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Abstract

We study solutions of the system

∆u+ kf(v) = h1(x), x ∈ Ω, u = 0 for x ∈ ∂Ω

∆v + kg(u) = h2(x), x ∈ Ω, v = 0 for x ∈ ∂Ω

on a bounded smooth domain Ω ⊂ Rn, with given functions f(t), g(t) ∈
C2(R), and h1(x), h2(x) ∈ L2(Ω). When the parameter k = 0, the problem
is linear, and uniquely solvable. We continue the solutions in k on curves
of equiharmonic solutions. We show that in the absence of resonance the
problem is solvable for any h1(x), h2(x) ∈ L2(Ω), while in case of resonance
we develop necessary and sufficient conditions for existence of solutions of
E.M. Landesman and A.C. Lazer [12] type, and sufficient conditions for
existence of solutions of D.G. de Figueiredo and W.-M. Ni [7] type. Our
approach is constructive, and computationally efficient.

Key words: Curves of equiharmonic solutions, resonance.

AMS subject classification: 35J60.

1 Introduction

We study existence of solutions for a semilinear system

∆u+ kf(v) = h1(x), x ∈ Ω, u = 0 for x ∈ ∂Ω(1.1)

∆v + kg(u) = h2(x), x ∈ Ω, v = 0 for x ∈ ∂Ω
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on a bounded smooth domain Ω ⊂ Rn. Here the functions h1(x), h2(x) ∈ L2(Ω)

and f(t), g(t) ∈ C2(R) are given, k > 0 is a parameter. There is consid-
erable recent interest in systems of this type, see e.g., the recent surveys of

D.G. de Figueiredo [6] and B. Ruf [14]. The techniques used so far, are mostly
variational and involving the degree theory. We shall obtain solutions of this

problem by continuation in k. When k = 0, the problem is linear. It has a
unique solution, which can be computed by using Fourier series of the form

u(x) = Σ∞
k=1ukϕk, v(x) = Σ∞

k=1vkϕk, where ϕk is the k-th eigenfunction of
the Laplacian on Ω, and λk is the corresponding eigenvalue. We now con-

tinue in k, looking for a solution triple (k, u, v), or (u, v) = (u(x, k), u(x, k)).
At a generic point (k, u, v), the implicit function theorem applies, allowing the
continuation in k. These are the regular points, at which the corresponding

linearized system has only the trivial solution. So until a singular point is en-
countered, we have a solution curve (u, v) = (u(x, k), u(x, k)). In case of one

equation, we have shown in [10] that one can continue forward in k, if one stays
on a curve of equiharmonic solutions. We proceed similarly here. We decom-

pose the solution u = ξ1ϕ1 + U(ξ1, η1), v = η1ϕ1 + V (ξ1, η1), and the forcing
terms h1(x) = µ0

1ϕ1 + e1(x), h2(x) = ν0
1ϕ1 + e2(x), with the functions U(ξ1, η1),

V (ξ1, η1), e1(x) and e2(x) orthogonal to ϕ1(x). When we do continuation in k,
we keep the first harmonics (ξ1, η1) fixed, but in return allow for µ1 and ν1 to

vary in k, i.e., we let (µ1, ν1) = (µ1(k), ν1(k)), with (µ1(0), ν1(0)) = (µ0
1, ν

0
1).

This gives us a curve of equiharmonic solutions. Under proper conditions, this
process allows us to continue solutions forward in k, on a smooth curve through

any point, including the nasty singular points. (I.e., a singular point of (2.2) is
no longer singular, if one stays on an equiharmonic curve.) One can think of the

curves of equiharmonic solutions as highways taking us through mountains and
swamps.

So, we continue solutions with fixed first harmonics (ξ1, η1) from k = 0 until
the desired value of k. At k, we obtain solution of the modified problem, with

µ1 = µ1(k), ν1 = ν1(k). We now vary the point (ξ1, η1), to obtain a solution of
the original problem (1.1), i.e., (µ1(k), ν1(k)) = (µ0

1, ν
0
1). Any solution of (1.1)

can be constructed this way, and we define solution manifold to be the set of all

points (µ0
1, ν

0
1), for which solution exists. We show that the pair (ξ1, η1) gives a

global parameterization of the solution manifold, i.e., the pair (ξ1, η1) uniquely

identifies the solution quadruple (µ1, ν1, u, v) solving (1.1). We consider in detail
the case when f and g are sums of linear and bounded functions. We show

that in non-resonant case the solution manifold is the whole of R2, while in
case of resonance we develop necessary and sufficient conditions for existence of

solutions of E.M. Landesman and A.C. Lazer [12] type, and sufficient conditions
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for existence of solutions of D.G. de Figueiredo and W.-M. Ni [7] type.

