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arising when a so-called domain perturbation method is applied to free boundary problems. Our results are
applied to two model problems from fluid mechanics.
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1. Introduction. Our goal is to explore a general approach to free boundary
problems, based on the so-called domain perturbation method. Using this method we
get a solution, which is a perturbation of a known one, by mapping (nonconformally)
the unknown fluid domain back to the known domain for an unperturbed solution.
The linear equations of motion then get transformed to a fully nonlinear system, but
since nonlinearities are small, it can usually be treated by the contractive mapping
argument. The earliest reference that we know for the domain perturbation method is
Joseph [6]. It was then used by Shinbrot [10] to prove the existence of double-periodic
water waves in three dimensions. Our work was motivated by that paper.

Rather than present our results in general form, we prefer to consider two model
problems, whose treatment illustrates how one should approach various possibilities,
and which are of considerable independent interest.

The nonlinear elliptic problems obtained by the domain perturbation method can
be either coercive or noncoercive (here “coercive” means that the problem satisfies
the Lopatinski-Schapiro condition at all points of the boundary). For the coercive
problems we outline an approach using the Schauder-type estimates of Agmon, Douglis,
and Nirenberg [1], and present it for the model Problem I. For noncoercive problems
there are no Schauder’s estimates. Estimates in the Sobolev spaces (which are available
for Problems I and II) cannot be used, because of loss of smoothness when taking
traces. For the model Problem II we present the second approach based on A™ spaces,
which are defined and studied below. Similar spaces were used by Shinbrot [10];
however, ours have several advantages: it is easier to establish their properties, the
proofs of the estimates for m>2 are more transparent, and finally they seem to be
more natural. Problem II leads to a coercive problem, so that the first approach based
on Schauder’s estimates can be used as well. In § 6 we present an example of a
physically significant problem, leading to a noncoercive problem which can be solved
only by the second approach. We proceed to describe our model problems.

Problem 1. Let x€ R". Given a 27 periodic in each variable x; function B(x)
(bottom), find the functions u(x, y), H(x), 27 periodic in each x;, such that

ou

an

(1.1) Au=0, B(x)<y<H(x),
u=1, y = B(x),

u:O, =_1’ y=H(X),
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where 9/9n is the outward normal derivative.

Problem 11. Let r = B(0) be a closed curve in the plane. Find another closed curve
r= H(6) outside of B(#), and a function u on the closed region between B(#) and
H(6) with

u=0, —u=——1, r=H(9),
n

(1.2) Au=0, B(8)<r<H(9),
u=1, r= B(0).

For Problem I we start with flat bottom B =0, and the corresponding solution
H =1 and u =1-y. Then for small bottoms B = eb(x) we are looking for the solution
in the form

(1.3) H=1+¢h(x), u=1-y+ev(x,y),

and show existence if ¢ is sufficiently small. We use the change of variables (x, y) -
(x,y"), y'=(y—eb)/(1+¢eh—¢b), to transform the unknown domain onto a fixed
one, 0=y'=1.

For Problem II notice that if B(0)=1 then the solution is H(r)=h,, u=
—hylog r+1, where hy=1.76 is defined by hylog hy=1, and (r, #) are the polar
coordinates. Then we assume that B=1+ ¢b(0), and look for the solution in the form

(1.4) H = hy+eh(6), u=—hylog r+1+sv(r, 9).

We show the existence of such a solution for ¢ sufficiently small.

Problem II was considered by Hamilton [5] (and also earlier by Schaeffer [9] and
Acker [11]). Hamilton proved that for every smooth convex curve B there exists a
unique solution to Problem II (the curve H(0) is also smooth and convex, and u is
smooth). His result is strictly two-dimensional, since conformal mappings were used
to derive a priori estimates. Our existence result complements Hamilton’s in that we
do not require the curve r= B(68) to be convex. In three dimensions we were unable
so far to carry out a similar approach, because of the singularities in the Laplace
operator in spherical coordinates.

We wish to stress the generality of our approach. It can be used to attack problems
with boundary conditions of arbitrary order and variable coefficients, and with non-
linear equations of motion. In contrast, a more common variational approach (see,
e.g., [2, Chap. 3]) is rather restricted (but it is a global method).

