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1. Introduction

We study positive and sign-changing solution curves, both radially symmetric and
non-symmetric, for the semilinear Dirichlet problem

0u + �f(u) = 0 for |x|¡R; u = 0 for |x|= R; (1.1)

on a ball in Rn, depending on a positive parameter �. Here the space dimension n¿ 1
is arbitrary, although for the case n=1 we present more detailed results. Recall that in
view of the classical results of Gidas et al. [9] any positive solution of (1.1) is radially
symmetric, i.e. u = u(r), where r = |x|, and hence our problem (1.1) takes the ODE
form (2.2).
Our 8rst result in Section 2 deals with the values of any radial solution of (1.1)

(positive or not) for large values of the parameter �¿ 0. We show that for large �
the values of any solution must accumulate at stable roots of f(u). This result can
be used in particular to prove non-existence of positive (and sign-changing) solutions
for large �, in case nonlinearity f(u) has no stable roots. Our result, Theorem 2.1,
gives a considerable extension of the main result of Brown et al. [3], as well as a
generalization of Theorem 1 in Ramaswamy and Srikanth [23].
In Section 3 we consider a one-dimensional version of problem (1.1)

u′′ + �f(u) = 0 for x∈ (0; 1); u(0) = u(1) = 0: (1.2)
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We assume that f(u) is a generalization of f(u) = u|u|p − 1, with real p¿ 0, see
conditions (3.2)–(3.4). We show that problem (1.2) has in8nitely many points of
pitchfork bifurcation, occurring at the following sequence of parameter values �k =
2k2(

∫ �
0 du=

√−F(u))2, for k = 1; 2 : : :, which correspond to non-negative solutions uk

with k interior zeros. The pitchfork consists of a curve of symmetric solutions passing
through (�k ; uk), and a curve of symmetry-breaking solutions, which “opens up” either
forward or backward in �. Away from the pitchfork point (�k ; uk) all four branches
continue globally, admitting only simple turns. Since our f(u) has no stable roots, it
follows by the results of Section 2 that all four solution branches will have to turn
around eventually, and tend to in8nity as � → 0. (I.e. we can 8nd �k ¿�k , so that all
four branches do not continue in the region �¿�k .) By contrast, for arbitrary large
� we can still 8nd solutions of (1.2), but with more and more nodes. We thus obtain
a kind of nonlinear spectral theory: for large � only solutions with a large number of
roots are possible.
In Section 4 we study symmetry-breaking oH a branch of positive solutions of the

Dirichlet problem (1.1). As we mentioned above, positive solutions of (1.1) are nec-
essarily radially symmetric. Assume we have a branch of positive solutions of (1.1),
which continues for all �, while it is possible to prove (using for example the result
from Section 2) that for large � problem (1.1) has no positive solutions. This means
that our solution branch must cease being positive at some I�. Since the results of Gidas
et al. [9] imply also that any positive solution satis8es u′(r)¡ 0, there is only one way
a branch may loose positivity: to develop a zero slope at r = 1, i.e. u′(1; I�) = 0. In
view of strong maximum principle this may only happen under the assumption

f(0)¡ 0: (1.3)

By analogy with the one-dimensional problem from Section 3, it is natural to expect
a pitchfork-like bifurcation and symmetry breaking at I�. To prove that bifurcation
actually happens, one needs to verify a certain “transversality” condition. We prove
this condition, assuming that the branch “loses its positivity forward”, i.e. it arrives
at the bifurcation point with � increasing. Symmetry-breaking oH a positive branch
was studied previously by Smoller and Wasserman, who in [25] present a veri8ca-
tion of transversality condition, which they attribute to C. Pospeich. It appears that
following [25] symmetry-breaking oH a positive branch might have been perceived as
well-understood. However the proof of transversality condition in [25] uses implicitly
the same assumption that positivity is lost forward. It can be found in condition (b) of
[25, p. 282]. That positivity is lost forward is a natural thing to expect, but proving it
turns out to be not easy. We show that this will follow from the following disconjugacy
condition: any non-trivial solution of the linearized problem

0w + �f′(u)w = 0 for |x|¡R; w = 0 for |x|= R (1.4)

can vanish at most once on (0; R). This is the same kind of condition which was re-
cently seen to be important for questions of uniqueness and exact multiplicity for (1.1).
This condition will hold if say f′′(u)¡ 0. In Section 5 we give such a disconjugacy
result for a class of superlinear nonlinearities f(u).
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2. Shape of solution for large �

We consider positive solutions of

0u + �f(u) = 0 for |x|¡R; u = 0 for |x|= R; (2.1)

i.e. a Dirichlet problem on a ball in Rn, depending on a positive parameter �. In view
of the classical results of Gidas et al. [9] any positive solution of (2.1) is radial, i.e.
u = u(r), where r = |x|, and problem (2.1) takes the form

u′′(r) +
n − 1

r
u′(r) + �f(u) = 0 r ∈ (0; R); u′(0) = u(R) = 0: (2.2)

Moreover, it was proved in [9] that u′(r)¡ 0 for r ∈ (0; R).
We assume that the nonlinearity f(u)∈C2(R+) has no degenerate roots, i.e. f′( Iu)

�=0, provided f( Iu) = 0. We then refer to a root Iu of f(u) as stable if f′( Iu)¡ 0, and
unstable if f′( Iu)¿ 0. Our next result shows that for large � any positive solution
has to accumulate at stable roots of f(u).

Theorem 2.1. Assume that

lim
u→∞

f(u)
u

=∞ (2.3)

and assume that a positive solution of (2:2) exists for all �¿�0. Then the interval
(0; R) can be decomposed into a union of open intervals; whose total length is =R;
so that on each such subinterval u(r; �) tends to a stable root of f(u) as �→∞.

Proof. We claim that solution cannot tend to in8nity over a 8xed subinterval as
�→∞. Indeed; assume on the contrary that u → ∞ for all r ∈ [0; r1); for some 8xed
r1 ¿ 0. Then for any constant M ¿ 0 we can 8nd a �0; so that for all �¿ �0

�
f(u)
u

¿M for all r ∈ [0; r1): (2.4)

We now write our Eq. (2.2) in the form

u′′(r) +
n − 1

r
u′(r) + �

f(u)
u

u = 0

and compare it with

v′′(r) +
n − 1

r
v′(r) + Mu = 0: (2.5)

Changing variables v= zr(2−n)=2; we reduce (2.5) to a Bessel’s equation; and so it has
a solution v = r2−n=2J(n−2)=2(

√
Mr); which has a zero on (0; r1); provided M is large.

