/ < lu’(6)l. On the other hand, passing to the limit in 
(2.19) as E,fi + 6, lu’(6)l 1 lv’(6)l. 

THEOREM 2.1. Assuming the conditions (2.10)-(2.13), any (positive) solution of (2.9) is an even 
function with u’(x) < 0 on (0, 11. Moreover, two different solutions of (2.9) cannot intersect. 

Proof. Assume a solution u(x) is not even. Then u(x) = u(-x) is another solution of (2.9) 
with u(0) = u(O) = u,,, u’(0) = -u’(O), and u(x) f u(x). Clearly, u(x) cannot take its maximum 
at x = 0, since otherwise u’(0) = u’(O) = 0, and we would have two different solutions 
satisfying the same initial conditions at x = 0, which is impossible. So assume u(x) takes its 
maximum at some 2 > 0, u(2) = ii. We can assume that 

ii > a, (2.27) 

for otherwise we would have two different solutions of (2.9) in the region where f, I 0, which 
easily leads to a contradiction. We claim that 

u(x) < 49 for all x E (0, 1). (2.28) 

Assume (2.28) to be violated. There are two cases. 

Case I: v(x) > u(x) near x = 1 (since u’(1) # u’(l), it is either this inequality or (2.28) near 
x = 1). Let 0 < CY, B < 1 be such that u(p) = U(CY) = a. Since u(x) has the same maximum as 
u(x), u(x) must intersect u(x) on (2, 1). By Corollary 1 these functions cannot intersect where 
u 5 a, hence p < LY, and there is q E (0, @), such that 

u(v) = al) = Ml, lu’(rl)l > Ied. (2.29) 

From Lemma 2.4, reversing the roles of u and u, 

Iu’W > wm (2.30) 

We rewrite (2.9) in the form 

u” + f(x, u) = 0 on (-1, l), u(-1) = u(1) = 0. (2.31) 

We know from the proof of Lemma 2.3 that 

f,(x,u)<O forx>O, when u > a. (2.32) 

We now multiply (2.31) by u’, and integrate from q to /3, 

$.P(p) - $P(?jq + f(xl(u), u) du = 0, (2.33) 
Ul 
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where x = xi(u) is the inverse function of U(X) on the interval (?I, p). Multiplying the equation 
(2.31) for u(x) by v’, and integrating from rl to 01, 

~u’“(cY> - +d2(q) + 
?’ 

a j-(x2(u), v) du = 0, (2.34) 
u1 

where x = x2(u) is the inverse function of u(x) on (q, (Y). Clearly, 

x2(@ > Xl@) for a < u < ur. 

We subtract (2.34) from (2.33), to obtain 

-Ul 

(2.35) 

+(d2(p) - d2(cY)) + +(u’2(?f) - d2(q)> + 
i 

Lf(x,W, 4 - f(W), @I du = 0. (2.36) 
a 

In view of (2.29), (2.30), (2.32) and (2.35), all three terms in (2.36) are negative, a contradiction. 

Case 2: u(x) < U(X) near x = 1, but u(x) > U(X) inside (0, 1) somewhere. Reversing the roles of 
u and u, we get the same contradiction as in Case 1. The claim (2.28) is proved. 

In view of (2.27), only two cases are possible: 
(i) u0 < a < ii, 

(ii) a < u. < ii. 
Assume (i) u0 < a. In view of (2.28), u(x) is decreasing on (0, l), and so we can find 
y < 0 < p < q < 1, such that (see Fig. l), u(p) = u(q) = u(y) = a. By the definition of u(x), 

By Lemma 2.4, 

Combining (2.37) and (2.38), 

lW)l = W(P)l. 

lW)l < bm)l. 

lU’(P)l < Iad. 

(2.37) 

(2.38) 

(2.39) 

Fig. 1. 
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On the other hand, multiplying the equation (2.31) by u’ and integrating, first from p to 2, 
and then from 2 to q, and adding the resulting identities, 

tw2(q> - u'2(P)) + 
s- 

' [f(x,(u), u) - f(x,(u), u)] du = 0, (2.40) 
a 

with x2(u) > x1(u) for all u E (a, ii). The integral term in (2.40) is positive in view of (2.32). 
Hence, 

lU'(P)l > lu'(d9 
contradicting (2.39). 