Our approach is suitable for efficient numerical computation of solutions.
It is easy to implement numerically the continuation process, first in k, then in

(ξ1, η1) (by the predictor-corrector, or basically the Newton’s method), since our
results guarantee that this continuation will proceed on simple smooth curves

(in particular, there is no turning back in parameters). We had performed such
computations in [9].

2 Preliminary results

Recall that on a bounded smooth domain Ω ⊂ Rn the eigenvalue problem

∆u+ λu = 0 on Ω, u = 0 on ∂Ω

has an infinite sequence of eigenvalues 0 < λ1 < λ2 ≤ λ3 ≤ . . . → ∞, where
we repeat each eigenvalue according to its multiplicity, and the corresponding

eigenfunctions we denote by ϕk. These eigenfunctions ϕk form an orthogonal
basis of L2(Ω), i.e., any f(x) ∈ L2(Ω) can be written as f(x) = Σ∞

k=1akϕk,

with the series convergent in L2(Ω), see e.g. L. Evans [5]. We shall normalize
||ϕk||L2(Ω) = 1 for all k.

Lemma 2.1 Assume that u(x) ∈ H1
0 (Ω), and u(x) = Σ∞

k=2akϕk. Then

∫

Ω
|∇u|2 dx ≥ λ2

∫

Ω
u2 dx.

Proof: Since u(x) is orthogonal to ϕ1, the proof follows by the variational
characterization of λ2. ♦

Lemma 2.2 Assume that u(x) ∈ H2(Ω)∩H1
0 (Ω), and u(x) = Σ∞

k=2akϕk. Then

∫

Ω
(∆u)2 dx ≥ λ2

∫

Ω
|∇u|2 dx.

Proof: We have, using Lemma 2.1,

∫

Ω |∇u|2 dx = −
∫

Ω u∆u dx ≤
(∫

Ω u
2 dx

)1/2 (∫

Ω(∆u)2 dx
)1/2

≤ 1√
λ2

(∫

Ω |∇u|2 dx
)1/2 (∫

Ω(∆u)2 dx
)1/2

,

and the proof follows. ♦
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We consider the following linear system: find (w(x), z(x), µ1, ν1) solving

∆w + a(x)z = µ1ϕ1, x ∈ Ω, w = 0 for x ∈ ∂Ω(2.1)

∆z + b(x)w = ν1ϕ1, x ∈ Ω, z = 0 for x ∈ ∂Ω
∫

Ωw(x)ϕ1(x) dx =
∫

Ω z(x)ϕ1(x) dx = 0 ,

where a(x) ∈ C(Ω̄) and b(x) ∈ C(Ω̄) are given continuous functions, while µ1

and ν1 are unknown constants. We assume throughout this section that solutions
of (2.1) (and of (2.4) below) satisfy w, z ∈ H2(Ω) ∩H1

0 (Ω). Define

A = max
x∈Ω̄

|a(x) + b(x)| .(2.2)

Lemma 2.3 Assume that

A < 2λ2 .(2.3)

Then the only solution of the problem (2.1) is w(x) = z(x) ≡ 0, µ1 = ν1 = 0.

Proof: Multiply the first equation in (2.1) by w, the second one by z, add
and integrate:

∫

Ω
(|∇w|2 + |∇z|2) dx =

∫

Ω
(a(x) + b(x))zwdx .

The quantity on the left is bounded from below by λ2

∫

Ω(w2 + z2) dx, in view of
Lemma 2.1, while the integral on the right is bounded from above by A

2

∫

Ω(w2 +

z2) dx. It follows that w(x) = z(x) ≡ 0, and then from (2.1), µ1 = ν1 = 0. ♦
We need to consider another linear system

∆w + a(x)z = 0, x ∈ Ω, w = 0 for x ∈ ∂Ω(2.4)

∆z + b(x)w = 0, x ∈ Ω, z = 0 for x ∈ ∂Ω .

Lemma 2.4 Assume that (with A defined by (2.2))

A < 2
√

λ1λ2 .(2.5)

Then the solution space of the problem (2.4) is one dimensional.

Proof: Assume on the contrary that (w, z) and (w1, z1) are two non-trivial

solutions of (2.4), which are not constant multiples of one another. Claim:
we can find a non-trivial solution of (2.4), with

∫

Ωwϕ1 dx = 0, i.e., with the

first component orthogonal to ϕ1. Indeed, consider a ≡
∫

Ωwϕ1 dx, and b ≡
∫

Ωw1ϕ1 dx. If either a or b is zero, there is nothing to prove. Otherwise, consider
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( 1
aw− 1

bw1,
1
az− 1

b z1), which is a non-trivial solution of (2.4). Its first component

is orthogonal to ϕ1.