By Sturm’s comparison theorem the same is true for u(r); a contradiction; proving that
the length of the interval on which solution gets large is decreasing as � → ∞.
It follows that for any �¿ 0 we can 8nd a constant M0 ¿ 0 so that

u(r)¡M0 on (�; 1) for all �¿ �0: (2.6)

We claim that on any subinterval of (�; 1) solution u(r; �) must tend to a root of
f(u). Indeed, if u(r; �) failed to tend to a root of f(u) on some subinterval I ∈ (�; 1),
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then from Eq. (2.2) we see that rn−1u′ would have to become large over I . This
would imply that u(r) has a large variation on I ∈ (�; 1), contradicting the fact that the
variation of u(r) on (�; 1) is less than M0 by (2.6). Hence the values of u(r; �) have
to accumulate at roots of f(u) as � → ∞.
Finally, we show that solution has to accumulate at stable roots of f(u). Assume

on the contrary that there is an interval J ≡ (r1; r2)∈ (�; 1), so that

u(r; �) → u over J as � → ∞ (2.7)

and Iu is an unstable root of f(u), i.e. f(u) is negative to the left of Iu, and positive
to the right. Denote by � = �(�) the point where u(�) = Iu. We claim that there is
a Ir ∈ (r1; r2), so that � will be excluded from (r1; Ir) as � gets large. Indeed, we see
from Eq. (2.1) that u(r) is convex just below the value of Iu, and it remains convex
for increasing r at least until u(r) will drop below the root of f(u) which precedes Iu
(so that f(u) can change to being positive). But (2.7) implies that u(r) would have
to change to being concave at values just a little below Iu, a contradiction. (A convex
and decreasing function cannot tend to a constant over a subinterval.)
Let again � be such that u(�) = Iu. By above �∈ ( Ir; r2) for large �. We claim that

|u′(�)| is large for large �. Indeed, denote by u the root of f(u) preceding Iu, de8ne � by
u(�) = u, and 0¡c0 ≡ − ∫ Iu

u f(u) du. Multiplying Eq. (2.2) by rn−1u′, and integrating
over (�; �), we get

1
2�

2u′2(�) = 1
2�

2u′2(�) + �
∫ �

�
r2(n−1)f(u)u′ dr

¿ ��2(n−1)
∫ �

�
f(u)u′ dr = ��2(n−1)c0;

which implies that u(�)¿ c1
√

� for large �, with some c1 ¿ 0, proving the claim.
When we decrease r from � toward the interval (r1; Ir), we need u′′(r) to be large

in absolute value and negative in order to decrease |u′(r)|. (|u′(r)| must be small over
the interval (r1; Ir) for large �, since u(r) tends to a constant over that interval.) From
Eq. (2.2), u′′¿− �f(u), i.e. |u′′|=−u′′6 �f(u), so that �f(u) must get large some-
where on ( Ir; �). But as we decrease r we increase u(r), so the quantity �f(u) once
it gets large can only further increase. Also, the assumption (2.3) may be dropped,
provided there is some u − 0 ¿ 0 so that f(u) ¡ 0 for u ¿ u − 0. It follows from
Eq. (2.2) that (rn−1u′)′ is large over (r1; Ir). This implies a large variation of u(r) over
this interval, a contradiction, 8nishing the proof.

Example. Assume that f(0)¡ 0; condition (2.3) holds; and the function f(u) has
exactly one positive root. Then this root is unstable; and so there exists �1 so that for
�¿�1 problem (2.2) has no positive solutions. This extends considerably the main
result in [3].

Remark. Examining the proof; we see that a similar result holds for sign-changing
radial solutions of (2.1). Indeed; replacing condition (2.3) by limu→±∞f(u)=u = ∞;
we conclude that for large � any radial solution of (2.1) has to accumulate near the
stable roots of f(u).
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3. In�nitely many solution curves

We study positive, negative and sign-changing solutions of a family of two-point
problems

u′′ + �f(u) = 0 for x∈ (0; 1); u(0) = u(1) = 0; (3.1)

depending on a positive parameter �. We assume that the nonlinearity f(u)∈C2(R)
satis8es the following conditions:

f(0)¡ 0; (3.2)

lim
u→±∞

f(u)
u

=∞: (3.3)

We assume also that f(u) changes sign exactly once, i.e. there exists an �¿ 0 such
that

f(u)¿ 0 for u¿�; f(u)¡ 0 for −∞¡u¡�: (3.4)

We shall show that in8nitely many pitchfork bifurcations occur for problem (3.1), and
that for small �¿ 0 in8nitely many solution are present. But 8rst we 8x the notation,
and present some background results.
In the following we shall use alternatively the notation u(x; �) ≡ u(x), and ux(x; �)=

u′(x; �) to denote solution branches and derivatives.
Notice that any solution of (3.1) is symmetric between any two of its roots, i.e. if

u(a) = u(b) = 0 and u(x) is positive (negative) over the subinterval (a; b)∈ (0; 1) then
u′(a + b)=2 = 0, and u(x) = u(a + b − x), u′(x)¡ 0 for all x∈ (a + b)=2; b. This is
because any solution is symmetric with respect to any stationary point, by uniqueness
for initial value problems. Notice that in particular no solution can have local minimums
(maximums) in the region where it is positive (negative).

Lemma 3.1. The nodal structure of any solution branch of (3:1) is preserved for all
�; unless ux(0; �)=0 for some �. More precisely; if ux(0; �) �=0 for all �∈ [�1; �2]; then
u(x; �1) and u(x; �2) have the same number of zeros; and the same order of regions
where solution is positive or negative.

Proof. By the above remarks the only way a new zero point can be added; is for
solution curve to develop a zero slope at an existing zero; and then a new zero appearing
nearby when the parameter � is varied. However; by symmetry having zero slope at
any root would imply u′(0; �) = 0; a contradiction.

We recall several lemmas. The following lemma was proved in Korman [13].