Assume now (ii) a < u,, < ii. Again u(x) is decreasing on (0, 1). We define 0 < (Y < /I < 1 
and 4 by u(t) = u(0) = uO, v(a) = u(p) = a (see Fig. 2). Repeating the argument leading to 
(2.40), we see that 

l~‘(O)l = lu’(O)l > lW)l. (2.41) 

Multiply (2.31) by u’, and integrate from [ to /I, 
*a 

3W2(P) - u’2(r)) + 
I 

.f(xz@>, u) du = 0, (2.42) 
% 

where x2(u) is the inverse function of u(x) on (c, /3). 
Multiplying the equation (2.31) for v by v’, and integrating from 0 to 01, 

j 
a ~<u’“(cx> - ?/2(O)) + f(xl(u), u) dv = 0, 
uo 

(2.43) 

where x1(u) is the inverse function of v(x) on (0, cx), with x1(u) < x2(u) for all u E (a, uO). From 
(2.42) subtract (2.43), 

&.4’2(p) - d2(a)) + &f2(0) - d2(<)) + ” Lf(x,(u>, u> - f(x,(~), @I du = 0. 

(2.44) 

Fig. 2. 
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The first term in (2.44) is positive by Lemma 2.4, the second is positive by (2.41), and the third 
is positive by (2.32). We have a contradiction, which finishes the proof that u(x) is even. 

Finally, since any solution is decreasing on (0, l), it follows that any two solutions of (2.9) 
cannot intersect in the region where u < a by Corollary 1, and in the region where u > a by 
repeating the argument leading to (2.36). 

We consider next the linearized equation for (2.9), 

w” + A[-3u2 + 2u(a + b + c) - ab - ac - bc]w = 0 on (-1, l), ~(-1) = w(1) = 0. 

(2.45) 

LEMMA 2.5. If (2.45) has a nontrivial solution, we can choose it so that w(x) > 0 on (-1, 1). 

Proof. We can assume that w(x) > 0 near x = 1. Assuming that w(x) vanishes on (0, I), let 
0 I [ < 1 be the largest point where w(t) = 0 (the case of w(x) vanishing on (-1,0) is similar). 
Denote by 0 < q < 1 the point where u(q) = a. Assume first that < 2 q. Notice that the square 
bracket in (2.45), which isf,(x, u), is then negative over (r, l), since u(x) < a over that interval. 
By the maximum principle it follows that w(x) = 0 over (c, l), a contradiction. 

Next, we consider the case r < q. We claim that 

w’(q) < 0. (2.46) 

Indeed, by the above we know that w  > 0 and w” > 0 over (q, 1). Then 

i 

1 
w’(q) = - w”(x) dx + w’(1) < 0. 

-7 
Differentiate (2.9), 

u; + /If"& + Afx = 0. (2.47) 

Next, we multiply the equation (2.45) by uX, (2.47) by w, integrate from r to q and subtract, 
obtaining 

w’u’l; - a -y-Wdx = 0. 
I 

(2.48) 
cE 

From above we know that f, I 0 over ([, II) (where u > a). Using (2.46) and w’(t) > 0, we see 
that the left-hand side of (2.48) is positive, a contradiction. 

Next, we consider equations where nonlinearity is not even in x. To simplify the presentation 
we consider a problem 

uI’ + a(x)f(u) = 0 on (a, b), u(a) = u(b) = 0, (2.49) 

although similar results can be given for more general nonlinearities. 
We assume that o(x) E C2(a, 6) n C’[a, b] satisfies 

a(x) > 0 on [a, b]. (2.50) 
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The functionf(u) E C’(R+) satisfies 

f(u) > 0 for u > 0. (2.51) 

Since any positive solution u(x) of (2.49) is concave, it follows that u(x) has only one point of 
maximum. 

LEMMA 2.6. In addition to the conditions (2.50) and (2.51), assume that 

3 cd2 
2 a 

cY” < 0 for all x E (a, b). (2.52) 

Then any nontrivial solution of the linearized problem 

w” + a(x)f’(u)w = 0 on (a, 6), w(a) = w(b) = 0, (2.53) 

can be chosen to be positive (where u is a solution of (2.49)). 

