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Abstract. Some general techniques are developed for treating nonstandard nonlinear elliptic problems
arising when a so-called domain perturbation method is applied to free boundary problems. Our results are
applied to two model problems from fluid mechanics.

Key words, free boundary problems, domain perturbation method, existence and uniqueness of solutions

AMS(MOS) subject classification. 35J60

1. Introduction. Our goal is to explore a general approach to free boundary
problems, based on the so-called domain perturbation method. Using this method we
get a solution, which is a perturbation of a known one, by mapping (nonconformally)
the unknown fluid domain back to the known domain for an unperturbed solution.
The linear equations of motion then get transformed to a fully nonlinear system, but
since nonlinearities are small, it can usually be treated by the contractive mapping
argument. The earliest reference that we know for the domain perturbation method is
Joseph [6]. It was then used by Shinbrot 10] to prove the existence of double-periodic
water waves .n three dimensions. Our work was motivated by that paper.

Rather than present our results in general form, we prefer to consider two model
problems, whose treatment illustrates how one should approach various possibilities,
and which are of considerable independent interest.

The nonlinear elliptic problems obtained by the domain perturbation method can
be either coercive or noncoercive (here "coercive" means that the problem satisfies
the Lopatinski-Schapiro condition at all points of the boundary). For the coercive
problems we outline an approach using the Schauder-type estimates ofAgmon, Douglis,
and Nirenberg [1], and present it for the model Problem I. For noncoercive problems
there are no Schauder’s estimates. Estimates in the Sobolev spaces (which are available
for Problems I and II) cannot be used, because of loss of smoothness when taking
traces. For the model Problem II we present the second approach based on A spaces,
which are defined and studied below. Similar spaces were used by Shinbrot [10];
however, ours have several advantages: it is easier to establish their properties, the
proofs of the estimates for m > 2 are more transparent, and finally they seem to be
more natural. Problem II leads to a coercive problem, so that the first approach based
on Schauder’s estimates can be used as well. In 6 we present an example of a
physically significant problem, leading to a noncoercive problem which can be solved
only by the second approach. We proceed to describe our model problems.

Problem I. Let x R n. Given a 2r periodic in each variable xi function B(x)
(bottom), find the functions u(x, y), H(x), 27r periodic in each xi, such that

OU
u=0, 1, y=H(x),

On

(1.1) Au=0, B(x)<y<H(x),

u=l, y=B(x),
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EXISTENCE OF SOLUTIONS FOR FREE BOUNDARY PROBLEMS 815

where O/On is the outward normal derivative.
Problem II. Let r B(0) be a closed curve in the plane. Find another closed curve

r= H(O) outside of B(O), and a function u on the closed region between B(O) and
H(0) with

Ou
u=0, m=_l, r=H(0),

On

(1.2) Au =0, B(O) < r < H(O),

u=l, r=B(O).

For Problem I we start with fiat bottom B 0, and the corresponding solution
H 1 and u 1 -y. Then for small bottoms B eb(x) we are looking for the solution
in the form

(1.3) H= + eh(x), u 1 y+ ev(x, y),

and show existence if e is sufficiently small. We use the change of variables (x, y)o
(x,y’), y’=(y-eb)/(l+eh-eb), to transform the unknown domain onto a fixed
one, 0-< y’-< 1.

For Problem II notice that if B(0)=I then the solution is H(r)=ho, u=
-hologr+l, where ho-1.76 is defined by hologho =1, and (r, 0) are the polar
coordinates. Then we assume that B 1 + eb(O), and look for the solution in the form

(1.4) H=ho+eh(O), u=-hologr+l+ev(r, 0).

We show the existence of such a solution for e sufficiently small.
Problem II was considered by Hamilton [5] (and also earlier by Schaetter [9] and

Acker [11]). Hamilton proved that for every smooth convex curve B there exists a
unique solution to Problem II (the curve H(0) is also smooth and convex, and u is
smooth). His result is strictly two-dimensional, since conformal mappings were used
to derive a priori estimates. Our existence result complements Hamilton’s in that we
do not require the curve r= B(O) to be convex. In three dimensions we were unable
so far to carry out a similar approach, because of the singularities in the Laplace
operator in spherical coordinates.