Lemma 3.2. Consider problem (3:1) with any f(u)∈C2(R). A positive solution
branch u(x; �)¿ 0 can cease being positive only for increasing �.

The following lemma is a variation of the corresponding result in Korman
et al. [15].
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Lemma 3.3. Let u(x; �0)∈C3(0; 1) ∩ C[0; 1] be a singular solution of (3:1); i.e. the
problem

w′′ + �0f′(u)w = 0 for x∈ (0; 1); w(0) = w(1) = 0 (3.5)

has a non-trivial solution. Assume that u′(1; �0) �=0 (or u′(0; �0) �=0). Then∫ 1

0
f(u)w dx �=0: (3.6)

Proof. DiHerentiating (3.1); we get

u′′x + �f′(u)ux = 0: (3.7)

From Eqs. (3.4) and (3.7) at � = �0; we obtain

u′w′ − u′′w = constant = u′(1)w′(1): (3.8)

Since we may assume that w′(1) �=0 (otherwise w(x) is trivial); we see that the constant
in (3.8) is non-zero. Integrating (3.8); we then conclude (3.6).

The following lemma addresses the complementary situation when u′(1; �0) = 0. It
gives explicitly the solution of the equation for u�

u′′� + �f′(u)u� + f(u) = 0 for x∈ (0; 1); u�(0) = u�(1) = 0 (3.9)

at � = �0.

Lemma 3.4. Assume that u(x; �)∈C3(0; 1) ∩ C[0; 1] is a curve of solutions of (3:1);
which are symmetric with respect to x = 1

2 near � = �0; and such that ux(1; �0) = 0.
Then problem (3:9) is solvable at � = �0; and in fact

u�(x; �0) =
1
2�0

(
x − 1

2

)
ux(x; �0) for all x∈ (0; 1): (3.10)

Proof. One easily checks that the function w(x) ≡ 2�0u� − (x − 1
2 )ux satis8es

w′′ + �0f′(u)w = 0 on (0; 1); w(0) = w(1) = 0:

This function is even with respect to x= 1
2 ; while the null-space of the above equation

is spanned by the odd with respect to x = 1
2 function ux. This implies that w ≡ 0; and

the proof follows.

We de8ne the point �¿ 0 by the relation
∫ �
0 f(u) du = 0. We also use a standard

notation F(u)=
∫ u
0 f(u) du. It turns out that pitchfork bifurcation occurs at the following

sequence of parameter values:

�k = 2k2
(∫ �

0

du√−F(u)

)2
for k = 1; 2 : : : : (3.11)
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Lemma 3.5. Let �k be de5ned by (3:11). At � = �1 problem (3:1) has a positive
solution u1(x); with u′1(0) = 0 and u1( 12 ) = �. At � = �k ; k¿ 2 problem (3:1) has a
non-negative solution uk(x) with k − 1 interior zeros; and u′k(0) = 0; u(1=2k) = �.

Proof. We begin by establishing existence of solutions uk(x). Consider the initial value
problem (for x¿ 0)

u′′(x) + f(u(x)) = 0; u(0) = �; u′(0) = 0: (3.12)

Since f(�)¿ 0; it follows that u(x) is concave; and hence decreasing for small x ¿ 0.
Multiplying Eq. (3.12) by u′ and integrating; we conclude in view of our initial con-
ditions that

1
2u

′2 + F(u) = 0: (3.13)

Solution of (3.12) cannot decrease and be positive inde8nitely. Indeed; if that was the
case; u(x) would have to converge to a constant 0¡c0 ¡� as x → ∞. We obtain a
contradiction from (3.13); since for large x u′(x) must be small; while F(u) term is
negative and bounded away from zero.
It follows that either solution becomes zero at some �, or it stops decreasing at

some �, i.e u′(�)= 0. In the 8rst case it follows from (3.13) that u′(�)= 0, and in the
second case it follows from the same equation that u(�) = 0. In either case we obtain
a positive solution, with zero slope at its 8rst root. By scaling the equation we can
make sure that this 8rst root happens at x = 1

2 . This will introduce a factor into the
equation, and hence for a proper � we obtain solution u1(x). Similarly, by scaling the
8rst root to appear at x = 1

4 , we obtain the solution u2(x) at some other �. Finally, by
a direct integration of (3.1) we get formula (3.11) for �k .

Our next lemma shows that solution curves stay bounded when � ranges over a
bounded interval, not including � = 0.

Lemma 3.6. Assume that f(u) satis5es conditions (3:1) – (3:3); and 0¡�16 �6
�2 ¡∞; with some constants �1; �2. Then for any solution branch u(x; �) of (3:1)
there exists a constant c; such that

|u(x; �)|¡c for all �∈ [�1; �2]: (3.14)

Proof. Assume that on the contrary solution u(x; �) becomes unbounded when � →
�0 ∈ [�1; �2]. Assume that u(x) is positive on some subinterval I ≡ (a; b)∈ (0; 1); and
that u(a) = u(b) = 0. As we change � the roots change; so we can think of roots as
continuous functions a = a(�) and b = b(�); and consider a variable interval I = I� =
(a(�); b(�)). Writing our equation in the form

u′′ + �
f(u)
u

u = 0;

then using Sturm’s comparison theorem and our condition (3.3); we see that the length
of the interval on which solution becomes large must be decreasing. i.e. given any
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!¿ 0 small we can 8nd a constant M ¿ 0 and an interval J ∈ I of length less than !;
and centered around the midpoint of I ; so that

u(x; �)¡M for x∈ I \ J and all �∈ [�1; �2]: (3.15)

Multiplying Eq. (3.1) by u′ and integrating from a to (a + b)=2; and denoting u0 =
u(a + b)=2; we have

u′2(a) = �
∫ u0

0
f(u) du: (3.16)

Since u0 → ∞ as � → �0; it follows that u′(a) must get large. Similarly; u′(x) must
get large for all x∈ I \ J . We conclude that the interval I must be shrinking; since
otherwise we get a contradiction with (3.15) (a bounded increasing function cannot
have unbounded derivatives on an interval; whose length is bounded from below).
If u(x; �) is a positive solution, we are done, since we may take I = (0; 1), and

this interval is not shrinking. Otherwise, we turn our attention to an adjacent to I
interval, where the solution is negative, call it I1. Denoting by u1 ¡ 0 the minimum
value of u(x; �) on this interval, we see using (3.16) and a formula similar to (3.16)
and involving u1, that u1 → −∞ as � → �0. Using Sturm’s comparison theorem we
see that I1 is also shrinking. Since by Lemma 3.1 the nodal structure of u(x; �) is
preserved, and the length of all intervals is decreasing, we obtain a contradiction.