Proof. Let x0 be the point of maximum of u(x). If w(x) has zero points on (a, b), then it either 
has a zero on (a, x0], or on [x,,, b), or both. Assume for definiteness that w(y) = 0 with 
a < y I x,,; the other case is similar. Differentiate (2.49), 

u; + cY(x)fuu, + a’(x)f(u) = 0. (2.54) 

Multiply the equation (2.54) by g(x)w and subtract from it the equation (2.53) multiplied by 
g(x)u,, with g(x) > 0 to be specified. Then integrate over (a, y), 

Y 

Y 

.r 

Y -7, 
-gu,w’I;: - g’wu;dx + g’u, w’ dx + 

\ 
a’gfw dx = 0. (2.55) 

a (1 a 

The nonintegral terms on the left in (2.55) are positive. Integrating by parts in the second 
integral on the left, and using the equation (2.49), we combine all the integral terms in (2.55) as 

- 
I 

g”l.4, w  dx + 
.r 

y(2g’cY + cdg)fwdx = 0. 
a II 

We shall obtain a contradiction in (2.55) if g(x) satisfies g” < 0 and 2g’a! + cr’g = 0 on (a, b). 
Integrating the last relation, we see, in view of (2.52), that g(x) = &l”(x) is a suitable choice. 

Remark. The class of functions satisfying (2.52) includes a(x) = /3(x) + c, with j?(x) a convex 
function, and c a large constant. 

3. A CLASS OF CUBIC NONLINEARITIES 

In this section we consider the problem 

un + A(24 - a)(24 - b(x))(c(x) - 24) = 0 on (-1, l), u(-1) = u(1) = 0, (3.1) 

with CI, b(x) and c(x) satisfying the conditions (2.10)-(2.13) (b(x) and c(x) being even). Using 
maximum principle and (2.14) we see that any solution of (3.1) satisfies 

0 < u(x) < c(x) for all x E (-1, 1). (3.2) 
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LEMMA 3.1. Let u(x, A) be a continuous in ,l branch of solutions of (3.1). Then one of the 
following three possibilities holds: 

(0 lim,,, 24(x, A) = c(x) for all x E (-1, 1); 
(ii) lim, -L m 24(x, ;1) = a for all x f 0; 

(iii) lim, -) m u(x, ;1) = c(x) for x E (-CY, a), lim,,, u(x, A) = a on (-1, l)\[-CX, (~1 for some 
0 < CY < 1. (No claim is made about the behavior at x = + a.) 

Remark. In Theorem 3.3 we will be able to exclude the possibility (iii). 

Proof. Since a bounded unimodular function u(x) cannot have a large second order derivative 
on any subinterval of (-1, l), we see that at almost all x,, E (-1, 1) u(xO, A) tends to either a, 
b(x,) or c(xe). Since the shapes of u(x, A) and b(x) are different, u(x, A) cannot tend to b(x) 
over any subinterval of (-1, 1). Recalling the shape of u(x, A), we see similarly that u(x,, , A) 
cannot tend to b(x,) at any x0 # 0, unless u(x, A) tends to c(x) on (-1x01, 1x01), and to a on 
(-1, l)\[-lx,[, 1x01], which finishes the proof. 

Using the implicit function theorem, one sees that for sufficiently small J. there is a curve of 
solutions emanating from u = 0,13 = 0. Under some conditions there are no other solutions of 
(3.1). It appears that even for constant a, b and c this case has not been sufficiently clarified in 
the literature. 

THEOREM 3.1. Assume that a, b(x) and c(x) satisfy the conditions (2.10)-(2.13). Let u(x) be any 
decreasing function on [0, 11 with the range [O, a], and a < CY < c(0). Let x(u) denote the 
inverse function of u(x). Assume that for any such x(u) 

-a 

? 
(u - a)(u - b(x(u)))(c(x(u)) - u) du I 0. (3.3) 

a 

Then for any A > 0 the problem (3.1) has exactly one (positive) solution. The solutions u(x, A) 
lie on a smooth in A curve, which is strictly increasing in 1, and lim,,, u(x, A) = a for all 
x E (-1, 1). 

Remark. In case of constant a, b and c this condition says that the area of the negative hump 
of the function f = (u - a)(u - b)(c - u) is larger than the area of the positive hump. 