Finally, we mention that Problems I and II have an interesting physical interpreta-
tion. For Problem II it is described in [5, p. 215], so that we present a similar
interpretation for Problem I (with similar deficiency as mentioned in [5]). We consider
fluid occupying the half space y >0, x € R", and assume there is a stream flowing over
the periodic bottom y = B(x). The fluid is assumed to be perfect with unit density,
and at rest outside a free surface boundary, so that there is a velocity jump at the free
surface. Let u be the stream potential. By choosing units of length and time we can
make the velocity on free surface y = H(x) and circulation equal to one. This leads
us to Problem I.

2. Preliminary results. Let x=(xy, --,x,), j=(, **,jn), n=1. Let the
function u=u(x,y) bf: 27 periodic in each variable x;, i=1,---,n 0=y=1;
u(x’ y)=zj'=—oo uj(y) eU’X‘ Define the norms “u(x, y)ll0=Zj=—oo maxOéyél |“j(J’)l,
[llm =X aj=m | D*ullo, where D* is a mixed partial in x and y, m = integer = 1. Denote
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D =[0,27]", V=Dx[0,1]. Let A"(V) be the closure of trigonometric polynomials
of the form ¥, u;(y) e”*, u;(y) € C™[0, 1], with respect to the norm || - ||,,,. Clearly A" (V)
are Banach spaces with ||u||,, = ||u||, if m = n. The space A™ (D) is defined in the same
way for functions independent of y. The norm on A™(D) is denoted by [[-],.. If we
are given a function of polar coordinates in the plane, u=u(r, 0)=Y"___ u,(r) e™°
on an annulus 1 =r= h,, h, = constant, then as before ||ullo=Y"_ . max;=,=pn, |Un(r)l,
and [[u] =Y,z | D“ullo where D is a mixed partial in r and 6. This time domain
Vis defined by 1=r=h,, 0=60=27 domain D by r=h,, 0= 0 =2

We write ¢ for all positive constants independent of unknown functions. We write
f=f(D?v) when f depends on the function v and all its partial derivatives or orders
one and two.

LemMMA 2.1. Let u,veA™ Then uveA™, and |uv|, =c.lullnltlm cm=
const (¢, =1).

Proof. Let u=Y " _ we"™ v=3}__ v.e™ Then

|luvlo=Y max |Y u,_svs| =Y max |vs| Y max |u,_s|
vy Y 8 5 ¥ vy ¥

= llullollvllo-

For m=1 we get
luvlm= % IID"uvII=I 2 2 cg || DPullol| D*"Poll,

|la|=m al=m 0=

= Con |t | 0[] -

CororLARIES. (i) |g1 - gllm=ch M lg1llm -+ &l m-

(i) 1g"llm=chlgllm

LEMMA 2.2. Let B be a ball in R” centered at the origin, f(x,, -+, x,): B> R" be
a real analytic function. Let g be a vector function on V, g=(g,, - *,8,), |gln=

?_ &llm=r. Assume that r is sufficiently small. Then f(g,," - -, g,) €A™, and

1f (@)l m = ot ex(r),
where ¢, = const> 0, ¢, is analytic function of r, depending only on f and r, and ¢,(0) = 0.
Proof. Let f=% ,z0fux™ for x=(x,,"",%,)€B, f(g) =Y 420 fa8a- Then by
Lemma 2.1

Hf(g)llmél |z> . Iﬁlllg“llmél |Z> . IS, |elal=tplel,

which is easily seen to be a convergent series for r sufficiently small.
LemMmA 2.3. A™(V)(A™(D)) is boundedly imbedded in C™(V)(C™(D)).
Proof. Since for any multi-index e, |a| = m, max, , |D*u| = ||u||,, the proof follows.
By ||m+a We denote the norm in the space C™"*(V), m=integer=0, 0<a <1
(see, e.g., [1] for the definition).