So let (w, z) be a non-trivial solution of (2.4), with
∫

Ωwϕ1 dx = 0. Using

Lemma 2.1 and the Poincare’s inequality, we obtain from the corresponding
equations in (2.4)

∫

Ω
a(x)w z dx =

∫

Ω
|∇w|2 dx ≥ λ2

∫

Ω
w2 dx ;

∫

Ω
b(x)wz dx =

∫

Ω
|∇z|2 dx ≥ λ1

∫

Ω
z2 dx .

Adding,

A

∫

Ω
|w z| dx ≥

∫

Ω
(a(x) + b(x)) w z dx ≥ λ2

∫

Ω
w2 dx+ λ1

∫

Ω
z2 dx .(2.6)

We have

A

∫

Ω
|w z| dx =

∫

Ω

√

2λ2|w|
A√
2λ2

|z| dx ≤ λ2

∫

Ω
w2 dx+

A2

4λ2

∫

Ω
z2 dx .

Using this in (2.6),
A2

4λ2

∫

Ω
z2 dx ≥ λ1

∫

Ω
z2 dx

which implies that A2 ≥ 4λ1λ2, contrary to our assumption (if
∫

Ω z
2 dx = 0,

then w = z = 0, and the solution is trivial). ♦
We consider the non-homogeneous version of (2.4)

∆w + a(x)z = h1(x), x ∈ Ω, w = 0 for x ∈ ∂Ω(2.7)

∆z + b(x)w = h2(x), x ∈ Ω, z = 0 for x ∈ ∂Ω .

with given h1(x), h2(x) ∈ L2(Ω), and as before, w, z ∈ H2(Ω)∩H1
0 (Ω). We shall

need the following version of the Fredholm alternative.

Lemma 2.5 If the homogeneous problem (2.4) has only the trivial solution,
then the problem (2.7) is solvable for any h1(x) and h2(x). If the homogeneous

problem (2.4) has a one-dimensional solution set spanned by (W (x), Z(x)), then
the problem (2.7) is solvable if and only if

∫

Ω
(h1(x)Z(x) + h2(x)W (x)) dx = 0 .(2.8)
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Proof: Multiply the first equation in (2.7) by Z, and subtract from that the

second equation in (2.4) (written for (W (x), Z(x))) by w, then integrate:
∫

Ω
(a(x)zZ − b(x)wW ) dx =

∫

Ω
h1(x)Z(x) dx .

Similarly, from the second equation in (2.7) and the first equation in (2.4)

−
∫

Ω
(a(x)zZ − b(x)wW ) dx =

∫

Ω
h2(x)W (x) dx .

Adding, we see that the condition (2.8) is necessary for existence of solutions.

By the elliptic theory, the solution map of (2.7) (h1, h2) → (w, z) is a Fred-

holm operator of index zero. Hence, this map is onto, if the kernel is zero. If the
kernel is one-dimensional, the range has co-dimension one. If the problem (2.7)
was not solvable for some right hand sides satisfying (2.8), the range would have

co-dimension greater than one, which is impossible. ♦

3 Continuation of solutions in k, with first harmonics

fixed

We now consider a nonlinear problem, depending on a parameter k

∆u+ kf(v) = µ1ϕ1 + e1(x), x ∈ Ω, u = 0 for x ∈ ∂Ω(3.1)

∆v + kg(u) = ν1ϕ1 + e2(x), x ∈ Ω, v = 0 for x ∈ ∂Ω
∫

Ω u(x)ϕ1(x) dx = ξ1;
∫

Ω v(x)ϕ1(x) dx = η1 .

The functions f and g are assumed to be of the form

f(t) = λt+ b1(t), g(t) = λ̄t+ b2(t) ,(3.2)

with positive constants λ and λ̄, and bounded functions b1(t) and b1(t) of class
C1(R). We assume that solutions of (3.1) satisfy u, v ∈ H2(Ω) ∩H1

0 (Ω).
In accordance with the third line of (3.1), we decompose solution in the form

u(x) = ξ1ϕ1 + U , v(x) = η1ϕ1 + V , with both U = U(ξ1, η1) and V = V (ξ1, η1)
orthogonal to ϕ1. Our goal is to continue the solution of (3.1) in k, while keeping

ξ1 and η1 fixed.

Theorem 3.1 Assume that e1(x) and e2(x) are given functions in L2(Ω), with
∫

Ω e1(x)ϕ1(x) dx =
∫

Ω e2(x)ϕ1(x) dx = 0, and the following conditions hold, with

some constants M1 and M2,

|f ′(t)| = |λ+ b′1(t)| < M1, |g′(t)| = |λ̄+ b′2(t)| < M2, for all t ∈ R ;(3.3)
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kM1 + kM2 < 2
√

λ1λ2 .(3.4)

Then for any pair (ξ1, η1) ∈ R2 there exists a unique quadruple (µ1, ν1, u, v)
solving (3.1).