We are ready to state the main result of this section.

Theorem 3.1. Consider problem (3:1) and assume that conditions (3:2)–(3:4) are sat-
is5ed. Then in addition to the numbers �k de5ned by (3:11) there exist a sequence
of positive numbers {�k}; with �k ¡�k for all k; so that for all 0¡�¡�k problem
(3:1) has at least two symmetric solutions with 2k interior zeros; and at least two
asymmetric solutions with 2k − 1 interior zeros; while for �¿�k only solutions with
at least 2k + 1 interior zeros may exist.

Proof. We show similarly to [14] that pitchfork bifurcation occurs at each of the points
(�k ; uk). DiHerentiating Eq. (3.1); we see that u′k(x) is solution of the linearized problem
(3.5); and that any solution of (3.5) is a multiple of u′k(x).

We recast our Eq. (3.1) in the operator form F(�; u) = 0, where F :R× C2
0 (0; 1) →

C(0; 1) is de8ned as follows:

F(�; u) = u′′ + �f(u) = 0: (3.17)

De8ne by X the subspace of C2
0 (0; 1) which consists of functions that are even with

respect to x = 1
2 , and by Y the subspace of functions in C2

0 (0; 1) that are odd with
respect to x = 1

2 . We now restrict our equation (3.17) to X , i.e., consider F as a map
R × X → X . In fact, we shall show that (3.17) de8nes a curve in R × X . The point
� = �k , u = uk lies on this curve. The linearized equation at this point

Fu(�k ; uk)w = w′′ + �kf′(uk)w = 0; w(0) = w(1) = 0
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has no non-trivial solutions in X , since its solution set is spanned by u′k(x) �∈ X . This
implies that Fu(�k ; uk) is an injection of X into X . To see that it is also onto, take an
arbitrary g(x)∈X , and consider the problem

w′′ + �kf′(uk)w = g(x); w(0) = w(1) = 0: (3.18)

Since
∫ 1
0 gu′k dx = 0, we see that problem (3.18) is solvable. Writing its solution in

the form w = we + wo with we ∈X and wo ∈Y , we see that we is also a solution of
(3.18), and hence Fu(�k ; uk) is onto (wo is a constant multiple of u′k). By the implicit
function theorem we have a curve of symmetric solutions passing through (�k ; uk).
We claim next that solutions on this curve become negative near x=0; 1 for �¿�k .

This will follow from the fact that u�(x; �k) is negative near x = 0; 1. Indeed, by
Lemma 3.4

u′�(0; �k) = 1
4f(0)¡ 0 (3.19)

and hence the symmetric solution becomes negative near the end-points for
increasing �.
We denote by U =U (x; �)=U (x) the curve of symmetric solutions passing through

(�k ; uk). Set u(x) = U (x) + v(x). From the previous discussion it follows that

U (x; �k) = uk(x); U�(x; �k) = u�(x; �k−): (3.20)

We rewrite our Eq. (3.1)

G(�; v) ≡ v′′ + �[f(U + v)− f(U )] = 0; v(0) = v(1) = 0: (3.21)

Problem (3.21) has a trivial solution for all �¿�k . We are looking now for non-trivial
solutions of (3.21), bifurcating oH the point � = �k , v = 0. The linearized equation at
this point

w′′ + �kf′(uk)w = 0; w(0) = w(1) = 0 (3.22)

has a one-dimensional null-space, spanned by u′k . It is well known by the elliptic
theory that the range of Gv(�k ; 0) has codimension one. We shall show that the
Crandall–Rabinowitz theorem on bifurcation from simple eigenvalues applies at this
point ([6, Theorem 1:7]). In view of the above remarks we only need to verify
the crucial “transversality” condition: G�v(�k ; 0)u′k �∈ R(Gv(�k ; 0)). Since by (3.20)
G�v(�k ; 0)u′k = �kf′′(uk)u�u′k +f′(uk)u′k , we need to show, in view of Fredholm alter-
native, that �k

∫ 1
0 f′′(uk)u�u′2k dx +

∫ 1
0 f′(uk)u′2k dx �=0. This will follow from a more

precise inequality,

�k

∫ 1

0
f′′(uk)u�u′2k dx +

∫ 1

0
f′(uk)u′2k dx ¿ 0: (3.23)

We proceed similarly to Ramaswamy [22]. To simplify the notation, we drop the
subscript k in the intermediate steps. Integrating by parts,∫ 1

0
f′′(u)u�u′2 dx =

∫ 1

0
(f′(u))′u�u′ dx

=−
∫ 1

0
f′(u)u′�u

′ dx −
∫ 1

0
f′(u)u�u′′ dx: (3.24)
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We rewrite similarly the 8rst term on the right-hand side in (3.24)

−
∫ 1

0
f′(u)u′�u

′ dx =
∫ 1

0
f(u)u′′� dx + 2f(0)u′�(0)

and the second term on the left-hand side in (3.23)∫ 1

0
f′(u)u′2 dx ≡

∫ 1

0
(f(u))′u′ dx =−

∫ 1

0
fu′′ dx = �

∫ 1

0
f2 dx:

Plugging these formulas into (3.23), and using the equations satis8ed by u and u�, we
get

�k

∫ 1

0
f′′(uk)u�u′2k dx +

∫ 1

0
f′(uk)u′2k dx = 2�kf(0)u′�(0):

In view of (3.19) and of above identity we conclude (3.23).
Applying Theorem 1:7 of [6] we conclude that in addition to U (�; x) there is another

curve of solutions passing through (�k ; uk)