Proof. There are two possibilities for u, = u(O), the maximum value of u(x). In view of 
(2.16) either 0 < u, < a or b(0) < u, < c(0). We shall exclude the second possibility. Define 
0 < q < 1 by u(q) = a. Multiply (3.1) by u’ and integrate from 0 to u, 

u’%l) I um - - 
i 2 (2 

(u - a)(u - b(x(u)))(c(x(u)) - u) du = 0, 

which is a contradiction since u’(q) < 0 (if u’(q) = 0 then two solutions u(x) and u = a would 
share the same initial conditions at x = q, which is impossible). 
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Let us now return to the curve of solutions starting at Iz = 0, u = 0. Since f, < 0 for u < a, 
it follows by the implicit function theorem that this curve can be continued for all 0 < A < 00. 
We claim that (3.1) has no other solutions (not on the above curve). Indeed, if there were 
another (positive) solution, we could continue it by the implicit function theorem for decreasing 
A, and this new curve of solutions would have nowhere to go (we have local uniqueness at 
A = 0, u = 0). Finally, since the nonlinearity in (3.1) is positive for u < a, u(x, A) is a strict 
subsolution of the equation (3.1) at any p > A, while u = a is a supersolution at ,u. It follows 
that at p there is a solution of (3. l), which is strictly larger than u(x, A). By uniqueness it must 
be u(x, ,u), which finishes the proof of the theorem. 

We denote the nonlinearity in (3.1) by f(x, u), and define F(x, U) = j;t f(x, z) dz. 

THEOREM 3.2. Assume that a, b(x) and c(x) satisfy (2.10)-(2.13). Assume in addition that 
‘1 

J 

“1 
F(x, a) dx < 

I 
m, w> dx. (3.4) 

-1 -1 

All solutions of (3.1) lie on at most countably many unbounded smooth solution curves. One 
of the curves, referred to as the lower curve, starts at A = 0, u = 0, it is strictly increasing in A, 
and lim,,, u(x, 1&) = a for all x E (-1, 1). Each upper curve has two branches u-(x, A) < 
u+(x, A), and as L --t 00, u-(x, ,l) tends to a for all x E (-1, l)\(O). For u+(x, A) there is a 
p E (0, l), such that as A -+ 00, u+(x, A) tends to c(x) for x E (-p,p) and to a for 
x E (-1, l)\(-p, p). The number p is the same for all upper curves. Each upper curve has at 
most finitely many turns for J, belonging to any bounded interval. 

Proof. All the assertions about the lower curve, as well as uniqueness of solutions for 
sufficiently small A > 0, follow exactly as in the previous theorem. We show next that for 
sufficiently large A there is a solution, not lying on the lower curve. Solutions of (3.1) are critical 
points in Hi(-1, 1) of the functional 

-1 

J(u) = 

I 
[&d” - AF(x, u)] dx. (3.5) 

-1 

On the lower curve, which we denote by U = ii(x, A), 
“1 

J(E) L -/I 
I 

m, ii) d-G (3.6) 
-1 

i 

1 

.i 

1 

-I F(x, ii) dx = -A w, 4 dx for 1 large. (3.7) 
u-1 -1 

(Notice that F(x, u) is a bounded and continuous function.) We now construct a function for 
which the value of the functional is less that J(ii). Since the functional J(u) is bounded from 
below, it will have a point of minimum, different from fi. Define u,(x) to be an even function 
of class C’[-1, 11, decreasing on [0, 11, such that u,(x) = c(x) on [0, 1 - E], and u,(l) = 0. 
Clearly, u, E Hi(-1, 1) and in view of (3.4), 

s 

1 

i 

1 

F(x, a) dx < m  u,(x)) d-x, 
-1 “-1 
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for E sufficiently small. Then J(u,) < J(ii(x, A)) for il large enough, and so we have a second 
solution of (3.1) for J. 2 x, with some ,I. large. 

Condition (2.11) implies that c(x) is a supersolution of (3.1). This means that (3.1) has a 
maximal solution, which for A 2 x is different from the lower curve (if there were a solution 
below the lower branch, then we could continue it for decreasing I, using the implicit function 
theorem, obtaining the same contradiction as in the Theorem 3.1). Let ii(x) be the maximal 
solution at A. Define S(J, U) to be the left-hand side of (3.1), where 5: R, x Ci[-1, l] -+ 
C[-1, 11. Notice that 3,(x, ii) is given by the left-hand side of (2.45). If S,(x, ii) is singular, 
then the Crandall-Rabinowitz theorem applies, as will be explained below. If 5,(x, ii) is 
nonsingular, then using the implicit function theorem we can continue the curve of solutions for 
decreasing 1. This curve of solutions cannot be continued left for all A, since for A > 0 small 
the problem (3.1) has only one solution (corresponding to the lower curve). Let &, be the 
infimum of the A, for which the upper curve can be continued to the left. A standard argument, 
see [ 1, 21, shows that there is a solution U(X, A,,) of (3.1) on that curve. 