Proof: Assume first that ξ1 = η1 = 0. Define H2
0

to be the subspace of

H2(Ω) ∩H1
0 (Ω) with zero first harmonic:

H2
0 =

{

u ∈ H2(Ω) ∩H1
0 (Ω) |

∫

Ω
uϕ1 dx = 0

}

.

We recast the system (3.1) in the operator form

F (u, v, µ1, ν1, k) = e(x) ,(3.5)

where F (u, v, µ1, ν1, k) =

[

∆u+ kf(v)− µ1ϕ1

∆v + kg(u)− ν1ϕ1

]

, F : H2
0
×H2

0
×R3 → L2(Ω)×

L2(Ω), and e(x) =

[

e1(x)

e2(x)

]

. When k = µ1 = ν1 = 0, the problem (3.5) has

a unique solution, which is easily found using Fourier series. We now continue

this solution in k, i.e., we solve for (u, v, µ1, ν1) as functions of k. Compute the
Frechet derivative

F(u,v,µ1,ν1)(u, v, µ1, ν1, k)(w, z, µ
∗
1, ν

∗
1) =

[

∆w + kf ′(v)z − µ∗1ϕ1

∆z + kg′(u)w− ν∗1ϕ1

]

.

To apply the implicit function theorem, we need to check that this map is both

injective and surjective. In view of the assumptions (3.3) and (3.4), the Lemma
2.3 applies, and hence the only solution of the linearized problem

∆w + kf ′(v)z − µ∗1ϕ1 = 0, x ∈ Ω, w = 0, for x ∈ ∂Ω(3.6)

∆z + kg′(u)w− ν∗1ϕ1 = 0, x ∈ Ω, z = 0, for x ∈ ∂Ω
∫

Ω wϕ1 dx =
∫

Ω zϕ1 dx = 0

is (w, z, µ∗1, ν
∗
1) = (0, 0, 0, 0), proving the injectivity.

Turning to the surjectivity, we need to show that for any e∗(x) =

[

e∗1(x)

e∗2(x)

]

∈

L2(Ω)× L2(Ω) the problem

∆w + kf ′(v)z − µ∗1ϕ1 = e∗1(x), x ∈ Ω, w = 0, for x ∈ ∂Ω(3.7)

∆z + kg′(u)w− ν∗1ϕ1 = e∗2(x), x ∈ Ω, z = 0, for x ∈ ∂Ω
∫

Ω wϕ1 dx =
∫

Ω zϕ1 dx = 0

7



has a solution (w, z, µ∗1, ν
∗
1). Consider an auxiliary problem

∆w + kf ′(v)z = µ∗1ϕ1 + e∗1(x), x ∈ Ω, w = 0, for x ∈ ∂Ω(3.8)

∆z + kg′(u)w = ν∗1ϕ1 + e∗2(x), x ∈ Ω, z = 0, for x ∈ ∂Ω ,

which differs from (3.7) only in not requiring vanishing first harmonics. Denote

L

[

w

z

]

=

[

∆w + kf ′(v)z

∆z + kg′(u)w

]

.

Case 1 The operator L, subject to the zero boundary conditions in (3.8) is
invertible. Then we express from (3.8)

[

w

z

]

= µ∗1L
−1

[

ϕ1

0

]

+ ν∗1L
−1

[

0
ϕ1

]

+ L−1

[

e∗1
e∗2

]

.

We now select the constants µ∗1 and ν∗1 , so that the orthogonality conditions in

the last line of (3.7) are satisfied. Denote L−1

[

ϕ1

0

]

=

[

ψ11

ψ12

]

, L−1

[

0
ϕ1

]

=

[

ψ21

ψ22

]

, and L−1

[

e∗1
e∗2

]

=

[

γ1

γ2

]

. Then we need

µ∗1
∫

Ω ψ11ϕ1 dx+ ν∗1
∫

Ω ψ21ϕ1 dx = −
∫

Ω γ1ϕ1 dx

µ∗1
∫

Ω ψ12ϕ1 dx+ ν∗1
∫

Ω ψ22ϕ1 dx = −
∫

Ω γ2ϕ1 dx .

