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Abstract

We study the exact multiplicity of positive solutions, and the global

solution structure for several classes of non-autonomous two-point prob-

lems. We present two situations where the direction of turn can be com-

puted rather directly. As an application, we consider a problem from

combustion theory with a sign-changing potential. We illustrate our

results by numerical computations, using a novel method.
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1 Introduction

In recent years bifurcation theory methods were applied to study the exact
multiplicity of positive solutions, and the global solution structure of non-

autonomous two-point problems

u′′ + λf(x, u) = 0, a < x < b, u(a) = u(b) = 0 ,(1.1)

depending on a positive parameter λ. Let us briefly review the bifurcation
theory approach, and more details can be found in the author’s book [6]. If

at some solution (λ0, u0) the corresponding linearized problem

w′′ + λ0fu(x, u0)w = 0, a < x < b, w(a) = w(b) = 0(1.2)

admits only the trivial solution, then we can continue the solutions of (1.1)
in λ, by using the Implicit Function Theorem, see e.g., L. Nirenberg [12].
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If, on the other hand, the problem (1.2) has non-trivial solutions then the

Implicit Function Theorem cannot be used, instead one tries to show that the
Crandall-Rabinowitz [3] bifurcation theorem applies. The crucial condition

one needs to verify is
∫ b

a
f(x, u0)w dx 6= 0 .(1.3)

The Crandall-Rabinowitz theorem guarantees existence of a solution curve
through the critical point (λ0, u0), and if a turn occurs at (λ0, u0), its direction

is governed by (see e.g., the exposition in P. Korman [6])

I =

∫ b
a fuu(x, u0)w

3 dx
∫ b
a f(x, u0)w dx

.(1.4)

If I > 0 (I < 0) the direction of the turn is to the left (right) in the (λ, u)
“plane”. If one can show that a turn to the left occurs at any critical point,
then there is at most one critical point. Usually, there is exactly one critical

point, which provides us with the exact shape of solution curve, and the exact
multiplicity count for solutions.

In the present paper we present two situations in which the sign of I
can be computed in a rather direct way, differently from the previous works.

As an application, we obtain three new exact multiplicity results for non-
autonomous equations, including one for sign-changing equations of combus-

tion theory. Sign-changing equations present several new challenges, which
we overcome in case of symmetric potentials. We also present some improve-
ments of earlier results. In the last section we develop an algorithm for the

numerical computation of global solution curves for non-autonomous equa-
tions. This is accomplished by continuation in a global parameter.

2 The direction of bifurcation

We consider positive solutions of a two point non-autonomous boundary value

problem
u′′ + λf(x, u) = 0, a < x < b, u(a) = u(b) = 0 ,(2.1)

depending on a positive parameter λ. Here f(x, u) ∈ C2([a, b]× R̄+), and we

assume that f(a, 0) ≥ 0 and f(b, 0) ≥ 0 (which implies that Hopf’s boundary
lemma holds). The linearized problem corresponding to (2.1) is

w′′ + λfu(x, u)w = 0, a < x < b, w(a) = w(b) = 0 .(2.2)

2



When one studies how solutions of (2.1) change in λ, i.e., the solution curves,

the direction of the turn (or bifurcation) depends on the sign of the integral
∫ b
a fuu(x, u)w3 dx, which is a part of (1.4). We have the following crucial

lemma.

Lemma 2.1 Let u(x) be a positive solution of (2.1), and assume that the

linearized problem (2.2) has a non-trivial solution w(x), and moreover w(x) >
0 on (a, b). If we have, for some c > 0,

u2fuu(x, u) ≥ c (ufu(x, u)− f(x, u)) , for all u > 0, and x ∈ (a, b)(2.3)

then
∫ b

a
fuu(x, u)w3 dx > 0 .(2.4)

If, on the other hand, for some c > 0,

u2fuu(x, u) ≤ −c (ufu(x, u)− f(x, u)) , for all u > 0, and x ∈ (a, b)(2.5)

then
∫ b

a
fuu(x, u)w3 dx < 0 .(2.6)

Proof: We multiply the equation (2.2) by w2

u , and subtract from that the

equation (2.1) multiplied by
w3

u2
, then integrate

λ

∫ b

a

[

fu(x, u)

u
− f(x, u)

u2

]

w3 dx =

∫ b

a

(

w3

u2
u′′ − w2

u
w′′

)

dx .