3. Transformation to a fixed domain. For Problem I we suppose that B(x) = eb(x),
and look for solution in the form (1.3). Notice that on y = H(x) =1+ gh(x)
a—u=Vu- nolE Yo whitu,
on J1+£Vh]
Substituting this and (1.3) into (1.1) we get
_82 Z:’=1 vihi - 1 + 8Dy~_

U(x, )=h(x)a -1, = 1+8h,
d JiteVhP d
3.1) Av=0, eb(x)<y<1+eh(x),

v=>b(x), y =eb(x).
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The change of variables (x, y) > (x', y') defined by

x§=xi, i=1,'..5n’
= i)+ ()
Y 1¥e(n-p) 7T
1 eb
(d(x)=1+e(h—b)’e(x)=_1+s(h—b))

will transform the unknown fluid domain onto 0=y'=1.
By a straightforward calculation, the problem (3.1) will transform as follows (we
drop primes for the independent variables)

v(x, 1) = h(x),

(.2) v, = €g(&, Dv, Dh, Db), y=1,
' Av=ef(e, D’ D*h, Db),  0<y<1,
U=b(x), y=0,
Here
(33) o= 1—V1+ e DhfP+ €2 Y1, [v, +0,(Yd, +e,)]hy,

ed(x) ’
where Y =y(1+¢eh—eb)+€b, and

—gf =(d’— v, + ¥, [20,,(Yd, +e,)+0v,(Yd, +e,)’
i=1

3.4)
+0,(Yd, ., +e.)]

We easily see that the functions f and g are analytic in their arguments for small &.
For Problem II we suppose that B =1+ ¢b(0), and look for a solution in the form
(1.4). By an elementary computation on r= H(6) = hy+ ¢h(6) we have

ou r eh’
= —————-——u," ———————UQ.
on P2+ g*h? Wrr+e2h?

(3.5)

Using this formula and (1.4) in (1.2) we get

—1+
p=—0 BT pyteh,
£

h ’p’
4 (——°+ev,> ——y =-1, r=ho+eh,
r

6
Jrr+e*h?\ VP +e*h'?

(3.6)
Av=0, 1+ eb(0) <r<hy+eh(6),
hol
v=—o-eoij, =1+¢eb(6).

The change of variables (7, 6) - (', 8')

r—1—¢b

I= — —+
r= (=) T T he1

1, =0
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maps the fluid domain 1+ &b =r= hy,+eh onto the annulus 1=r'= h,. The problem
(3.5) will transform as follows (dropping the primes)

v=h+er(e h), r=h,,

h
v,=—h—+ eg(g, Dv, Dh, Db), r=h,
0

3.7) R R 5
Av = ¢f(e, D*v, D°h, D°b), 1<r<h,,
v="hob+eq(e, b), r=1.
Here
_holog(ho"'sh)_l_h
8 t ]
£ h hoh
=——————[voh'+ v,(Rps+ qo) b’ — h*> — (ho+ €h)*r]+— (———L)
€g (h0+8h)2p[ve 0,(Rpo+qo)h’—h”—(ho+ eh)°r] e rp
with
ho—1 h,— +
p= 0 q=_( o—1)(1 8b)+1

8(h"‘b)+h0—1, S(h—b)+h0+1 i

r—q 1( ,h”
R=—p i r1='8—2( 1+¢ F*l)
p 1 1 1
_Ef=(p2~1)vrr+<R )v +(R2 r)”oo

1
+§§[209r(RPo + o)+ v,,(Rpy+ ‘Ie)z"' 0,(Rpgo + o)1,

h
eq =:°(log (1+¢eb) —¢b).

We verify that the functions r, g, f, g are analytic in their arguments for small &.

4. A priori estimates for the linear problem. Consider the problem (x€ R")

u, = g(x), y=1,
(4.1) Au=f(x,y), 0<y<1,
u=b(x), y=0,
where f, g, and b are given functions, 27 periodic in each variable x;, i=1,-- -, n.