By the definition of A,, it follows that 5, (A,, u(x, A,,)) is singular, i.e. (2.45) has a nontrivial 
solution w(x) > 0. As in [l, 21 we see that the Crandall-Rabinowitz theorem applies at 
(A,, u(x, &)) if we can show that Sk $ R(F,) at this solution (%,(& , U(X, A,,)) = f(x, U(X, Lo)), 
the nonlinearity in (3.1)). Notice first that W(X) is an even function (otherwise the problem 
(2.45) would have another positive solution w(-x), which is impossible), and then we conclude 
using the Fredholm alternative (from (3.1), --u” = f(x, u)) 

Differentiate the equation (3.1) 

u:’ + ;If, 24, + Afx (x, u) = 0. (3.9) 

Let 0 < 17 < 1 be the point where u(q) = a. Multiply the equation (2.45) by xuX, the equation 
(3.9) by xw, integrate from 0 to rl, and subtract. Obtain 

‘1 B -7 
xu’w’I”o - xwd’(;Io - 

i 
u’w’ dx + wundx - A 

,O e 
xf-wdx = 0. (3.10) 

0 3 0 

From the equation (3.1), u”(q) = 0. So the second term on the left in (3.10) is zero. From the 
proof of Lemma 2.3 we know thatf, < 0 for x E [0, II), since then u > a. This implies that the 
last term in (3.10) is positive. On the interval (q, 1) we know from the equation (3.1) that 
u”(x) < 0. Also f, < 0 on [ye, 11, so that by (2.45) w” > 0 on that interval. This together with 
w(1) = 0 and w  > 0 implies that 

However, using (3.8), 

w’(x) < 0, when x E [q, 11. 

i 

‘I 

i 

1 
- u’w’ dx = u’w’ dx > 0; 

,O ‘I 

-1) 

I 
wu”&= - wu” dx > 0, 

0 

(3.11) 
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i.e. the third and fourth terms in (3.10) are positive. The first term in (3.10) is equal to 
qu’(q)w’(q), and it is also positive in view of (3.11). We conclude that the left-hand side of 
(3.10) is positive. The resulting contradiction proves that 5, $ I?(%,). 

Applying the Crandall-Rabinowitz theorem, we conclude that (A,, U(X, &J) is a bifurcation 
point, near which solutions of (3.1) form a curve (&, + t(s), U(X, 1,) + SW + z(s)), and 
t(O) = t’(0) = z(0) = z’(0) = 0. It follows that for (A, U) close to (A,,, U(X, A,)) and il > &,, we 
have two solutions u-(x, A) < u+(x, J,), and that u+(x, A) is strictly increasing in I, while 
u-(x, A) is strictly decreasing in A. This implies that u’(x, 2) > u-(x, 21 for R close to A,, and 
by Lemma 1.1 the same inequality holds for all A (since solutions cannot touch; they also 
cannot coincide and then go through each other, since this type of bifurcation is ruled out by 
the Crandall-Rabinowitz theorem). 

We show next that 

~A(09 A) # 0 for all L > A,, (3.12) 

which will imply that ~~(0, 2) is increasing and u-(0, ;i) is decreasing for all 1 > A0 (since 
u,‘(O, A) > 0 and u;(O, A) < 0 for 1 near 12,). Assume that for some I1 we have on the contrary 
~~(0, A,) = 0. Differentiate (3.1) in A 

u;+Afuux+f=o (3.13) 

(where f = (U - a)(u - b(x))(c(x) - u)). We see from (3.13) that uc(O, A1) < 0 and, hence, 
ux(x) E ux(x, 2,) is negative in some neighborhood of x = 0. Let 0 < r I 1 be the smallest 
positive root of z+(x). Let u(q, 1,) = a. We distinguish two cases. 

Case (i) 4 5 q. From the proof of Lemma 2.3 we know that.&& U) < 0 on (0, 0. Multiply 
the equation (3.13) by u’, and subtract the equation (3.9) multiplied by uA, then integrate over 
(0, <). Obtain 

i 
t 

(u’u~ - u,uy:, + (df- /b4,f,)dx = 0. 
Jo 

The integra1 term in (3.14) is negative (to see that ]i u’s& < 0, one multiplies (3.1) by u’, then 
integrates over (0, Q). The first term in (3.14) is equal to u’(Ou;(r) I 0, a contradiction. 