In the last integral we integrate by parts. The boundary terms vanish, since
u′(a) and u′(b) are not zero by Hopf’s boundary lemma, and hence u(x) is

asymptotically linear near the end points. We have

∫ b
a

(

w3

u2 u′′ − w2

u w′′
)

dx =
∫ b
a

2w3uu′2−4w2w′u2u′+2ww′2u2

u4 dx

=
∫ b
a

2w(wu′−uw′)2

u3 dx > 0 .

If the condition (2.3) holds, then

∫ b

a
fuu(x, u)w3 dx ≥ c

∫ b

a

[

fu(x, u)

u
− f(x, u)

u2

]

w3 dx > 0 .
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Similarly, the condition (2.5) implies

−
∫ b

a
fuu(x, u)w3 dx ≥ c

∫ b

a

[

fu(x, u)

u
− f(x, u)

u2

]

w3 dx > 0 . ♦

Remarks

1. After this paper was written, we became aware that a similar result was
proved in J. Shi [14].

2. The condition (2.3), when c = 1, is equivalent to

[

u

(

f(u)

u

)′
]′

=

(

f ′(u)− f(u)

u

)′

> 0 .

In T. Ouyang and J. Shi [13] it has been pointed out that the turning

direction is sometimes related to monotonicity of the function f(u)/u.
This form of (2.3) again shows a connection to the function f(u)/u.

Example f(u) = a + up + uq, with a constant a ≥ 0. One computes, with
c = 1,

u2f ′′(u) − uf ′(u) + f(u) = (p − 1)2up + (q − 1)2uq + a > 0 for all u > 0 .

The case when 0 < p < 1 < q is of particular interest. Then f(u) is concave-

convex, i.e., concave on (0, u0) and convex on (u0,∞), for some u0 > 0.
Similarly, the condition (2.3) holds for f(x, u) = Σm

i=1ai(x)upi , with ai(x) >

0 for all x, and any positive pi. While in the case of constant ai(x), the
direction of bifurcation was known before (see the Theorem 6.1 below), the
non-autonomous case is new.

3 A class of symmetric nonlinearities

We study positive solutions of a class of symmetric problems of the type

u′′ + λf(x, u) = 0 for −1 < x < 1, u(−1) = u(1) = 0 .(3.1)

In several papers of P. Korman and T. Ouyang, a class of symmetric f(x, u)
has been identified, for which the theory of positive solutions is very similar

to that for the autonomous case, see e.g., [8] and [9]. Further results in this
direction have been given in P. Korman, Y. Li and T. Ouyang [7], and P.
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Korman and J. Shi [11]. Namely, we assume that f(x, u) ∈ C1
(

[−1, 1]× R̄+
)

satisfies
f(−x, u) = f(x, u) for all −1 < x < 1, and u > 0,(3.2)

fx(x, u) ≤ 0 for all 0 < x < 1, and u > 0.(3.3)

Under the above conditions the following facts, similar to those for au-

tonomous problems, have been established.

1. Any positive solution of (3.1) is an even function, with u′(x) < 0 for all
x ∈ (0, 1], so that x = 0 is a point of global maximum. This follows from B.

Gidas, W.-M. Ni and L. Nirenberg [4].

2. Assume, additionally, that f(x, u) > 0. Then the maximum value of

solution, α = u(0), uniquely identifies the solution pair (λ, u(x)), as proved
in P. Korman and J. Shi [11]. i.e., α = u(0) gives a global parameter on any

solution curve. We shall generalize this result below, dropping the condition
that f(x, u) > 0.

3. Any non-trivial solution of the corresponding linearized problem

w′′ + λfu(x, u)w = 0 for −1 < x < 1, w(−1) = w(1) = 0(3.4)

is of one sign on (−1, 1).

We have the following exact multiplicity result.