We wish to stress the generality of our approach. It can be used to attack problems
with boundary conditions of arbitrary order and variable coefficients, and with non-
linear equations of motion. In contrast, a more common variational approach (see,
e.g., [2, Chap. 3]) is rather restricted (but it is a global method).

Finally, we mention that Problems I and II have an interesting physical interpreta-
tion. For Problem II it is described in [5, p. 215], so that we present a similar
interpretation for Problem I (with similar deficiency as mentioned in [5]). We consider
fluid occupying the half space y > 0, x R n, and assume there is a stream flowing over
the periodic bottom y B(x). The fluid is assumed to be perfect with unit density,
and at rest outside a free surface boundary, so that there is a velocity jump at the free
surface. Let u be the stream potential. By choosing units of length and time we can
make the velocity on free surface y H(x) and circulation equal to one. This leads
us to Problem I.

2. Preliminary results. Let x=(x,...,x,), j=(j,...,j,), n->_l. Let the
function u=u(x,y) be 27r periodic in each variable xi, i=l,...,n, 0-<y-<_l;
u(x, y) =j=_ uj(y) e ix. Define the norms Ilu(x, y)llo =yJ=_maxo<__y__<l [uj(y)l,
Ilull Y== IIDullo, where D is a mixed partial in x and y, m =integer >- 1. Denote
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816 P. KORMAN

D [0, 27r]", V D x [0, 1 ]. Let A"(V) be the closure of trigonometric polynomials
ij.xof the form uj(y) e uj(y)c C[0, 1], with respect to the norm I1" I],,. Clearly Am(V)

are Banach spaces with u [[,, -_< u ]], if rn <_- n. The space A"(D) is defined in the same
way for functions independent of y. The norm on Am(D) is denoted by WS][m. If we
are given a function of polar coordinates in the plane, u u(r, 0) =Y,___ u,(r) e
on an annulus 1 -< r=< ho, ho constant, then as before [lUl[o ,___ maxl<__r=<ho [u,(r)[,
and Ilull-Y IIDullo where D is a mixed partial in r and 0. This time domain
V is defined by 1 -< r_-< ho, 0-< 0 =< 27r domain D by r ho, 0-< 0 _-< 2

We write c for all positive constants independent of unknown functions. We write
f=f(D2v) when f depends on the function v and all its partial derivatives or orders
one and two.

LEMMA 2.1. Let u, v A". Then uv Am, and Iluvll -< Cm IlulIIIvlI, C
const (Co 1).

ij" cx3 e k.Proof Let u Y uj_ v Vk Thenj= k

=< Y max v+l Y max u+-+lIluvllo y max u+_+v+
y Y 6 6 Y y Y

For rn _-> 1 we get

IluVlIm-- Y IID=uvll Y E cllDullollD-vllo
Ilrn Il_-<m 0=<#_-<

COROLLArieS. (i) IIg," gll-<- c-llg[l I111.
(ii) -<- c-’ IIg .
LZMa 2.2. Let B be a ball in Rp centered at the origin, f(x, , xp)" B --> R be

a real analytic function. Let g be a vector function on V, g (g,..., gp), Ilgll--
IIg, r. Assume that r is sufficiently small. Then f(g, g) A ana

IIf(g)ll,. --< Co+ cl(r),
where Co const> O, c is analyticfunction of r, depending only onfand r, and c(O)=0.