LEMMA 4.1. Assume that fe C*(V), ge C'**(D). Then (4.1) has a unique 2
periodic in each x; solution, and

(4.2) |u|2+aéc(lf'a+|g|1+a+|b|2+a)‘

Praof. Existence of solutions follows by elementary Fourier analysis, uniqueness
from the estimate

(4.3) lulo=c(Iflo+Iglo+1bl0),

which easily follows by the maximum principle. It remains to show how one adapts
Schauder’s estimates for our problem (4.1). Redefine f, g, b as functions of compact



Downloaded 09/10/15 to 129.137.5.42. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

EXISTENCE OF SOLUTIONS FOR FREE BOUNDARY PROBLEMS 819

support outside 0=x;=2m, i=1,-- -, n, and call the extensions f, g, b, respectively.
Clearly, this can be done with say | f|. =2|fla, |8]a =2/gla, |Dla =2|bla. Let £(y), &(3)
be C* functions on [0, 1], such that £ =1 near y=1 and £ =0 near y=0, and
&=1-§&,. Write u= &u+ &u=u,+u,. Multiplying (4.1) by & and &,, we easily get

u1y=ga y= 1’
(4.4) -
Auy=Eu+28u,+¢f, —o<y<l,
Au,=Eu+28&u,+ & f, 0<y<oo,
(4.5) _
u, = b(x), y=0.

Using usual Schauder’s estimates (see [1, Thm. 7.3]), we get (for arbitrary small ¢)
2 — —
olove S ¢  lefut 260+ 71 +8lou Bl
i=1

é c(€|u|2+a + ce,u|0+|fia + ,g|1+a +Ib,2+a)’

and by (4.3) the lemma follows.
Next, in the plane (r, 8) consider the problem (hylog hy=1)

u,+ou=g(6), r=hy (o=const=0),
(4.6) Au=f(r,0), 1<r<hy,
u=b(0), r=1.

Here, g, f, b are given functions 27 periodic in 6.
LEMMA 4.2. Assume be A™*?, fe A™, ge A™', m=0. Then (4.6) has a unique
solution and

(4.7) "“”m+2+Mm+2 = c(f llm+ glmer + 1Bl mr2)-

Proof. Express =%, . fu(r)e™, g=Y,_ . g.e™, b=Y,_ __ b,e™, u=
Y Us(r) ™. Substituting these into (4.6) and suppressing the subscript n (i.e.,
writing f for f,,, g for g,, etc.) and letting r=e”, we get

(4.8) U —n’u=e>f(e*), u(0)=>, hlo u,(h))+ou(h)=g,
where h, =log hy=0.57. Set F(t)=e*'f(e'). The solution of (4.8) is
(4.9) u(x) = vy sinh nx+ b cosh nx+% J: F(t) sinh n(x —1t) dt,
where the constant vy is determined from

yA+b (%l:nh,_‘_ o cosh nhl)

(4.10) N .
+J F(1) [-h—cosh n(h,—t)+-ssinh n(h,—t)] dt=g.
0

0

Here we denoted

n cosh nh;

I + o sinh nh, = cne™.
0

(4.11) A
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Multiplying (4.9) by A, using (4.10) and the standard identities for hyperbolic functions,
we easily derive

Au(x)=gsinh nx+b <hl cosh n(h,—x)+ o sinh n(h, —x))
0

hl 1
(4.12) —J F(t) [h—cosh n(h,—t) sinh nx+%sinh n(h,—t) sinh nx] dt
0

X

x 1
—J' F(1) [h_ sinh nt cosh n(h, ——x)+%sinh nt sinh n(h, —x)] dt.
0

0

Then in view of (4.11) we easily estimate

i 1 hy x
lu(r)|=c M+|b|+—-J |F(t)| en =0 dH_lJ |F(t)] (1) dt]
L n nJ, nlJo
F 1 2 n(x-—h‘) —nx
(4.13) =c @+|bl+— sup lf(r)|<“e - )]
| n Ni=r=h, n n n
[ 1
=c M+|b|+~-—2 max lf(r)|],
L n N 1=r=h,

Differentiating (4.9) and going through the same steps, we estimate
1
(4.14) lu'(r)|= C[lg|+n|b|+; max If(r)l].
=r=hy

Combining (4.13) with (4.14), and estimating |u"(r)| from the equation, we conclude
the estimate (4.7) with m =0. The higher estimates are easily proved by induction.
An a priori estimate for (4.1) is given by the following lemma whose proof is
similar to the above.
LEMMA 4.3. Assume fe A", ge A™"', be A™"?, m =integer=0. Then (4.1) has a
unique 2 periodic in each x; solution, and

)l szt Tt ms2 = €Ul f o + 1€l msr + 101l ma)-

5. Existence and uniqueness of solutions for Problems I and II.

THEOREM 5.1. For (3.2) assume that b(x)e C™**(D), and &|b| .. is sufficiently
small, m=integer=2, 0<a <1. Then there exists a pair of functions (v, h)e
C" (V) x C™**(D) satisfying (3.2).