This system has a unique solution, unless the columns of its matrix are propor-
tional, i.e.,

[

∫

Ω ψ11ϕ1 dx
∫

Ω ψ12ϕ1 dx

]

= θ

[

∫

Ω ψ21ϕ1 dx
∫

Ω ψ22ϕ1 dx

]

for some number θ. I.e., the vector

[

ψ11

ψ12

]

− θ

[

ψ21

ψ22

]

≡
[

w̄

z̄

]

has both

components orthogonal to ϕ1. This vector satisfies

[

w̄

z̄

]

= L−1

[

φ1

−θφ1

]

, i.e.,

∆w̄ + kf ′(v)z̄ = ϕ1, x ∈ Ω, w̄ = 0, for x ∈ ∂Ω

∆z̄ + kg′(u)w̄ = −θϕ1, x ∈ Ω, z̄ = 0, for x ∈ ∂Ω
∫

Ω w̄ϕ1 dx =
∫

Ω z̄ϕ1 dx = 0 ,

which is impossible by Lemma 2.3 (here µ1 = 1 6= 0, ν1 = −θ).
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Case 2 The operator L, subject to the zero boundary conditions in (3.8) is

not invertible. According to Lemma 2.4, the null space of L is one dimensional,

spanned by some

[

Ū

V̄

]

, and according to the Fredholm alternative, the problem

L

[

w

z

]

=

[

h1

h2

]

is solvable if and only if

∫

Ω

[

h1V̄ + h2Ū
]

dx = 0 .

According to the Lemma 2.3, either
∫

Ω Ūϕ1 dx 6= 0 or
∫

Ω V̄ ϕ1 dx 6= 0 (or both

inequalities hold). Let us assume that
∫

Ω Ūϕ1 dx 6= 0. Then by the Fredholm

alternative, we can find the constants δ1 and δ2, so that

[

ϕ1

δ1ϕ1

]

∈ R(L), and

[

e∗1
e∗2 + δ2ϕ1

]

∈ R(L), where R(L) denotes the range of L.

Our goal is to find a constant t, such that the problem

L

[

w

z

]

= t

[

ϕ1

δ1ϕ1

]

+

[

e∗1
e∗2 + δ2ϕ1

]

w = z = 0 on ∂Ω(3.9)
∫

Ω wϕ1 dx =
∫

Ω zϕ1 dx = 0

is solvable. Indeed, then the pair (w, z) gives us a solution of (3.7), corresponding

to µ∗1 = t and ν∗1 = tδ1 + δ2. We express from (3.9)

[

w

z

]

= tL−1

[

ϕ1

δ1ϕ1

]

+ L−1

[

e∗1
e∗2 + δ2ϕ1

]

+ s

[

Ū

V̄

]

,

where s is an arbitrary constant. Denoting L−1

[

ϕ1

δ1ϕ1

]

=

[

ψ11

ψ12

]

, and

L−1

[

e∗1
e∗2 + δ2ϕ1

]

=

[

γ1

γ2

]

, we have

[

w

z

]

= t

[

ψ11

ψ12

]

+ s

[

Ū

V̄

]

+

[

γ1

γ2

]

.

9



To satisfy the last line in (3.9), we need

t
∫

Ω ψ11ϕ1 dx+ s
∫

Ω Ūϕ1 dx = − ∫

Ω γ1ϕ1 dx

t
∫

Ω ψ12ϕ1 dx+ s
∫

Ω V̄ ϕ1 dx = − ∫

Ω γ2ϕ1 dx .

This system has a unique solution (and we are done), unless the columns of its
matrix are proportional, i.e.,

[

∫

Ω ψ11ϕ1 dx
∫

Ω ψ12ϕ1 dx

]

= θ

[

∫

Ω Ūϕ1 dx
∫

Ω V̄ ϕ1 dx

]

for some number θ. I.e., the vector

[

ψ11

ψ12

]

− θ

[

Ū

V̄

]

≡
[

w̄

z̄

]

has both com-

ponents orthogonal to ϕ1. This vector satisfies L

[

w̄

z̄

]

=

[

φ1

δ1φ1

]

, i.e.,

∆w̄ + kf ′(v)z̄ = ϕ1, x ∈ Ω, w̄ = 0, for x ∈ ∂Ω

∆z̄ + kg′(u)w̄ = δ1ϕ1, x ∈ Ω, z̄ = 0, for x ∈ ∂Ω
∫

Ω w̄ϕ1 dx =
∫

Ω z̄ϕ1 dx = 0 ,

which is impossible by Lemma 2.3 (here µ1 = 1 6= 0, ν1 = δ1).

We now consider the case of general first harmonics (ξ1, η1), and reduce it to

the case (ξ1, η1) = (0, 0), by setting ū(x) = u(x)− ξ1ϕ1, and v̄(x) = v(x)−η1ϕ1.
Then (ū, v̄) satisfies

∆ū+ kf(v̄ + η1ϕ1) = (µ1 + λ1ξ1)ϕ1 + e1(x), ū = 0 for x ∈ ∂Ω(3.10)

∆v̄ + kg(ū+ ξ1ϕ1) = (ν1 + λ1η1)ϕ1 + e2(x), v̄ = 0 for x ∈ ∂Ω
∫

Ω ū(x)ϕ1(x) dx =
∫

Ω v̄(x)ϕ1(x) dx = 0 .