Proof Let f= Yll__>ofX for x (x, ., Xp) B, f(g) Ell__>o f,g. Then by
Lemma 2.1

I,1_>-o I,1__>o

which is easily seen to be a convergent series for r sufficiently small.
LEMMA 2.3. Am(V)(A"(D)) is boundedly imbedded in C"( V)(C"(D)).
Proof Since for any multi-index a, I1- m, max.y IOul <= Ilull the proof follows.
By [,,/ we denote the norm in the space C"/(V), rn integer >- 0, 0 < a < 1

(see, e.g., [1] for the definition).
3. Transformation to a fixed domain. For Problem I we suppose that B(x) eb(x),

and look for solution in the form (1.3). Notice that on y H(x) 1 + eh(x)
Ou

Vu n
-e Y’.7=l Uihi+uy

a,, ,/i + =lv hi 2

Substituting this and (1.3) into (1.1) we get
2-e , Vy__l, y l/eh,i= l)ihi 1 + e

v(x, y)= h(x), x/a + eZlVhl=
(3.1) Av 0, eb(x) < y < 1 + eh(x),

v=b(x), y=eb(x).
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EXISTENCE OF SOLUTIONS FOR FREE BOUNDARY PROBLEMS 817

The change of variables (x, y) (x’, y’) defined by

X Xi, 1, n,

y-eb
y’ =- yd (x) / e(x),

l/e(h-b)

e(x)
eb

d(x)
1 + e(h b) 1 + e(h b)

will transform the unknown fluid domain onto 0-< y’-< 1.
By a straightforward calculation, the problem (3.1) will transform as follows (we

drop primes for the independent variables)

v(x, 1)=h(x),

(3.2)
Vy eg( e, Dr, Dh, Db), y 1,

Av ef(e, Dv, D2h, D2b), 0< y < 1,

v=b(x), y=0.

Here

(3.3) eg
1-x/l/ e21Dhl2 +

ed(x)

where Y y(1 + eh eb) + eb, and

(3.4)
-ef=(d2-1)Vyy+ [2Vx,y(Ydx,+ex,)+Vyy(Ydx,+ex,)

i=1

+ Vy( Yd,,x, + e,,x,)].
We easily see that the functions f and g are analytic in their arguments for small e.

For Problem II we suppose that B 1 + eb(O), and look for a solution in the form
(1.4). By an elementary computation on r= H(0)= ho+eh(O) we have

cu r eh
(3.5)

On x/r2 + e2h,2
Ur rx/r2/ e2h,2

Uo.

Using this formula and (1.4) in (1.2) we get

-1 + ho log r
v r ho + eh,

(3.6)

/ El)

x/r2 + e2h ’ r r/r2 + e2h’ Vo -1,

Av=0, l+eb(O)<r<ho+eh(O),

r ho+ eh,

ho log r
v= r=l+eb(O).

The change of variables (r, 0)- (r’, 0’)

r’= (ho- 1)
r-l-eb

e(h-b)+ho-1
+1, 0r--0
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818 . KORMAN

maps the fluid domain 1 + eb <- r <-_ ho+ eh onto the annulus 1 _-< r’<_- ho. The problem
(3.5) will transform as follows (dropping the primes)

(3.7)

v h+er(e, h), r= ho,

h
Vr ----00 + eg(e, Dv, Dh, Db), r= ho,

Av ef(e, D21), D h, Db), 1 < r < ho,

v hob + eq(e, b), r 1.

Here

ho log ho + eh 1
er h,

e
[voh,+vr(Rpo+qo)h,_h2_(ho+eh)2rl]+eg (ho+eh)2p e ho

with

ho-1 (ho-1)(l+eb)
/1P e(h-b)+ho-l’

q
e(h-b)+ho+l

r-q
rl-- 1+ -’5-

ef (p2 --1)lrr + Or + 1)oo

1
+--5121)or(Rpo + qo + Vrr( Rpo 3t- qo)2+ I)r( Rpoo 3f_ qoo ],
1(-

ho
eq =--(log (1 + eb)- eb ).

We verify that the functions r, g, f, q are analytic in their arguments for small e.