Proof. Define a map T: (w, k)~ (v, h) from C™"*(V)x C"**(D) to itself by
solving

v, = £g(&, Dw, Dk, Db), y=1,
Av = gf (e, D*w, D*k, D*b), 0<y<l1,
v=>b(x), y=0,

and then computing h(x) = v(x, 1). By Lemma 4.1 we easily conclude that the map T
is well defined, takes a ball |w|,,, .o +|k|m+o = R, with say R =2|b|,.+., into itself, and
is a contraction for ¢|b|,,;, sufficiently small.

A similar proof could be given for Problem II. Instead, we give an existence proof
in A™ spaces based on Lemma 4.2, which provides a more general approach, as will
be seen in § 6.



Downloaded 09/10/15 to 129.137.5.42. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

EXISTENCE OF SOLUTIONS FOR FREE BOUNDARY PROBLEMS 821

THEOREM 5.2. For the problem (3.7) assume that b(0) € A™, and €||b||,,, is sufficiently
small, m =integer=2. Then there exists a pair of functions (v, h)e A"(V)xA™(D)
satisfying (3.6).

Proof. Substituting the first equation in (3.7) into the second we get

1
v,+—v == r(e, h)+ eg = eg(e, Dv, Dh, Db).
Next, we define a map T:(w, k)~ (v, h) from A™(V)x A™(D) to itself by solving
1
v,+-i‘—v=sg'(s, Dw, Dk, Db), r=hg,
0

(5.1) Av = gf (e, D*w, D*k, D*b), 1<r<hy,
U=hob+EQ(€, b)’ r=1,

and then solving for h(8) from
h

(5.2) v(ho,0)=h+er(s,h)<h=—9(e”/"°—1)).
£

Notice that the map T is well defined, i.e., it takes A™ (V) x A™(D) into itself, provided
e||bll.. is sufficiently small. Indeed, in view of the estimate (4.7) of Lemma 4.2, it
suffices to show that ge A™~'(D), fe A" *(V). For this we use the special structure
of f and g. Indeed, consider g. By Lemma 2.3, log (ho+ €h), pe, qo, 1/(ho+€h)’€
A""Y(D) for & small (if smallness of &|b|,, comes from |b],,, then work in small
balls), and then by Lemma 2.2, §€ A™ '(D). Similarly, fe A" > by Lemma 2.2.

Then one easily sees that map T takes the ball ||w||,, + | k| . =2|b|,. into itself,
and is a contraction.

Remark. A similar argument is valid for Problem I.

Next we prove uniqueness results, using techniques similar to [3] and [4].

THEOREM 5.3. Problem 1 can have at most one solution (in the class of free surfaces
satisfying interior sphere condition).

Proof. Assume that this is not true, i.e., there are two solutions (u(x, y), h(x))
and (i(x, y), h(x)). By the maximum principle we conclude that 0=u=1forb=y=h,
and 0<u <1 for b <y < h, and also that h and A are different. Consider first the special
case, when one free surface is above the other, touching at some point, say, h(x) = h(x),
h(x,) = h(x,). Consider w=u—i in the domain b=y=h. Then Aw=0, w=0 for
y=b(x), w=0 for y=h(x) with w(x,)=0. Hence X, is a point of minimum for w.
Since h and h have the same normal at x,, by Hopf’s lemma we have

ow ou ou
>— = I =
0 an (xo) an (x0) an (x0) =0,

a contradiction.
Turning to the general case, we introduce translation of solution (u, h) downward,
by considering

u,(x,y)=u(x,y+7), h(x)=h(x)—7, 7=0.