Even though this problem is slightly different from (3.1), the bounds on the
derivatives of f and g remain the same, so that we can repeat the above ar-

gument, and obtain a curve of solutions of (3.10). Then (u(x, k), v(x, k)) is a
solution curve of the original problem (3.1).

To show that the local solution curve (u(x, k), v(x, k)) continues for all k,
satisfying (3.3) and (3.4), we need to show that this curve cannot go to infinity,

i.e., we need an a priori estimate. Since the values of ξ1 and η1 are kept fixed on
the curve, we only need to estimate U and V . We claim that there is a constant
c > 0, independent of the solution (u(x, k), v(x, k)), so that

||U ||H2(Ω) + ||V ||H2(Ω) ≤ c .(3.11)
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Writing u(x) = ξ1ϕ1 + U , v(x) = η1ϕ1 + V , we have from (3.1) and (3.2)

∆U + kλV + kb1(η1ϕ1 + V ) = (µ1 + λ1ξ1 − kλη1)ϕ1 + e1(x),(3.12)

∆V + kλ̄U + kb2(ξ1ϕ1 + U) = (ν1 + λ1η1 − kλ̄ξ1)ϕ1 + e2(x) .

We multiply the first equation by U , the second one by V , and add

∫

Ω |∇U |2 +
∫

Ω |∇V |2 dx− k(λ+ λ̄)
∫

Ω U V dx =(3.13)

k
∫

Ω b1U dx+ k
∫

Ω b2V dx− ∫

Ω e1U dx−
∫

Ω e2V dx .

Using Lemma 2.1, and (3.4), we estimate the left hand side of (3.13) from
below by

(2λ2 − kλ− kλ̄)

∫

Ω
(U2 + V 2) dx ≥ c0

∫

Ω
(U2 + V 2) dx ,

for some c0 > 0. Combining that with an estimate of the right hand side of

(3.13), we conclude a bound on
∫

Ω(U2 + V 2) dx. Returning to (3.13) again,
we conclude a bound on

∫

Ω

(

|∇U |2 + |∇V |2
)

dx. Next, we multiply the first
equation in (3.12) by ∆U , and integrate over Ω. Observe that

∫

Ω ∆Uϕ1 dx = 0,

giving us
∫

Ω
(∆U)2 dx+ kλ

∫

Ω
∆UV dx+ k

∫

Ω
∆Ub1 dx =

∫

Ω
∆Ue1(x) dx .

Integrating by parts in the second term, and using the estimate just obtained, we
estimate

∫

Ω(∆U)2 dx. We estimate
∫

Ω(∆V )2 dx similarly, and by the standard

elliptic estimates we conclude (3.11). ♦
Remark Observe that the a priori estimate (3.11) is uniform in ξ1 and η1.

4 Continuation in (ξ1, η1) for k fixed

The Theorem 3.1 implies that the pair (ξ1, η1) uniquely identifies the solution
quadruple (µ1, ν1, u, v)(k) solving (3.1). We call (ξ1, η1) to be the signature of

solution. The solution set of the original problem (1.1) can be faithfully described
by the map (ξ1, η1) ∈ R2 → (µ1, ν1) ∈ R2, which we call the solution manifold.

For example, if this map is onto, then the original problem (1.1) is solvable for
any h1(x) and h2(x). We show next that the solution manifold is connected.

Theorem 4.1 In the conditions of Theorem 3.1, we can continue solutions of
(1.1) of any signature (ξ̄1, η̄1) to solution of arbitrary signature (ξ̂1, η̂1), by follow-

ing any continuous curve (ξ1(t), η1(t)) joining (ξ̄1, η̄1) and (ξ̂1, η̂1), and obtaining
a continuous curve of solutions (u(t), v(t), µ1(t), ν1(t)).
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Proof: Let ξ1 = α(t), η1 = β(t), 0 ≤ t ≤ 1, be any continuous curve joining

these points, with (α(0), β(0)) = (ξ̄1, η̄1), and (α(1), β(1)) = (ξ̂1, η̂1). Arguing as
in the proof of Theorem 3.1, we show that continuation in t can be performed

similarly to the continuation in k above. In particular, the linearized problem is
the same as (3.6), and the implicit function theorem applies the same way (see

[9], [10], where more details were given on the continuation in the first harmonic).
By the a priori estimate (3.11), which is is uniform in ξ1 and η1, solutions on

the curve remain bounded in H2 norm. ♦

5 Solution manifold and existence of solutions

We now return to the original problem (1.1)

∆u+ f(v) = h1(x), x ∈ Ω, u = 0 for x ∈ ∂Ω(5.1)