� = �k + )(s); u = uk + su′k + z(s); (3.25)

with the parameter s de8ned on some interval around s = 0, and )(0) = )′(0) = 0,
z(0) = z′(0) = 0. This provides us with in8nitely many points of pitchfork bifurcation.
The solution u(x) in (3.25) has 2k−1 interior zeros: two zeros near each of xk =1=2k,
and one near x = 1.
We claim that no solution curve can pass through two points of pitchfork bifurca-

tion. Indeed, non-symmetric solution curves passing through diHerent uk have diHerent
number of zeros. Since the number of zeros is preserved on each solution curve, no
such curve can pass through two diHerent uk . For the symmetric curves, the front curve
at uk and the tail end at uk+1 do have the same number of zeros, but they have the
opposite order for regions of positivity and negativity, and hence cannot link up. Hence
we can assume that the condition

u′(1; �) �=0

is satis8ed everywhere on each solution curve, except for a single point of pitchfork
bifurcation. If the operator Fu(�; u)w, de8ned previously, is invertible then solution
curve can be continued by the implicit function theorem. Otherwise, in view of Lemma
3.3, the Crandall–Rabinowitz bifurcation theorem [5] applies, and hence all solution
curves can be continued globally (see [15] for a similar argument; inequality (3.6)
veri8es the crucial “transversality” condition of that theorem).
Next, we show that no solution curve can continue for all �¿ 0, and hence all the

curves will have to turn around eventually, and tend to in8nity as � → 0. Assume
on the contrary that some solution branch continues for all �¿ 0. By Lemma 3.1
the nodal structure of each solution is preserved. By Theorem 2.1 it follows that all
intervals where solution is positive would have to shrink as � → ∞. It follows that
there is at least one subinterval I ∈ (0; 1) on which solution is negative, and the length
of I does not go to zero as � → ∞. On the interval I u′′(x) gets uniformly large and
positive, as is clear from Eq. (3.1). It follows that as � → ∞, u(x) will have to get
uniformly large and negative on I . But by the Sturm’s comparison theorem the interval
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on which |u(x)| is large must shrink, a contradiction. Hence all solution curves will
have to turn around. Since by Lemma 3.6 solution curves cannot go to in8nity at a
positive �, and they all disappear at � = 0, it follows that all solution curves tend to
in8nity as � → 0.

Remark. An example of nonlinearity for which the theorem applies is furnished by
f(u) = u|u|p − 1; with any real p¿ 0. (For 0¡p¡ 1 the function f(u) is not of
class C2 at u = 0. However; examining the proof; we see that all of the integrals are
still de8ned; and the proof does not need any changes.) On the other hand the result
fails for e.g. f(u) = u2 − 1. This time u=−1 is a stable root; at which negative parts
of solutions can accumulate; and in fact all solution curves continue as � → ∞ (see
McKean and Scovel [18]; where a detailed study is given for this nonlinearity).

4. Symmetry breaking for a ball

We study symmetry-breaking oH the branch of positive solutions for the semilinear
Dirichlet problem (2.1) on a ball in Rn. As we mentioned previously, in view of
the results of [9], any positive solution of (2.1) is radially symmetric, and hence our
problem reduces to the radial problem (2.2).
We shall also need the corresponding linearized equation

w′′ +
n − 1

r
w′ + �f′(u)w = 0 for 0¡r ¡ 1; w′(0) = w(1) = 0: (4.1)

The following lemma was proved in [12] (see also [13] for a simpler proof). In both
of these papers we worked in the context of positive solutions. Examining the proof,
one sees that the lemma holds for sign-changing radial solutions u(r) as well.

Lemma 4.1. Assume that the function f(u)∈C2( IR); and problem (4:1) has a non-
trivial solution w at some � and u(r; �). (u(r; �) is a radial solution of (2:1):) Then∫ 1

0
f(u)wrn−1 dr =

1
2�

u′(1)w′(1): (4.2)

We see that the integral in (4.2) is non-zero, unless

u′(1) = 0: (4.3)

Recall that we say that symmetry breaks at a radial solution u(r), provided that u(r)
bifurcates into non-radial solution.

Lemma 4.2. Assume that f(u)∈C2( IR); and f(0)¡ 0. Then condition (4:3) is nec-
essary for symmetry breaking on a branch of radial solutions u(r; �) of (2:1) (i.e.
solutions on the branch stay radial for all �; provided u′(1) �=0).

Proof. According to Dancer [8]; symmetry of the solution of (2.1) can be broken only
if the corresponding linearized equation has a non-radial solution. This immediately
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implies that the symmetric solution branch stays symmetric through all the regular
points of (2.1). If condition u′(1) �=0 holds at singular points; then at any singular
point ( I�; Iu) the Crandall–Rabinowitz Theorem 1:1 applies; see e.g. [15] for the proof.
Since this theorem implies that near the singular point u(s)= Iu+ sw+ · · ·; we conclude
that w is symmetric (since solutions are symmetric before entering the turning point);
and hence symmetry is preserved at any possible turn. It follows that symmetry can
never be broken if condition (4.3) is violated.

The following lemma provides a condition for the crucial “transversality” condition
to hold at the points where symmetry breaking is possible.

Lemma 4.3. Assume that a branch of radial solutions u(r; �) of (2:1) is de5ned for
�¡ I� or for �¿ I�. Assume that u′(1; I�) = 0. Then

I�
∫ 1

0
f′′(u)u�u′2rn−1 dr +

∫ 1

0
f′(u)u′2rn−1 dr =− I�f(0)u′�(1; I�): (4.4)

Proof. Let us assume 8rst that n¿ 2; as there is a slight complication in case n = 2.
The proof is similar to that for one-dimensional case. Denoting the left-hand side of
(4.4) by I�I + J ; we express

I ≡
∫ 1

0
f′′(u)u�u′2rn−1 dr =

∫ 1

0
f′(u)′u�u′rn−1 dr

=−
∫ 1

0
[f′(u)u′′u�rn−1 + f′(u)u′u′�r

n−1 + f′(u)u′u�(n − 1)rn−2] dr

≡ I1 + I2 + I3: (4.5)

Proceeding similarly; we express

I2 ≡−
∫ 1

0
f(u)′u′�r

n−1 dr =
∫ 1

0
f(u)u′′� r

n−1 dr + (n − 1)

×
∫ 1

0
f(u)u′�r

n−2 dr − f(0)u′�(1);

I3 =
∫ 1

0
[(n − 1)f(u)u′�r

n−1 dr + (n − 1)(n − 2)f(u)u�rn−2] dr:

Using these expressions in (4.5); we have

I =
∫ 1

0
[− f′(u)u′′u�rn−1 + f(u)u′′� r

n−1 + 2f(u)u′�(n − 1)rn−2

+f(u)u�(n − 1)(n − 2)rn−3] dr − f(0)u′�(1): (4.6)
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From the corresponding equations we express

rn−1u′′ =−(n − 1)rn−2u′ − I�frn−1;

rn−1u′′� =−(n − 1)rn−2u′� − I�f′u�rn−1 − frn−1:

Using these relations we rewrite the 8rst two terms in (4.6) as follows:∫ 1

0
[− f′(u)u′′u�rn−1 + f(u)u′′� r

n−1] dr

=
∫ 1

0
[f′(u)u′u�(n − 1)rn−2 − f(u)u′�(n − 1)rn−2 − f2(u)rn−1] dr

=
∫ 1

0
[− 2f(u)u′�(n − 1)rn−2 − f(u)u�(n − 1)(n − 2)rn−3 − f2(u)rn−1] dr:

(4.7)

Using this in (4.6); we have

I =−
∫ 1

0
f2(u)rn−1 dr − f(0)u′�(1): (4.8)

Turning to the second integral in (4.4); we express (using that u′(1) = 0 on the 8rst
step; and Eq. (2.2) on the last step)

J ≡
∫ 1

0
f′(u)u′2rn−1 dr =

∫ 1

0
f′(u)′u′rn−1 dr

=−
∫ 1

0
[f(u)u′′rn−1 + (n − 1)f(u)u′rn−2] dr = I�

∫ 1

0
f2(u)rn−1 dr: (4.9)

Putting together (4.8) and (4.9); we conclude the lemma in case n¿ 2.
Turning to the case n = 2, we proceed similarly. There is now an extra term

−f(u(0))u�(0) in the expression for I3, and consequently in (4.6). However in (4.7)
we pick up an extra term, which is negative of the extra term above. Hence these extra
terms cancel in (4.8), and the proof proceeds exactly as before.

Remark. Notice that in both lemmas above we do not require u(r) to be positive.

We say that a positive solution branch u(r; �) loses positivity forward at some I�, if
u′(1; I�) = 0 and the solution branch arrives at the point ( I�; u(r; I�)) with � increasing
(i.e. for �¡ I� solutions are positive with u′(1; �)¡ 0).

Lemma 4.4. Assume that a positive solution branch u(r; �) loses positivity forward at
some I�. Then the transversality condition holds; i.e. the sum of the integrals in (4:4)
is not zero.

Proof. Assume on the contrary that u′�(1; I�) = 0. From the equation for u�

u′′� +
n − 1

r
u′� + �fu(u)u� + f(u) = 0; (4.10)
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we conclude that u′′� (1; I�)¿ 0. This implies that u�(r; I�)¿ 0 for r near 1; which is in-
consistent with the de8nition of I�; since solution must be decreasing near the end-point
r = 1 before losing positivity.

It is not easy to verify that a solution branch loses positivity forward. One case when
we can prove this is when we can show that any non-trivial solution of the linearized
problem (4.1) is of one sign, or without restricting generality that it is positive, i.e.
w(r)¿ 0 for r ∈ (0; 1).

Lemma 4.5. Assume that u′(1; I�)=0. Assume that any non-trivial solution w(r) of
the linearized problem (4:1) at � = I� has to be positive. Then solution u(r; I�) is
radially non-degenerate; i.e. the linearized problem (4:1) has no non-trivial solutions
at ( I�; u(r; I�)). (i:e: w(r) ≡ 0:)

Proof. Assume on the contrary that (4.1) has a non-trivial solution; w(r)¿ 0. DiHer-
entiating Eq. (2.2); we get

u′′r +
n − 1

r
u′r + �f′(u)ur =

n − 1
r2

u′: (4.11)

From Eqs. (4.1) and (4.11) we obtain

[rn−1(u′′w − u′w′)]|10 =
∫ 1

0
(n − 1)rn−3u′w dr:

The integral on the right is negative; while the quantity on the left is equal to zero; a
contradiction.

Lemma 4.6. Assume that any non-trivial solution of the linearized problem (4:1) is
either positive or changes sign exactly once on (0; 1). Assume that u(0; �) is decreasing
on a branch as we arrive at the point where u′(1)=0. Then positivity can be lost only
forward; and moreover the transversality condition holds; i.e. the integral in (4:4) is
positive.

Proof. De8ne I� as before by u′(1; I�)=0. One easily checks that w=rur−2 I�u� satis8es
the linearized problem (4.1). Assume contrary to what we want to prove that positivity
is lost backward; i.e. u(r; �) arrives at I� when � is decreasing. If positivity is lost
backward; we know from [12] that u�(r; I�) is positive near r = 1; and hence

w(r) is negative near r = 1: (4.12)

We have

w(0) =−2 I�u�(0; I�)¡ 0; (4.13)

since u(0; �) is increasing in � near �= I�; and the possibility of w(0)=0 is excluded by
the uniqueness result of [21]. (By uniqueness result we would have w ≡ 0; contradicting
(4.12).) If w(r)¡ 0 everywhere on (0; 1); we conclude by the previous lemma that
w is identically zero; again contradicting (4.12). If on the other hand; w(r) changes
sign on (0; 1); it would have to have at least two roots; since it is negative near r = 0
and r=1; contradicting the assumptions of the lemma. It follows that positivity is lost
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forward; and then u� is negative near r = 1; and hence u′�(1)¿ 0. If one assumes that
u′�(1) = 0 then from (4.10) we get u′′� (1)¿ 0; which is not possible for a function
negative near r =1. Hence; u′�(1)¿ 0; which together with (4.4) proves the last claim
of the lemma.

Theorem 4.1. Assume that any non-trivial solution of the linearized problem (4:1) is
either positive or changes sign exactly once. Assume that problem (2:2) has a curve
of positive solutions with u(0; �) decreasing; assume that this curve does not continue
as a curve of positive solutions for large �. Then this curve loses positivity forward
at some �= I�; and a family of symmetry-breaking solutions bifurcates o8 this point.
In case any non-trivial solution of the linearized problem is positive; we obtain the
following more detailed conclusions. The curve of radial solutions u(r; �) continues
locally for �¿ I� as a curve of radial sign changing solutions; with u� = (1=2 I�)rur .
Moreover; an n-parameter family of non-radial solutions bifurcates o8 this curve at
� = I�.