4. A priori estimates for the linear problem. Consider the problem (x R n)

Uy g(x), y=l,

(4.1) Au=f(x,y), 0<y<l,

u=b(x), y=0,

where f, g, and b are given functions, 2r periodic in each variable xi, 1,. ., n.
LEMMA 4.1. Assume that f Ca(V), g CI+(D). Then (4.1) has a unique 27r

periodic in each xi solution, and

(4.2) lu]+ -<- c(Ifl + Igl,+= + ]b12+=).
Pro,of Existence of solutions follows by elementary Fourier analysis, uniqueness

from the estimate

(4.3) lulo c(Iflo+lglo+lblo),

which easily follows by the maximum principle. It remains to show how one adapts
Schauder’s estimates for our problem (4.1). Redefine f, g, b as functions of compact
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EXISTENCE OF SOLUTIONS FOR FREE BOUNDARY PROBLEMS 819

support outside 0 =< xi--< 27r, i= 1,. ., n, and call the extensions f, , b, respectively.
Clearly, this can be done with say Ifl -<-21fl, I1 --< 2lgl, 171 -< 21b[. Let :I(Y), :2(Y)
be C functions on [0, 1], such that :1= 1 near y 1 and sc=0 near y =0, and
:2 1- :. Write u u+ 2u =- u + u2. Multiplying (4.1) by :1 and :, we easily get

Uly g, y=l,
(4.4)

Au=U+2Uy+If, -<y<l,

AU2 U +2Uy + zf, 0 < y <
(4.5)

u=b(x), y=0.

Using usual Schauder’s estimates (see [1, Thm. 7.3]), we get (for arbitrary small e)

lul=+--<c
i=1

and by (4.3) the lemma follows.
Next, in the plane (r, 0) consider the problem (ho log ho 1)

u+u=g(O), r=ho ( const 0),

(4.6) au f(r, 0), 1 < r < ho,

u=b(O), r=l.

Here, g, f, b are given functions 27r periodic in 0.
LEMIA 4.2. Assume b A"/, f A", g A"/, m > 0. Then (4.6) has a unique

solution and

(4.7)

xiPnProof. E ress f En=_of( r) ein g=Ln=-g, =E b,e u=,___ u(r)e o. Substituting these into (4.6) and suppressing the subscript n (i.e.,
writing f for f,, g for g,, etc.) and letting r ex, we get

1
(4.8) Uxx-n2u=e2Xf(eX), U(0)--b,--ooUx(hl)+O’U(hl)--g,
where hi =log ho-0.57. Set F(t)= e’(e’). The solution of (4.8) is

(4.9) u(x) 3’ sinh nx + b cosh nx F( t) sinh n(x- t) dr,
n

where the constant 3’ is determined from

(4.10)
3"A + b ( n sinh nh )+ tr cosh nhho

+ F(t)
1
cosh n(h-t)+trsinh n(hl-t) dt=g.

Here we denoted

(4.11)
n cosh nhl

ho
+ o" sinh nh >- cn enhl.
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820 P. KORMAN

Multiplying (4.9) by A, using (4.10) and the standard identities for hyperbolic functions,
we easily derive

au(x) g sinh nx+ b (oo cosh n(hl-X)+O" sinh n(hl-X))
ff [-ooCOShn(h-t) sinhnx+-sinhn(hl-t)sinhnxJdt(4.12) F(t)

1 cr

n

F(t) o sinh nt cosh n (h X) + --n sinh nt sinh n(h x) dr.

Then in view of (4.11) we easily estimate

lu(r)l c + Ibl +- ’ }F(t)l e dt +- IF(t)l e dt

(4.13) Nc I+lbl+-sup I/()1
n 1NrNh

c Ig+lbl+ max If(r)l
n 1NrNh

Differentiating (4.9) and going through the same steps, we estimate

(4.14) I’()lc Igl+nlbl+- max f(r)l
1NrNh0

Combining (4.13) with (4.14), and estimating lu"(r)l from the equation, we conclude
the estimate (4.7) with m 0. The higher estimates are easily proved by induction.

An a priori estimate for (4.1) is given by the following lemma whose proof is
similar to the above.