Case (ii) ~7 < 4. Subcase (a) u;(q) 2 0. Notice that we have U”(V) = 0. We obtain the same 
contradiction as above by integrating over (0, 9) instead of (0, 0. 

Subcase (b) u{(q) < 0. We know from the proof of Lemma 2.4 that f,(x, U) < 0 for 
x E (II, 1). On (11, <) the function ux(x) must have a point of minimum, say at x0. However, at 
x0 all terms in (3.13) will be positive, a contradiction. 

If there are further bifurcations on the upper curve, the Crandall-Rabinowitz theorem 
applies as before. Since solutions of (3.1) are bounded it easily follows (see [l, 21) that over any 
finite interval of ,ls there is only a finite number of turns. 

Recall that u+(O, A) is increasing in /1. By Lemma 3.1, it follows that on some set containing 
the origin, u(x, A) tends to C(X) as 1 --t co. 

Next we show that the upper branches of all upper curves tend to the same limit. Assume that 
4x, 4 + c(x) on ( -p, PI, u(x, 4 + 4x1 on C-4,4) as A + co, and q < p. We shall show that 
this leads to a contradiction, implying that p = q. 



Two classes of boundary-value problems 1045 

Let (Y, /3 be such that v(o) = u(p) = a, and let u0 = ~(0, A), u0 = ~(0, A), with u0 > uo. 
Multiply the equation (3.1) (with f(x, U) = (U - a)(u - b(x))(c(x) - u)) by u’, and integrate 
from 0 to p, 

$d’<p> + ?L 
i 

= .&W, u) du = 0, 
%I 

with x = x2(u) the inverse function of u(x). Multiplying the same equation for u(x) by u’, and 
integrating from 0 to 01, 

$u’*(cY) + A 
i 

= f(x,(u), u) du = 0, 
“0 

with x1(u) the inverse function of u(x), and x2(u) > x1(u) for u E (0, uo). Subtracting, 

*(L&l) - u’*(cY)) + I. 
I 

O” Lf(x,W, ~1 - fW4, @I du - A 
I’ 

u”j-(x2(u), u) du = 0. 
a 00 

The first term in the above formula is positive by Lemma 2.4. The second integral is also 
positive, and in fact is bounded below by a positive constant, since for I large we have 
x2(u) = p and x1(u) 2: q over some u-interval. The third integral goes to 0, since uo, u. -+ c(0) 
as k + 00, and we have a contradiction. 

Finally, we rule out the case of isolated solution curves. Assume that such a curve exists and has 
two turning points, the case of more than two turning points being similar. Near the left turning 
point there is an upper branch that is increasing in A at x = 0 for all A. The same branch would 
have to be decreasing in 1 at x = 0 when approaching the right turning point, which is impossible. 

More detailed information on the asymptotic behavior of solutions on the upper curve can 
be obtained if one replaces the condition (3.4) by a more stringent one: 

KY, a) < WG c(x)) for all x E (-1, 1). (3.15) 

Let or < r*(x) denote the roots of f,(x, u). We assume that 

r*(x) < 4) for all x E (-1, 1). (3.16) 

(This condition is trivially satisfied for constant b and c.) 

THEOREM 3.3. Assume all conditions of the Theorem 3.2 hold with the condition (3.4) replaced 
by. (3.15) and assume additionally (3.16). Then all of the conclusions of Theorem 3.2 hold 
and, in addition, the upper curve is unique and it consists for A sufficiently large of two 
branches, referred to as an upper and lower branch, u+(x, A) > u-(x, A) for all x, and 
lim, + +- u+(x, A) = c(x) for all x E (-1, l), limx++, u-(x, A) = a for all x E (-1, l)\(O), and 
u-(0, A) > b(0) for all 2 (i.e. the lower branch approaches a spike-layer). In particular, for 
sufficiently large i the problem (3.1) has exactly three solutions. 