∆v + g(u) = h2(x), x ∈ Ω, v = 0 for x ∈ ∂Ω ,

where h1(x) = µ0
1ϕ1 + e1(x), and h2(x) = ν0

1ϕ1 + e2(x), with e1(x) and e2(x)

orthogonal to ϕ1, and the functions f(t) and g(t) satisfy (3.2), i.e., f(t) =
λt+b1(t) and g(t) = λ̄t+b2(t), with bounded b1(t) and b2(t). Here we set k = 1,

which does not restrict the generality, since we may redefine λ, λ̄ and b1, b2.
This problem is solvable if and only if the pair (µ0

1, ν
0
1) belongs to the solution

manifold. To make the presentation easier, we assume that b1(t) and b2(t) have
finite limits at ±∞, and

bi(−∞) < bi(t) < bi(∞), for t ∈ (−∞,∞), i = 1, 2 .(5.2)

Theorem 5.1 Assume that the conditions of the Theorem 3.1 hold, with k = 1.
If λλ̄ 6= λ2

1, then the system (5.1) has a solution for any h1(x), h2(x) ∈ L2(Ω).
In the resonance case λλ̄ = λ2

1, the system (5.1) has a solution if and only if

(λ1b1(−∞) + λb2(−∞))

∫

Ω
ϕ1 dx < λ1µ

0
1 +λν0

1 < (λ1b1(∞) + λb2(∞))

∫

Ω
ϕ1 dx .

(5.3)

Proof: As before, we decompose u(x) = ξ1ϕ1 + U(ξ1, η1) and v(x) =
η1ϕ1 + V (ξ1, η1), with U and V orthogonal to ϕ1. By the Theorem 3.1, for

any pair (ξ1, η1) we can find (µ1, ν1, u, v) solving (5.1). Our goal is to find a pair
(ξ1, η1), so that (µ1, ν1) = (µ0

1, ν
0
1). Multiplying each equation in (5.1) by ϕ1,

and integrating, we have

µ0
1 = −λ1ξ1 + λη1 +

∫

Ω b1(η1ϕ1 + V (ξ1, η1))ϕ1 dx(5.4)

ν0
1 = λ̄ξ1 − λ1η1 +

∫

Ω b2(ξ1ϕ1 + U(ξ1, η1))ϕ1 dx .
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Let us denote I1(ξ1, η1) =
∫

Ω b1(η1ϕ1 +V (ξ1, η1))ϕ1 dx, I2(ξ1, η1) =
∫

Ω b2(ξ1ϕ1 +

U(ξ1, η1))ϕ1 dx, and A =

[

−λ1 λ

λ̄ −λ1

]

. Assume first that the matrix A is

invertible, i.e.,
λλ̄ 6= λ2

1 .(5.5)

Then we rewrite (5.4) as

[

ξ1
η1

]

= A−1

[

µ0
1

ν0
1

]

−A−1

[

I1(ξ1, η1)
I2(ξ1, η1)

]

.(5.6)

The right hand side of (5.6) gives a continuous map of a sufficiently large ball
around the origin in the plane (ξ1, η1) into itself, and hence existence of solutions

for (5.6) follows by Brouwer’s fixed point theorem. We present next another
proof of solvability of (5.6), which gives an indication as to where one should

search for the solution numerically, and it also introduces the method of sliding

lines that we shall use in the resonance case. Let A−1 =

[

α β

γ δ

]

, with some

α, β, γ and δ. Denoting

[

A0

B0

]

= A−1

[

µ0
1

ν0
1

]

, we rewrite (5.6) as

A(ξ1, η1) ≡ ξ1 +
∫

Ω (αb1 + βb2)ϕ1 dx = A0(5.7)

B(ξ1, η1) ≡ η1 +
∫

Ω (γb1 + δb2)ϕ1 dx = B0 .

In (ξ1, η1) plane consider a vertical line ξ1 = N , −∞ < η1 < ∞. On each such

line we can find a point where the second equation in (5.7) holds (by continuity,
since B(ξ1, η1) → ∞ (−∞), as η1 → ∞ (−∞)), while at this point A(ξ1, η1) is

large and negative (positive) if N is large and negative (positive). Sliding this
line, i.e., varying N from −∞ to ∞, we obtain a solution of (5.7).