LMMa 4.3. AssumefeA, geAm+, beAm+, m =integer0. en (4.1) has a
unique 2 periodic in each x solution, and

Ilu II+=+]+z c(llfll + Ilgllm+ + bllm+=).
5. Existence and uniqueness of solutions for Problems I and II.
THEOREM 5.1. For (3.2) assume that b(x)6 C’+(D), and elbl,,+ is sufficiently

small, m=integer_->2, 0<a<1. Then there exists a pair of functions (v,h)
cm+(V) X C’+(D) satisfying (3.2).

Proof Define a map T: (w, k)-> (v, h) from C"+(V) x cm+(D) to itself by
solving

Vy eg(e, Dw, Dk, Db),

Av ef( e, D w, D2k, D2b),

v=b(x), y=0,

and then computing h(x)= v(x, 1). By Lemma 4.1 we easily conclude that the map T
is well defined, takes a ball Iwl,,+ +[kl.,+--< R, with say/R 21bl.,+, into itself, and
is a contraction for elbl.+ sufficiently small.

A similar proof could be given for Problem II. Instead, we give an existence proof
in A" spaces based on Lemma 4.2, which provides a more general approach, as will
be seen in 6.
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EXISTENCE OF SOLUTIONS FOR FREE BOUNDARY PROBLEMS 821

THEOREM 5.2. For theproblem (3.7) assume that b( O) Am, and e Ilbll is sufficiently
small, m integer-> 2. Then there exists a pair of functions v, h) A (V) x A D
satisfying (3.6).

Proof. Substituting the first equation in (3.7) into the second we get

1 e

Vr+--ooV=-O0 r(e, h + eg e(e, Or, Oh, Ob ).

Next, we define a map T" (w, k) (v, h) from Am(V) A’(D) to itself by solving

1
vr +--oo v e,(e, Dw, Dk, Db), r= ho,

(5.1) Av ef( e, D2w, D2k, D2b), 1 < r < ho,

v hob+eq(e, b), r= 1,

and then solving for h(0) from

(5.2) v(ho, O)=h+er(e’h)(h=h(e/h-l))
Notice that the map T is well defined, i.e., it takes A’(V) x A"(D) into itself, provided
ellbl],, is sufficiently small. Indeed, in view of the estimate (4.7) of Lemma 4.2, it
suffices to show that A"-(D), f A"-2(V). For this we use the special structure
of f and . Indeed, consider . By Lemma 2.3, log (ho+ eh), Po, qo, 1/(ho+ eh))-
A"-a(D) for e small (if smallness of llbll comes from Ilbll, then work in small
balls), and then by Lemma 2.2, A"-(D). Similarly, f6 Am-)- by Lemma 2.2.

Then one easily sees that map T takes the ball w ll + [[k[l. -< 2[[ b ll, into itself,
and is a contraction.

Remark. A similar argument is valid for Problem I.
Next we prove uniqueness results, using techniques similar to [3] and [4].
THEOREM 5.3. Problem I can have at most one solution (in the class offree surfaces

satisfying interior sphere condition).
Proof. Assume that this is not true, i.e., there are two solutions (u (x, y), h (x))

and (i (x, y), h (x)). By the maximum principle we conclude that 0 <- u <- 1 for b <- y <_- h,
and 0 < u < 1 for b < y < h, and also that h and h are different. Consider first the special
case, when one free surface is above the other, touching at some point, say, h (x) => h (x),
h (Xo) h (Xo). Consider w u i in the domain b -< y =< h. Then Aw 0, w 0 for
y b(x), w >-0 for y h(x) with W(Xo)=0. Hence Xo is a point of minimum for w.
Since h and h have the same normal at Xo, by Hopf’s lemma we have

Ow Ou Oo >-- (Xo) _-- (Xo) -_-- (Xo) o,
On On On

a contradiction.
Turning to the general case, we introduce translation of solution (u, h) downward,

by considering

u,(x, y) u(x, y + -), h,(x) h(x) r, r >- O.