Theorem 3.1 Consider the problem

u′′ + λ (a1(x)up + a2(x)uq) = 0 for −1 < x < 1, u(−1) = u(1) = 0 .(3.5)

Assume that 0 < p < 1 < q, while the given functions a1(x) and a2(x) satisfy

ai(x) > 0, ai(−x) = ai(x) for x ∈ (−1, 1), i = 1, 2 ,(3.6)

a′i(x) < 0 for x ∈ (0, 1), i = 1, 2 .(3.7)

Then there is a critical λ0 > 0, such that for λ > λ0 the problem (3.5) has no

positive solutions, it has exactly one positive solution for λ = λ0, and exactly
two positive solutions for 0 < λ < λ0. Moreover, all positive solutions lie on a

single smooth solution curve u(x, λ), which for 0 < λ < λ0 has two branches
denoted by 0 < u−(x, λ) < u+(x, λ), with u−(x, 0) = 0, u−(x, λ) strictly

monotone increasing in λ for all x ∈ (−1, 1), and limλ→ 0 u+(0, λ) = ∞.
The maximal value of solution, u(0, λ), serves as a global parameter on this
solution curve.
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Proof: Conditions (3.6) and (3.7) imply that the above mentioned results

on symmetric problems apply, and in particular any non-trivial solution of
the linearized problem, corresponding to (3.5) is positive on (−1, 1). Then by

Lemma 2.1 only turns to the left are possible on the solution curve. The rest
of the proof is similar to that for similar results in P. Korman and T. Ouyang

[8], or P. Korman and J. Shi [11], so we just sketch it. By the Implicit Function
Theorem, there is curve of positive solutions of (3.5) starting at (λ = 0, u = 0).

By Sturm’s comparison theorem, this curve cannot be continued indefinitely
in λ, so that it will have to reach a critical point (λ0, u0) at which the Crandall-

Rabinowitz Theorem [3] applies. By Lemma 2.1, a turn to the left occurs at
(λ0, u0), and at any other critical point. Hence, there are no other turning
points, and the solution curve continues for all decreasing λ > 0, tending to

infinity as λ → 0+. ♦
Remark This theorem also holds for more general f(u) = Σm

i=1ai(x)upi, with
ai(x) satisfying (3.6) and (3.7), and pi ≥ 0, with at least one of pi less than

one, and at least one of pi greater than one.

4 Non-symmetric nonlinearities

Without the symmetry assumptions on f(x, u), the problem is much harder.
We restrict to a subclass of such problems, i.e., we now consider positive

solutions of the boundary value problem

u′′ + λα(x)f(u) = 0 for a < x < b, u(a) = u(b) = 0,(4.1)

on an arbitrary interval (a, b). We assume that f(u) and α(x) are positive
functions of class C2, i.e.,

f(u) > 0 for u > 0, α(x) > 0 for x ∈ [a, b].(4.2)

As before, it is crucial for bifurcation analysis to prove positivity for the
corresponding linearized problem

w′′ + λα(x)f ′(u)w = 0 for a < x < b, w(a) = w(b) = 0.(4.3)

The following lemma was proved in P. Korman and T. Ouyang [10].

Lemma 4.1 In addition to the conditions (4.2), assume that

3

2

α′2

α
− α′′ ≤ 0 for all x ∈ (a, b).(4.4)

If the linearized problem (4.3) admits a non-trivial solution, then we may
assume that w(x) > 0 on (a, b).
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Using Lemma 2.1, we have the following exact multiplicity result, whose

proof is similar to that of Theorem 3.1.

Theorem 4.1 Consider the problem

u′′ + λα(x)Σm
i=1aiu

pi = 0 for a < x < b, u(a) = u(b) = 0 ,(4.5)

where α(x) satisfies the conditions (4.2) and (4.4), ai are positive constants,

the constants pi ≥ 0, with at least one of pi less than one, and at least one of
pi greater than one. Then there is a critical λ0 > 0, such that for λ > λ0 the

problem (4.5) has no positive solutions, it has exactly one positive solution
for λ = λ0, and exactly two positive solutions for 0 < λ < λ0. Moreover,

all positive solutions lie on a single smooth solution curve u(x, λ), which for
0 < λ < λ0 has two branches denoted by 0 < u−(x, λ) < u+(x, λ), with

u−(x, 0) = 0, u−(x, λ) strictly monotone increasing in λ for all x ∈ (a, b),
and limλ→ 0 maxx∈(a,b) u+(x, λ) = ∞.

5 Sign-changing equation of combustion theory

We begin with the following generalization of the corresponding result in P.
Korman and J. Shi [11], which we shall use for an equation in combustion

theory. Recall that positive solutions of (3.1) are even functions, with u′(x) <
0 for x > 0, i.e., u(0) is the global maximum of solution u(x).