Next, consider the case of resonance

λλ̄ = λ2
1 .(5.8)

We then conclude from (5.4)

λ1µ
0
1 + λν0

1 =

∫

Ω
[λ1b1(η1ϕ1 + V ) + λb2(ξ1ϕ1 + U)]ϕ1 dx ,(5.9)

from which it follows that (5.3) is a necessary condition for solvability. (By the
a priori estimate (3.11), which is uniform in ξ1 and η1, it follows that

∫

Ω b1(η1ϕ1+

V )ϕ1 dx→ b1(±∞)
∫

Ω ϕ1 dx as η1 → ±∞, and
∫

Ω b2(ξ1ϕ1+U)ϕ1 dx→ b2(±∞)
∫

Ω ϕ1 dx

as ξ1 → ±∞, see [10] for a detailed argument.)
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Turning to the sufficiency of the condition (5.3), we recall that by the The-

orem 3.1, for any pair (ξ1, η1) we can find (µ1, ν1, u, v) solving

∆u+ λv + b1(η1ϕ1 + V ) = µ1ϕ1 + e1, x ∈ Ω, u = 0 for x ∈ ∂Ω(5.10)

∆v + λ̄u+ b2(ξ1ϕ1 + U) = ν1ϕ1 + e2, x ∈ Ω, v = 0 for x ∈ ∂Ω ,

and our goal is to find a point (ξ01 , η
0
1) at which (µ1, ν1) = (µ0

1, ν
0
1). Multiplying

each equation in (5.10) by ϕ1, and integrating, we have

µ1 = −λ1ξ1 + λη1 +
∫

Ω b1(η1ϕ1 + V )ϕ1 dx(5.11)

ν1 = λ̄ξ1 − λ1η1 +
∫

Ω b2(ξ1ϕ1 + U)ϕ1 dx .

Then

λ1µ1 + λν1 =

∫

Ω
[λ1b1(η1ϕ1 + V ) + λb2(ξ1ϕ1 + U)]ϕ1 dx .(5.12)

In (ξ1, η1) plane we consider a line LA : −λ1ξ1 +λη1 = A, where A is a constant.
Along this line η1 → +∞ (−∞), when ξ1 → +∞ (−∞). Hence, the right hand

side in (5.12) varies along LA between the lower and upper limits in (5.3). By
(5.3), along each line LA we can find a point PLA

, so that

λ1µ1 + λν1 = λ1µ
0
1 + λν0

1 .(5.13)

We see from the first equation in (5.11) that when A is large and positive, µ1

is also large and positive, i.e., µ1 > µ0
1 at the point PLA

. Similarly, when A is

large and negative, µ1 < µ0
1 at PLA

. By continuity, we can find an A, so that
µ1 = µ0

1 at PLA
. But then from (5.13), we also have ν1 = ν0

1 at PLA
. ♦

Next, we obtain an analog of D.G. de Figueiredo and W.-M. Ni [7] result,
where existence of solution for a single equation at resonance is proved without
the Landesman - Lazer condition. We consider the system

∆u+ λv + b1(v) = µ0
1ϕ1(x) + e1(x), x ∈ Ω, u = 0 for x ∈ ∂Ω(5.14)

∆v +
λ2

1

λ v + b2(u) = ν0
1ϕ1(x) + e2(x), x ∈ Ω, v = 0 for x ∈ ∂Ω ,

where as before
∫

Ω e1(x)ϕ1(x) dx =
∫

Ω e2(x)ϕ1(x) dx = 0, and λ is a positive
number.

Theorem 5.2 Assume that the bounded functions b1(t) and b2(t) ∈ C1(R) sat-
isfy b1(t)t > 0 and b2(t)t > 0, for all t ∈ R, and assume also that the functions

f(t) ≡ λt+ b1(t) and g(t) ≡ λ2

1

λ t+ b2(t) satisfy

|f ′(t)| = |λ+ b′1(t)| < M1, |g′(t)| = |λ
2
1

λ
+ b′2(t)| < M2, for all t ∈ R ;
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M1 +M2 < 2
√

λ1λ2 .

Then the problem (5.14) is solvable for any (µ0
1, ν

0
1), which lies on the line

λ1µ
0
1 + λν0

1 = 0 .(5.15)

Proof: We have the formulas (5.11) and (5.12) as before, and again we wish
to show that (µ1, ν1) = (µ0

1, ν
0
1 ) for some choice of (ξ1, η1). Consider the lines

LA: −λ1ξ1 + λη1 = A in (ξ1, η1) plane. As ξ1, η1 → ∞ along any such line,
λ1µ1 + λν1 is positive, as follows from (5.12) and our conditions. On the same

line, as ξ1, η1 → −∞, λ1µ1 + λν1 is negative. Hence, on any line LA we can
find a point PLA

, where λ1µ1 + λν1 = 0. We now vary the line LA. If A is

large in absolute value and positive (negative), we see from the first equation
in (5.11) that µ1 is large in absolute value and positive (negative) at the point

PLA
. Hence, we can find a line, such that µ1 = µ0

1 at the point PLA
, and then,

from (5.15), µ2 = µ0
2. ♦
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