Proof. We begin by showing that for each upper branch lim,,, u+(x, 1) = c(x). From the 
proof of Theorem 3.2, we know that on the lower curve, denoted by &(x, A), we have 
u,(x, A) -+ a as A + 00 and, hence, for large A, 

1 1 

J(u,(x, I)) 2 --A F(x, u,) dx = -A F(x, 4 h, (3.17) 
-1 -1 
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where J(u) is the energy functional defined in (3.5). We know that for large A each upper curve 
consists of two branches u+(x, A) > u-(x, A). By the previous theorem, u+(x, A) approaches c(x) 
on (-p, p). If p < 1, then the case (iii) of Lemma 3.1 holds and 

.r 

1 

s 

P 

J(u) = 3 d2(x, A) dx - A F(x, c(x)) dx - A 

j  

F(x, a) dx. (3.18) 
-1 -P (- 1,l)FP,P) 

From the equation (3. l), 

s 

1 1 

uf2dx = 2 

-1 j-, 
uf(x, u) dx. (3.19) 

Using (3.19) and Lemma 3.1 it is easy to see that 
‘1 

I 
uf2 dx = Ad(A), with6@)-+0 asA-+oo. 

u-1 

If now u,(x) is the function defined in the proof of the Theorem 3.2, then one sees from 
(3.17)-(3.19) and (3.15) that for E small and A large J(u,) is smaller than each of J(u,), J(u-) 
and J(u+). Since J(u) is bounded from below, its minimum would be a solution of (3.1) which 
is qualitatively different from the three possible types of solutions for A. large, that are described 
by Theorem 3.2. The resulting contradiction proves that p = 1. 

We show next that for A large each branch u+(x, A), approaching c(x), must become stable. 
Indeed, if u = u+(x, A) were not stable, we could find a constant p > 0 and w(x) > 0, so that 

w” + f,(x, u)w = pw for x E (-1, l), w(-I) = w(1) = 0. (3.20) 

We may assume that 1; w2 dx = 1. Define 4 to be the smallest number in (0, l), where 
f,(x, u(x)) = 0. Clearly, f, < 0 on (0, q). 

We claim that 

/u’(x)/ 2 c&, (3.21) 

for some c, when A is large, for all x E (q, 11. It suffices to prove (3.21) for x E (q, cz] (i.e. when 
u > a), since u” < 0 on (a, 1). Define 0 E (0, 1) by u(0) = c(1). By (3.16) we know that 0 < q. 
From the equation (3.1) we obtain, using (3.15) uf2(x) u’2(s) “* c(l) -=-- 

2 2 .I Aj-(x, u)u’ dx L -1 f(l, u) u’ dx = /I s f(1, u) du 2 c,A, 
e u(x) 

and (3.21) follows. 
Since u(x, A) + c(x), we can find a constant A independent of 1 and < = <(A) near x = 0 (say 

in (0, i)), such that lu”(<)] 5 A. Define (Y by u(a) = a. From the equations (3.20) and (3.9) we 
derive 

-u’(cY)w’(a) + u’(()w’(cg - w(&d”(() + A 
1 

j-,wdx + ,u 
i i 

LI 
wu’dx = 0. (3.22) 

t 

Since w”(x) > 0 on (0, q), it follows that w’(r) > 0 and that w(c) is bounded (because 
ji w2 dx = 1). We see then that the second, fourth and fifth terms in (3.22) are negative, while 
the third term in (3.22) is bounded. The first term in (3.22) is negative, and we show next that 
it is large in absolute value (as 1 --t m), which leads to a contradiction in (3.22). Indeed, 
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assuming otherwise would imply in view of (3.21) that 1 w’(cY)[ = 0(1/a). We claim that w(o) is 
also small. By (3.21) we conclude that 1 - (Y = 0(1/a) and CY - q = 0(1/v%). By Lemma 2.4, 
f, < 0 on (a, 1) and, hence, w” > 0 there, which means that Iw’(cY)[ = maxtol,rl(w’(x)l and, 
therefore, w(a) = 0(1/A). Since w(x) is convex on (0, FJ), it must take its maximum on (q, 1). 
The maximum value must be at least 1, since jh w2 dx = 1. On (q, a) we set t = cx - x, and 
estimate from (3.20) 

wn 5 CAW, w(0) = 0 ; , 
0 

w’(0) = 0 h ) 
0 

o,t,$, 

with positive constants c and cr. Integrating 

w(t) 5 CA 
I’ 

[(t - s)w(s) ds + w'(O)t + w(0) I c 2( I’)vods + ;). 43 
00 

Applying Gronwall’s inequality, we conclude that w(t) = 0(1/A) on (B, 1). This is a 
contradiction, which in turn implies a contradiction in (3.22), proving stability of u+(x, A) for 
large i. 

By a similar (easier) argument one shows that any lower branch tending to zero for x # 0 is 
unstable. Uniqueness of the upper solution curve then follows by a standard argument, see e.g. 
[7, P. 681. 
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