Theorem 5.1 Consider the problem (3.1), with f(x, u) satisfying (3.2) and

(3.3), with the inequality (3.3) being strict for almost all x ∈ (−1, 1) and
u > 0. Then the set of positive solutions of (3.1) can be globally parameterized

by the maximum values u(0). (I.e., the value of u(0) uniquely determines the
solution pair (λ, u(x)).)

Proof: Assume, on the contrary, that v(x) is another solution of (3.1),

with v(0) = u(0), and v′(0) = u′(0) = 0. We may assume that µ > λ. Setting
x = 1√

λ
t, we see that u = u(t) satisfies

u′′ + f(
1√
λ

t, u) = 0, u′(0) = u(
√

λ) = 0 .(5.1)

Similarly, letting x = 1√
µ
z, and then renaming z by t, we see that v = v(t)

satisfies

v′′ + f(
1√
µ

t, v) = 0, v′(0) = v(
√

µ) = 0 ,
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and in view of (3.3)

v′′ + f(
1√
λ

t, v) < 0 ,(5.2)

i.e., v(t) is a supersolution of (5.1). We may assume that

v(t) < u(t) for t > 0 and small .(5.3)

Indeed, the opposite inequality is impossible by the strong maximum principle

(a supersolution cannot touch a solution from above, and the possibility of
infinitely many points of intersection of u(t) and v(t) near t = 0 is ruled out

by the Sturm comparison theorem, applied to w = u − v).

Since v(t) is positive on (0,
√

λ), we can find a point ξ ∈ (0,
√

λ) so that

u(ξ) = v(ξ), |u′(ξ)| ≥ |v′(ξ)|, and (5.3) holding on (0, ξ). We now multiply
the equation (5.1) by u′(t), and integrate over (0, ξ). Since the function u(t)

is decreasing, its inverse function exists. Denoting by t = t2(u), the inverse
function of u(t) on (0, ξ), we have

1

2
u′2(ξ) +

∫ u(ξ)

u(0)
f(

1√
λ

t2(u), u) du = 0.(5.4)

Similarly denoting by t = t1(u) the inverse function of v(t) on (0, ξ), we have
multiplying (5.2) by v′(t) < 0, and integrating

1

2
v′

2
(ξ) +

∫ u(ξ)

u(0)
f(

1√
λ

t1(u), u) du > 0.(5.5)

Subtracting (5.5) from (5.4), we have

1

2

[

u′2(ξ)− v′
2
(ξ)
]

+

∫ u(0)

u(ξ)

[

f(
1√
λ

t1(u), u)− f(
1√
λ

t2(u), u)

]

du < 0.

Notice that t2(u) > t1(u) for all u ∈ (u(ξ), u(0)). Using the condition (3.3),

both terms on the left are non-negative and the integral is positive, and we
obtain a contradiction. ♦

We now consider a boundary value problem arising in combustion theory,
see e.g., J. Bebernes and D. Eberly [2], S.-H. Wang [15], and S.-H. Wang and

F.P. Lee [16]

u′′ + λα(x)eu = 0, −1 < x < 1, u(−1) = u(1) = 0 ,(5.6)

depending on a positive parameter λ. The given function α(x) is assumed to
be sign changing, with α(0) > 0 (the result of this section is known if α(x) is
positive on (−1, 1)). The linearized problem corresponding to (5.6) is

w′′ + λα(x)euw = 0, −1 < x < 1, w(−1) = w(1) = 0 .(5.7)
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Lemma 5.1 Assume that any non-trivial solution of (5.7) satisfies w(x) > 0

on (−1, 1), and α(x) ∈ C[−1, 1]. Then

∫ 1

−1
α(x)euw3 dx > 0, and

∫ 1

−1
α(x)euw dx > 0 .(5.8)

Proof: Multiplying the equation (5.7) by w2, and integrating

∫ 1

−1
α(x)euw3 dx = 2

∫ 1

−1
ww′2 dx > 0 .

Integrating (5.7)

∫ 1

−1
α(x)euw dx = w′(−1)− w′(1) > 0 ,

as claimed. ♦
We need the following simple lemma.