Clearly Au, 0 for b - < y < h r. Choose " ’o so that h, =< h, and h,o(Xo) h(xo)
for some Xo. (If h and h intersect, we translate either of two solutions, if h > h then
translate (u,h).) Let D={xlxoeD and h,o(x)>b(x)}. By periodicity either D=
(-oo, oo) or D is a bounded interval. In the first case consider w i-u, with ti, u
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822 P. KORMAN

restricted to b(x) <= y <= ho(X). Then w > 0 on y b(x), w >- 0 on y ho(X), W(Xo) O,
and as before we get contradiction at the point Xo. In the second case we consider the
same w, with t, u restricted to (x, y)= {x D, b(x)<= y<= ho(X)}. Again we get the
same contradiction at x0.

THEOREM 5.4. Problem II can have at most one solution (assuming h(O) satisfying
interior sphere condition).

Proof This time we introduce contraction of the solution by considering ua
u(ar, 0)= u(ax, ay), ha h/a, a> 1. Clearly, Aua =0. By contracting one of the free
surfaces, until it is inside the other touching it at some point Xo, we get the same
contradiction at x0 as in the previous theorem. (Again, if the surfaces intersect, contract
either one; if one is outside the other, contract the outside one. Also, notice that
Otla/Onlh=ha----a <-1, as is clear from (3.5).)

6. General noncoercive problems. We discuss the problem (x R", 0 <= y <_-1)

Uy + a,Du eg(e, Dku, Dkh, Dkb),

(6.1) Au ef(e, D2u, D2h, D2b), 0< y < 1,

Uy + bDu b(x), y O.
I,1_-<1

Here h u(x, 1), g, f, and b are given functions, 27r periodic in each variable xi,

i= 1,. ., n; ce =(al, ", a,, 0), e, a, b are constants, and k, are integers whose
magnitudes are not restricted. We are looking for 27r periodic in each xi solution
u (x, y), assuming e is small.

Solving a problem of type (6.1) was the key ingredient in solving Problems I and
II, as well as in Shinbrot’s proof of existence of water waves in three dimensions. If
the boundary condition at y 1 is coercive, i.e., satisfies the Lopatinski-Schapiro
condition, then one should be able to prove existence based on Schauder’s estimates,
as we did for Problem I. In particular, in Shinbrot’s paper one has the boundary
operators (with u=u(x, y, z))uy-’(uyxx+Uyzz)+Fuxx at y= 1, and uy at y=0, which
are both coercive. Hence, it appears that Schauder’s estimates can be used, considerably
simplifying the proof.

Using A spaces one can treat more general problems, including noncoercive
ones. In particular, we have the following theorem, whose proof is similar to that of
Theorem 5.2.

THEOREM 6.1. Assume the following estimate for the problem (6.1) (with g g(x),
f =f(x,y))

with integer m >-max (2, k). Assume that the functions g and f are analytic in their
arguments and small if either e or b u h are sufficiently small. Then for

b sufficiently small the problem (6.1) has a solution.
Example. In Shinbrot’s water wave model assume that the surface tension r 0,

and the gravity is pointing up, i.e., g and F= U2/g are negative numbers, say
F -f,f>= O. Assuming for simplicity u 0 at y 0, we consider the problem (different
from the one in [10])

Uy-fUxx eg(e, Du, Dh, Db), y 1,

(6.2) Au ef(e, D2u, D2h, D2b), 0< y < 1,

u =0, y =0.
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Here u u(x, y, z), h u(x, 1, z). The boundary condition at y 1 is noncoercive (see
[7]); hence Schauder’s estimates are not valid for (6.2). However, by an argument
similar to that of Lemma 4.2 we can estimate (with g g(x, z), f=f(x, y, z))

and Theorem 6.1 applies, giving existence for (6.2). (We do not know any other way
to prove existence for (6.2).)

Acknowledgments. I wish to thank A. Friedman, P. L. Lions, and S. Stojanovic
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