Proof. Since by Lemma 4.5 the point ( I�; u(r; I�)) is radially non-degenerate; we see by
restricting to the spaces of radial functions and using implicit function theorem; that the
curve of radial solutions continues past the point ( I�; u(r; I�)). Since u� is negative near
r = 1 at this point; it follows that solutions must become negative near the end-point
r = 1 for �¿ I�.
DiHerentiating Eq. (2.1) we see that the functions wi = (xi=r)ur(r; I�) are non-trivial

solutions of the linearized problem

0w + �f′(u)w = 0 for |x|¡R; w = 0 for |x|= R: (4.14)

By the result of Cerami [4], the null-space of (4.14) is either n-dimensional or
n + 1-dimensional with one of its elements being a radial function (a similar result
was proved by Smoller and Wasserman [25]). In view of Lemma 4.5 the 8rst alterna-
tive holds, and so wi, i = 1; 2; : : : n, span the null-space of (4.14). It follows that the
null-space is invariant under the action of the orthogonal group O(n). We now proceed
similarly to the proof of Theorem 3.1, replacing the use of Crandall–Rabinowitz theo-
rem by its generalization to the case of kernels invariant under the action of O(n), due
to Vanderbauwhede [26], concluding existence of an n-parameter family of non-radial
solutions. (See Smoller and Wasserman [24] for a similar argument.)

Example. Assume that the function f(u)∈C2(R) satis8es

f(0)¡ 0; (4.15)

f′′(u)¡ 0 for all u¿ 0: (4.16)

Assume also there is a �¿ 0 such that∫ �

0
f(u) du¿ 0: (4.17)

We have proved in [11] that under conditions (4.15) and (4.16) any non-trivial solution
of the linearized Eq. (4.1) is of one sign; i.e. that we can take w(r)¿ 0. Adding
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condition (4.17) guarantees existence of positive solutions. Using the results in Korman
[11]; we conclude that under conditions (4.15)–(4.17); problem (2.1) has a curve of
positive solutions. This curve makes exactly one turn at some � = �0. For �¿�0
the curve has two branches; the upper one which continues without any turns for all
�¿�0; and the lower one which continues without turns; until at some 8nite I�¿�0
it develops a zero slope at the end-point (i.e. u′(1; I�) = 0); and loses positivity for
�¿ I�. Moreover; an n-parameter family of symmetry-breaking solutions bifurcates oH
the lower branch at � = I�.

5. Positivity for the linearized problem

We have seen that when discussing symmetry breaking it is very useful to know that
any non-trivial solution of the linearized equation cannot have more than one interior
zero. As we mentioned above, such a result holds for concave f(u). In this section
we present another such result, which applies to superlinear f(u).
We shall need the following form of Sturm’s comparison theorem, taken from [17].

For completeness we present its proof. We consider a diHerential operator, de8ned on
functions u = u(r) of class C2

L[u] ≡ a(r)u′′ + b(r)u′ + c(r)u;

with continuous coeQcients a(r), b(r) and c(r).

Lemma 5.1. Assume that on some interval I ⊆ (−∞;∞) we have a(r)¿ 0 and

L[u]¿ 0; (5.1)

while

L[v]6 0; (5.2)

with at least one of the inequalities being strict on a set of positive measure. Then
the function v(r) oscillates faster than u(r); provided that they are both non-negative.
More precisely; assume that u(a)=u(b)=0 for some a; b∈ I ; u(r)¿ 0 on (a; b); while
v(a)¿ 0. Then v(r) must vanish on (a; b).

Proof. Assume that on the contrary v(r)¿ 0 for all r ∈ (a; b). From Eqs. (5.1) and
(5.2); we obtain

[�(r)(u′v − uv′)]′¿ 0; (5.3)

where �(r) = e
∫

b(r)=a(r) dr is the integrating factor. Integrating (5.3) over (a; b) we get

�(b)u′(b)v(b)− �(a)u′(a)v(a)¿ 0;

which is a contradiction; since the quantity on the left is non-positive.
We shall denote by L[w] the left-hand side of (4.1), so that (4.1) takes the form

L[w] = 0 for 0¡r ¡ 1; w′(0) = w(1) = 0: (5.4)
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The typical way to prove positivity of w(r) is by considering various test functions.
The canonical situation is given by the following lemma that was used in [15]. We
present a simpler proof for completeness.

Lemma 5.2. Assume that we can 5nd a test function v(r)∈C2[0; 1) such that v′(0)=0;
and for some r0 ∈ (0; 1) we have

v¿ 0 and L[v]¡ 0 for 0¡r ¡r0;

v¡ 0 and L[v]¿ 0 for r0 ¡r ¡ 1: (5.5)

Then any non-trivial solution of (5.4) does not change sign; i.e. we can choose
w(r)¿ 0.

Proof. We extend both w(r) and v(r) to (−1; 0) as even functions. Clearly; w(r)
satis8es (5.4) on (−1; 1); while v(r) satis8es the conditions in the 8rst line of (5.5) on
I1 ≡ (−r0; r0); and the conditions in the second line of (5.5) on I2 ≡ (−1; 1)\(−r0; r0).
By Lemma 4.1 v oscillates faster than w on both I1 and I2. Hence w cannot vanish
on either II 1 or I2; since v has no roots inside these intervals (if an even function w(r)
vanishes on II 1; it has to have two roots on II 1).

Remark. The lemma clearly holds if r0 = 0 or r0 = 1. (One of the conditions in (5.5)
is then empty.)

Theorem 5.1. Let u = u(r) be a positive solution of

0u + f(u) = 0 for |x|¡ 1; u = 0 for |x|= 1: (5.6)

Assume that n¿ 2; and the function f(u)∈C2[0;∞) satis5es the following conditions:

f(u)¡ 0 for 0¡u¡u0; f(u)¿ 0 for u¿u0; for some u0 ¿ 0; (5.7)

f′(u)¿ 0 for all u¿ 0; (5.8)

uf′(u)− f(u)¿ 0 for all u¿ 0; (5.9)

2f′2(u)− nff′′¿ 0 for all u¿ 0: (5.10)

Then any solution of the linearized equation w(r) can have at most one root on (0; 1).