Clearly Au, =0 for b— T<y< h—17. Choose 7= 17, so that h, = h, and h, (%) = h(x,)
for some x,. (If h and h intersect, we translate either of two solutions, if h> h then
translate (u, h).) Let D={x|xoe D and h,(x)>b(x)}. By periodicity either D=
(=0, 0) or D is a bounded interval. In the first case consider w = & —u,, with &, u,,
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restricted to b(x)=y=h,(x). Then w>0 on y=b(x), w=0 on y = h_(x), w(x,) =0,
and as before we get contradiction at the point x,. In the second case we consider the
same w, with @, u, restricted to (x,y)={xe D b(x)sy= h.(x)}. Again we get the
same contradiction at x,.

THEOREM 5.4. Problem 11 can have at most one solution (assuming h(0) satisfying
interior sphere condition).

Proof. This time we introduce contraction of the solution by considering u, =
u(ar, 0) = u(ax, ay), h,=h/a, a> 1. Clearly, Au, =0. By contracting one of the free
surfaces, until it is inside the other touching it at some point x,, we get the same
contradiction at x, as in the previous theorem. (Again, if the surfaces intersect, contract
either one; if one is outside the other, contract the outside one. Also, notice that
du,/dn|,—n, = —a<-—1, as is clear from (3.5).)

6. General noncoercive problems. We discuss the problem (xe R", 0=y=1)

u,+ Y a,Du=c¢eg(e, D*u, D*h, D*b), y=1,

la|=k
(6.1) Au = ef (e, D*u, D*h, D*b), o<y<i,
u,+ Y b,D*u=b(x), y=0.
la|=1

Here h=u(x,1), g, f, and b are given functions, 27 periodic in each variable x;,
i=1,--,n a=(a;, "+, a,,0), ¢ a,, b, are constants, and k, | are integers whose
magnitudes are not restricted. We are looking for 27 periodic in each x; solution
u(x, y), assuming & is small.

Solving a problem of type (6.1) was the key ingredient in solving Problems I and
I1, as well as in Shinbrot’s proof of existence of water waves in three dimensions. If
the boundary condition at y =1 is coercive, i.e., satisfies the Lopatinski-Schapiro
condition, then one should be able to prove existence based on Schauder’s estimates,
as we did for Problem I. In particular, in Shinbrot’s paper one has the boundary
operators (with u = u(x, y, z))u, — 7(u,x +u,,,) + Fu,, at y=1, and u, at y =0, which
are both coercive. Hence, it appears that Schauder’s estimates can be used, considerably
simplifying the proof.

Using A™ spaces one can treat more general problems, including noncoercive
ones. In particular, we have the following theorem, whose proof is similar to that of
Theorem 5.2.

THEOREM 6.1. Assume the following estimate for the problem (6.1) (with g = g(x),

f=f(xy))
lell o+ Tulln = el f -2+ g s+ 1B11.m),

with integer m Zmax (2, k). Assume that the functions g and f are analytic in their
arguments and small if either € or ||b| ., ||u|lm, |h|. are sufficiently small. Then for
e||b||m sufficiently small the problem (6.1) has a solution.

Example. In Shinbrot’s water wave model assume that the surface tension 7=0,
and the gravity is pointing up, i.e., g and F= U?/g are negative numbers, say
F = —f, f=0. Assuming for simplicity u =0 at y =0, we consider the problem (different
from the one in [10])

u, — fu,, = eg(g, Du, Dh, Db), y=1,
(6.2) Au = gf (¢, D*u, D*h, D*b), 0<y<i1,
u=0, y=0.



Downloaded 09/10/15 to 129.137.5.42. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

EXISTENCE OF SOLUTIONS FOR FREE BOUNDARY PROBLEMS 823

Here u=u(x, y, z), h=u(x, 1, z). The boundary condition at y =1 is noncoercive (see
[71); hence Schauder’s estimates are not valid for (6.2). However, by an argument
similar to that of Lemma 4.2 we can estimate (with g =g(x, z), f=1(x, y, z))

ezt Tullmea = el fllm + 18 lmsr),

and Theorem 6.1 applies, giving existence for (6.2). (We do not know any other way
to prove existence for (6.2).)
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