Lemma 5.2 Let u(x) be a solution of the problem

−u′′ = α(x), 0 < x < 1, u′(0) = u(1) = 0.(5.9)

Assume that α(x) ∈ C[0, 1] is sign-changing, and it satisfies

A(x) ≡ −
∫ x

0
(x − ξ)α(ξ) dξ +

∫ 1

0
(1 − ξ)α(ξ) dξ > 0 for x ∈ [0, 1) ,(5.10)

∫ 1

0
α(ξ) dξ > 0 .(5.11)

Then u(x) > 0 on [0, 1), and u′(1) < 0.

Proof: The formulas (5.10) and (5.11) give u(x) and −u′(1) respectively.

♦
We shall assume that α(x) ∈ C1[−1, 1] satisfies

α(−x) = α(x) for all x ∈ [0, 1] ,(5.12)

α′(x) < 0 for almost all x ∈ [0, 1] .(5.13)

As before, we know that under these conditions any non-trivial solution of

(5.7) is positive on (−1, 1). Observe also that under these conditions a sign-
changing α(x) changes sign exactly once on (0, 1) (and on (−1, 0)).
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Theorem 5.2 Consider the problem (5.6), and assume that the function

α(x) satisfies (5.12) and (5.13). We also assume that α(x) is sign-changing,
and it satisfies (5.10) and (5.11). Then there is a critical λ0 > 0, such that

for λ > λ0 the problem (5.6) has no positive solutions, it has exactly one pos-
itive solution for λ = λ0, and exactly two positive solutions for 0 < λ < λ0.

Moreover, all positive solutions lie on a single smooth solution curve u(x, λ),
which for 0 < λ < λ0 has two branches denoted by 0 < u−(x, λ) < u+(x, λ),

with u−(x, 0) = 0, and limλ→ 0 u+(0, λ) = ∞. The maximal value of solution,
u(0, λ), serves as a global parameter on this solution curve.

Proof: We begin with the solution (λ = 0, u = 0). This solution is

non-singular (the corresponding linearized problem (5.7) has only the trivial
solution), so that by the Implicit Function Theorem we have a curve of solu-

tions u(x, λ) passing through the point (λ = 0, u = 0). We claim that these
solutions are positive for small λ. Indeed, uλ(x, 0) ≡ uλ satisfies

−u′′ = α(x), −1 < x < 1, u(−1) = u(1) = 0 .

Since α(x) is even, so is u(x), and hence u(x) satisfies (5.9), and so the Lemma

5.2 applies. Hence, for small λ, solution u(x) of (5.6) is positive, and hence
it is an even function, with u′(x) < 0 for x ∈ (0, 1).

We show next that solutions remain positive throughout the solution
curve. Since for positive solutions u′(x) < 0 for x ∈ (0, 1), there is only

one mechanism by which solutions may stop being positive: u′(1) = 0 at
some λ = λ1 (and then solutions becoming negative near x = 1). We claim
that for any positive solution u(x) of (5.6)

u′(1) < 0 ,(5.14)

which will rule out such a possibility. (Hopf’s boundary lemma does not
apply here.) Let ξ be the point where α(x) changes sign, i.e., α(x) > 0 on

[0, ξ) and α(x) < 0 on (ξ, 1). Denote u(ξ) = u0. Then from the equation
(5.6)

−u′′ > λeu0α(x), 0 < x < 1, u′(0) = u(1) = 0.

Comparing this to (5.9), we conclude that u(x) > λeu0A(x) for all x ∈ (0, 1),
and then u′(1) ≤ λeu0A′(1) < 0.

We claim next that the curve of positive solutions cannot be continued
in λ beyond a certain point. With ξ denoting the root of α(x), as above, fix
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any η ∈ (0, ξ), and denote a0 = α(η) > 0. If we denote ϕ(x) = cos π
2η

x and

λ1 = π2

4η2 , then

ϕ′′ + λ1ϕ = 0, on (0, η), ϕ′(0) = ϕ(η) = 0 .

We have
∫ η

0
u′′ϕ dx =

∫ η

0
uϕ′′ dx − u(η)ϕ′(η) >

∫ η

0
uϕ′′ dx = −λ1

∫ η

0
uϕ dx .

Then multiplying the equation (5.6) by ϕ and integrating, we have

λ

∫ η

0
α(x)euϕ dx < λ1

∫ η

0
uϕ dx .

Also
∫ η

0
α(x)euϕ dx > a0

∫ η

0
uϕ dx .

We conclude that

λ <
λ1

a0
.