Proof. We consider a test function v = ru′(r) + (n − 2)u + � with a constant � to be
speci8ed. Recall that we denote the left-hand side of the linearized equation (5.6) by
L[w]. Compute

L[v] = (n − 2)uf′(u)− nf(u) + �f′(u) ≡ g�(u): (5.11)

The sign of the test function v(r) is governed by the function � = h(r) ≡ −ru′(r) −
(n−2)u; which is obtained by setting v equal to zero; and solving for �. Indeed; v¿ 0
(¡ 0) when h(r)¡� (¿�). Similarly; the sign of g�(u) is governed by � = j(r) ≡
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−(n− 2)uf′(u)− nf(u)=f′(u). This time; in view of (5.8); g�(u)¿ 0 (¡ 0) provided
�¿j(r) (�¡j(r)).
We claim that h(r) changes sign exactly once on (0; 1). Indeed, h(0) = −(n − 2)

u(0)¡ 0, h(1) =−u′(1)¿ 0, and

h′(r) =−ru′′ − (n − 1)u′ = rf(u): (5.12)

From (5.12) and our assumption (5.7) we see that h′ ¡ 0 near r = 1, and so h is
positive near r = 1, and hence h changes sign on (0; 1). Since h′ changes sign only
once, it follows that h(r) has exactly one root inside (0; 1), which we denote by r0.

Using (5.10) we verify that j′(r)6 0 for all r, and so the function j(r) is non-
increasing on (0; 1). We distinguish two cases.

Case 1: j(0)¿ 0. Since j(1) = nf(0)=f′(0)¡ 0, it follows that the functions j(r)
and h(r) intersect on (0; 1). Denote by r1 ∈ (0; 1) the point where u(r1)=u0, i.e. where
f(u(r1)) = 0. We see that j and h must intersect on (0; r1), since j ¡ 0 while by
(5.12) h¿ 0 on (0; r1). Since on (0; r1) h is increasing and j is decreasing, it follows
that these function have a unique point of intersection, call it Ir ∈ (0; r1). We consider
further subcases.
(i) Ir ∈ (0; r0). (Recall that h(r0) = 0.) We now 8x � = �0 = h( Ir) = j( Ir) in the

de8nition of the test function v. Here �0 ¡ 0, by the de8nition of r0. The test function
v(r) satis8es the conditions of Lemma 5.2, and hence w ¿ 0 on (0; 1).
(ii) Ir ∈ (r0; r1). We take I� = h( Ir). Arguing as above, we conclude that w ¿ 0 on

(0; Ir ]. If one could show that h(1)¿h( Ir), we would conclude as before that w ¿ 0 on
(0; 1) (see a remark after the end of proof). Instead, we will show that on ( Ir; 1) w(r)
cannot vanish more than once. De8ne r2 ∈ ( Ir; 1) by j(r2)=0. By 8xing �=0, we obtain
v¡ 0 and L[v]¿ 0 on (r2; 1), and hence w cannot vanish on [r2; 1). So it remains to
show that w cannot vanish twice on ( Ir; r2). On this interval we shall work with two test
functions v0 = ru′(r)+(n−2)u, and v1 =(1=r)v0. On ( Ir; r2) we have v0(r)=−h(r)¡ 0
and L[v0]¡ 0. Compute

L[v1] =
n − 2

r
(uf′(u)− f(u))− (n − 3)

v0
r3
¿ 0

on ( Ir; r2), while v1 ¡ 0 on this interval. Using Lemma 5.2 with the test function v1, we
conclude that w(r) cannot vanish twice on ( Ir; r2). (We remark that the restriction n¿ 2
as well as our assumption (5.9) are needed only on this step. The trick of considering
the test function v1 is due to Ni and Nussbaum [19] and to Kwong [16], see also
Ouyang and Shi [20].)
Case 2: j(0)6 0. Since j(r) is a decreasing function, it is negative on the entire

interval (0; 1). If j intersects h, we proceed the same way as in subcase (i) of Case
1. Otherwise, j(r)¡h(r) for all r ∈ (0; 1). Selecting � = h(0), we obtain v¡ 0 and
L[v]¿ 0 everywhere on (0; 1). By Lemma 5.2 we conclude that w ¿ 0 on (0; 1).

Remark. In case j(0)6 0 both restriction n¿ 2 and condition (5.9) are not necessary.
In particular for n=2 we have by our conditions j(0)¡ 0; and we conclude that w ¿ 0
under conditions (5.7); (5.8) and (5.10). This covers e.g. f(u) = eu − a; a¿ 1.
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Example 1. f(u)=up−a. It is easy to check that the theorem applies for any constants
a¿ 0 and 1¡p¡n=(n − 2); with n¿ 2.

Example 2. f(u)=up +uq −a. It turns out that for n¿ 3 the theorem applies for any
constants a¿ 0 and

1¡p; q¡
n

n − 2
; (5.13)

while for n= 3 there is a slight additional assumption. Indeed; one easily veri8es that
(5.13) implies conditions (5.7)–(5.9). A straightforward computation shows that the
remaining condition (5.10) will be also satis8ed; provided

F(p; q) ≡ 4pq − np(p − 1)− nq(q − 1)¿ 0 over Q ≡
[
1;

n
n − 2

]2
: (5.14)

For n �=4 the function F has a critical point p = q = (2n2 + 4n)=(4n2 − 16); while no
critical points exist for n = 4. Using (5.13); one checks that F(p;p)¿ 0 for any p;
and in particular at the above critical point. Then one checks that F ¿ 0 at all four
sides of the square Q; provided n¿ 4. In case n=3 one has to add (5.14) as an extra
condition; which is easily seen to be not very restrictive.

Remark. As mentioned in the proof; we could prove w ¿ 0 if we had an inequality
h(1)¿h( Ir). In view of (5.12) such an inequality holds true; provided f(0)¿ 0. We
thus conclude that w(r)¿ 0; provided f(0)¿ 0; and conditions (5.8) and (5.10) are
satis8ed.
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