The next step is to show that solutions of (5.6) remain bounded, if λ is
bounded away from zero. Indeed, for large u, λα(x)eu > Mu, with arbitrarily

large constant M , when x belongs to any sub-interval of (−ξ, ξ). By Sturm’s
comparison theorem, the length of the interval on which u(x) becomes large,

must tend to zero. But that is impossible, because u(x) is concave on (−ξ, ξ).

We now return to the curve of positive solutions, emanating from (λ =
0, u = 0). Solutions on this curve are bounded, while the curve cannot be

continued indefinitely in λ. Hence, a critical point (λ0, u0) must be reached
on this curve, i.e., at (λ0, u0) the corresponding linearized problem (5.7) has a

non-trivial solution. By the results on symmetric problems, reviewed above,
any non-trivial solution of the corresponding linearized problem (5.7) is of

one sign, i.e., we may assume that w(x) > 0 on (−1, 1). By Lemma 5.1,
the Crandall-Rabinowitz theorem applies at any critical point, and a turn

to the left occurs. Hence, after the turn at (λ0, u0), the curve continues for
decreasing λ, without any more turns. By the Theorem 5.1, u(0, λ) is a

global parameter on the solution curve. Along the solution curve, the global
parameter u(0, λ) is increasing and tending to infinity. By above, this may
happen only as λ → 0. ♦
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Example The function α(x) = 1 − cx2 for 1 < c < 3 is sign-changing on

(−1, 1), and it satisfies all of the above conditions. Indeed
∫ 1

0
α(t) dt = 1 − c/3 > 0 ,

and

A(x) =
cx4

12
− x2

2
− c

12
+

1

2
> 0, for 0 < x < 1 ,

because A(1) = 0, and

A′(x) =
cx3

3
− x < 0 for 0 < x < 1 .

6 Autonomous problems

In case the nonlinearity does not depend explicitly on x, i.e., f = f(u), the

main result on the direction of turn is the following theorem from P. Korman,
Y. Li and T. Ouyang [7] and T. Ouyang and J. Shi [13]. We present a little
simpler proof of this key result.

Autonomous problems can be posed on any interval. We use the interval

(−1, 1) for convenience, i.e., we consider positive solutions of

u′′ + λf(u) = 0 for −1 < x < 1, u(−1) = u(1) = 0 .(6.1)

Corresponding linearized problem is

w′′ + λf ′(u)w = 0 for −1 < x < 1, w(−1) = w(1) = 0 .(6.2)

Both u(x) and w(x) are even functions (see e.g., [6]), and so the direction of

bifurcation at a critical point (λ0, u0) is governed by

I =

∫ 1
0 f ′′(u0)w

3 dx
∫ 1
0 f(u0)w dx

.

Recall that f(u) ∈ C2(R̄+) is called convex-concave if f ′′(u) > 0 on (0, u0),

and f ′′(u) < 0 on (u0,∞) for some u0 > 0, and the definition of concave-
convex functions is similar.

Theorem 6.1 ([7], [13]) (i) Assume f(0) ≤ 0, and f(u) is convex-concave.

Then at any critical point, with u0(0) > u0 and u′
0(1) < 0, we have I < 0,

and hence a turn to the right occurs.

(ii) Assume f(0) ≥ 0, and f(u) is concave-convex. Then at any critical point,
with u0(0) > u0, we have I > 0, and hence a turn to the left occurs.
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Proof: In case f(0) ≥ 0, we have u′
0(1) < 0 by Hopf’s boundary lemma.

We shall write (λ, u) instead of (λ0, u0). It is known that any non-trivial
solution of the linearized problem (6.2) is of one sign, see e.g., [7] or [6], and

so we may assume that w(x) > 0 on (−1, 1), which implies that

w′(1) < 0 .(6.3)

From the equations (6.1) and (6.2) it is straightforward to verify the following
identities

u′(x)w′(x)− u′′(x)w(x) = constant = u′(1)w′(1) ;(6.4)

(

u′′w′ − u′w′′)′ = λf ′′(u)u′2w .(6.5)

Assume that the first set of conditions hold. Integrating (6.5),

λ

∫ 1

0
f ′′(u)u′2w dx = u′′(1)w′(1) = −λf(0)w′(1) ≤ 0 .(6.6)

Consider the function p(x) ≡ w(x)
−u′(x)

. Since p(1) = 0, and by (6.4)

p′(x) = −u′(1)w′(1)

u′(x)2
< 0 ,

the function p(x) is positive and decreasing on (0, 1). The same is true

for p2(x) = w2(x)

u′2(x)
. Let x0 be the point where f ′′(u(x)) changes sign (i.e.,

f ′′(u(x)) < 0 on (0, x0), and f ′′(u(x)) > 0 on (x0, 1)). By scaling w(x), we

may achieve that w2(x0) = u′2(x0). Then w2(x) > u′2(x) on (0, x0), and the
inequality is reversed on (x0, 1). Using (6.6), we have

∫ 1

0
f ′′(u(x))w3 dx <

∫ 1

0
f ′′(u(x))u′2w dx ≤ 0 .(6.7)

Integrating (6.4), we have

∫ 1

0
f(u)wdx =

1

2λ
u′(1)w′(1) > 0 .(6.8)

The formulas (6.7) and (6.8) imply that I < 0. The second part of the
theorem is proved similarly. ♦

Observe that, in case f = f(u), this theorem and the Lemma 2.1 have

intersecting domains of applicability, but neither one is more general than
the other.
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7 Numerical computation of the solution curves

In this section we present computations of the global curves of positive solu-
tions for the problem

u′′ + λf(x, u) = 0 for −1 < x < 1, u(−1) = u(1) = 0 .(7.1)

We assume that the function f(x, u) satisfies the conditions (3.2) and (3.3),

so that the Theorem 5.1 applies, which tells us that α ≡ u(0) is a global
parameter. Since any positive solution u(x) is an even function, we shall

compute it on the half-interval (0, 1), by solving

u′′ + λf(x, u) = 0 for 0 < x < 1, u′(0) = u(1) = 0 .(7.2)

The standard approach to numerical computation involves curve following,
i.e., continuation in λ by using the predictor-corrector methods, see e.g., E.L.
Allgower and K. Georg [1]. These methods are well developed, but not easy

to implement, as the solution curve u = u(x, λ) may consist of several parts,
each having multiple turns. Here λ is a local parameter, but not a global one,

because of the turning points.

Since α = u(0) is a global parameter, we shall compute the solution curve

of (7.2) in the form λ = λ(α). If we solve the initial value problem

u′′ + λf(x, u) = 0, u(0) = α, u′(0) = 0 ,(7.3)

then we need to find λ, so that u(1) = 0, in order to obtain the solution of
(7.2). Rewrite the equation (7.2) in the integral form

u(x) = α − λ

∫ x

0
(x − t)f(t, u(t)) dt ,

and then the equation for λ is

F (λ) ≡ u(1) = α − λ

∫ 1

0
(1− t)f(t, u(t)) dt = 0 .(7.4)

We solve this equation by using Newton’s method

λn+1 = λn − F (λn)

F ′(λn)
.

We have

F (λn) = α − λn

∫ 1

0
(1 − t)f(t, u(t, λn)) dt ,
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Figure 1: The solution curve for a problem from combustion theory

F ′(λn) = −
∫ 1

0
(1− t)f(t, u(t, λn)) dt− λn

∫ 1

0
(1− t)fu(t, u(t, λn))uλ dt ,

where u(x, λn) and uλ are respectively the solutions of

u′′ + λnf(x, u) = 0, u(0) = α, u′(0) = 0 ;(7.5)

u′′
λ + λnfu(x, u(x, λn))uλ + f(x, u(x, λn)) = 0, uλ(0) = 0, u′

λ(0) = 0 .(7.6)

(As we vary λ, we keep u(0) = α fixed, that is why uλ(0) = 0.) This method
is very easy to implement. It requires repeated solutions of the initial value

problems (7.5) and (7.6) (using the NDSolve command in Mathematica).

Example Consider a problem from combustion theory with sign-changing
potential

u′′ + λ(1− 2x2)eu = 0 for 0 < x < 1, u′(0) = u(1) = 0 .

The global solution curve is presented in Figure 1. For any point (λ, α) on this

curve, the actual solution u(x) is easily computed by shooting (or NDSolve
command), see (7.3). In Figure 2 we present the solution u(x) for λ ≈ 1.1955,

when u(0) = 1.25. (This solution lies on the upper branch, shortly after the
turn.)
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