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Abstract. For a class of two-point boundary value problems we prove exact-
ness of an S-shaped bifurcation curve. Our result applies to a problem from
combustion theory, which involves nonlinearities like eau/(u+a) for a > 0.

1. Introduction

We consider positive solutions of

u′′ + λf(u) = 0 on (−1, 1), u(−1) = u(1) = 0.(1.1)

Here λ is a positive parameter, and we wish to describe all solutions of (1.1) for all
values of λ. Our main example will be f(u) = e

au
u+a . This nonlinearity is connected

with the steady state of gas combustion according to the Arhenius law (see e.g. J.
Bebernes and D. Eberly [2]), and has been studied before (see K.J. Brown, M.M.A.
Ibrahim and R. Shivaji [3], R. Shivaji [10] and A. Castro and R. Shivaji [4]). For the
above nonlinearity it was shown that for a ≤ 4 there exists a unique positive solution
for all λ, while for a large the solution diagram is roughly S-shaped, i.e. there is
a range of λ for which there exist at least three solutions. Moreover, uniqueness
of solution was proved for small and for large λ. In this paper we show that the
solution diagram consists of exactly one curve, which is exactly S-shaped, for a
class of nonlinearities which includes the one above for a > a0, where a0 is defined
below (a0 ' 4.35). The bifurcation diagram is given in Figure 1(a). A similar
result was proved by S.-H. Wang [11] using the quadrature technique. In addition
to obtaining an alternative proof, we do not require the boundness of f(u), as was
the case in [11]. This brings up a possibility of another type of S-shaped solution
curves, as in Figure 1(b). Moreover, when verifying the conditions of the theorem
for f(u) = e

au
u+a , we introduce another technical improvement, which shortens the

proof and produces a better critical constant.
Among recent contributions to S-shaped bifurcations, we mention N. Mizoguchi

and T. Suzuki [9], and Y. Du and Y. Lou [7], where S-shaped bifurcation occurred
in the predator-prey model.

We use tools from bifurcation theory, particularly the Crandall-Rabinowitz bi-
furcation theorem, which is recalled below, and the techniques from P. Korman, Y.
Li and T. Ouyang [8].
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Figure 1. Two types of S-shaped solution curves

We assume that f(u) ∈ C2[0, ū] for some 0 < ū ≤ ∞ and that it satisfies

f(u) > 0 for all 0 ≤ u < ū;(1.2)

also there is α ∈ (0, ū) such that

f ′′(u) > 0 for u ∈ (0, α), f ′′(u) < 0 for u ∈ (α, ū).(1.3)

We also assume that f(u) is “sublinear”, i.e. either ū is finite and f(ū) = 0, or else

lim
u→∞

f(u)
u

= 0.(1.4)

Remark. We denote F (u) =
∫ u

0
f(t) dt. If u(x) is a positive solution of (1.1), then

necessarily F (u(0)) > 0 and f(u(0)) > 0. Therefore, if condition f(ū) = 0 holds,
then all possible values of u(0) must lie in a single interval (0, ū).

For f(u) = e
au

u+a one computes α = 1
2a2 − a. In Theorem 2.1 below we make

a further assumption on f(u), which in particular implies that it is “sufficiently
convex” in the beginning.

Next we recall the bifurcation theorem of Crandall and Rabinowitz [5].

Theorem 1.1 ([5]). Let X and Y be Banach spaces. Let (λ, x) ∈ R×X and let F
be a continuously differentiable mapping of an open neighborhood of (λ, x) into Y .
Let the nullspace N(Fx(λ, x))=span{x0} be one-dimensional and codim R(Fx(λ, x))
= 1. Let Fλ(λ, x) 6∈ R(Fx(λ, x)). If Z is a complement of span {x0} in X, then the
solutions of F (λ, x) = F (λ, x) near (λ, x) form a curve

(λ(s), x(s)) = (λ + τ(s), x + sx0 + z(s)),

where s → (τ(s), z(s)) ∈ R×Z is a continuously differentiable function near s = 0
and τ(0) = τ ′(0) = 0, z(0) = 0, and z′(0) = 0.

We shall write u(x, λ) to denote solutions of (1.1). Notice that taking the interval
(−1, 1) does not restrict the generality for the autonomous equation (1.1).
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2. The global solution curve

We consider positive solutions of

u′′ + λf(u) = 0 on (−1, 1), u(−1) = u(1) = 0.(2.1)

Our main example will be f(u) = e
au

u+a . Here a is a fixed positive constant, and
λ a positive parameter. We wish to describe all positive solutions of (2.1) as the
parameter λ varies.

The linearized equation corresponding to (2.1) is

w′′ + λf ′(u)w = 0 on (−1, 1), w(−1) = w(1) = 0.(2.2)

If (2.2) has nontrivial solutions at some solution u(x) of (2.1), we refer to (λ, u) as
a critical point of (2.1).

Assume there is a β ≥ α such that

f2(β)− 2F (β)f ′(β) > 0.(2.3)

The following lemma is an adaptation of Lemma 2.5 in [8].

Lemma 2.1. Assume that f(u) satisfies the condition (1.2), (1.3) and (1.4). Let
(λ, u) be any critical point of (2.1), with u(0) ≥ β, and w(x) is the corresponding
solution of (2.2). Then ∫ 1

0

f ′′(u)uxw2dx > 0.(2.4)

Proof. We shall derive a convenient expression for the integral in (2.4). Differenti-
ating (2.2) gives

w′′x + λf ′(u)wx + λf ′′(u)uxw = 0.(2.5)

From equations (2.2) and (2.5)

(ww′x − w′2)′ + λf ′′(u)uxw2 = 0.

Integrating, we express

λ

∫ 1

0

f ′′(u)uxw2dx = −(ww′′ − w′2)|10(2.6)

= w′2(1)− λw2(0)f ′(u(0)).

Differentiating (2.1) gives

u′′x + λf ′(u)ux = 0.(2.7)

From (2.2) and (2.7)
(wu′′ − u′w′)′ = 0.

This means that the quantity wu′′ − u′w′ is constant over [−1, 1]. Evaluating it at
x = 0, we conclude that

w(x)u′′(x)− u′(x)w′(x) = −λw(0)f(u(0)) for all x ∈ [−1, 1].

Evaluating this expression at x = 1 gives

w′(1) =
λw(0)f(u(0))

u′(1)
.(2.8)

Multiplying (2.1) by u′, and integrating over (0, x), we obtain

u′2(x) = 2λ[F (u(0))− F (u(x))].
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Setting here x = 1, and using the resulting formula in (2.8), we express

w′2(1) =
λw2(0)f2(u(0))

2F (u(0))
.

Using this in (2.6) we finally obtain∫ 1

0

f ′′(u)uxw2dx =
w2(0)
2F (ρ)

I(ρ),

where we denote ρ = u(0), and

I(ρ) = f2(ρ)− 2F (ρ)f ′(ρ).

To prove the lemma we need to show that I(ρ) > 0 for any ρ ≥ β. Compute

I ′(ρ) = −2F (ρ)f ′′(ρ) ≥ 0 for ρ ≥ β,

and the lemma follows by the assumption (2.3).

In order to prove our main result we need to understand precisely how the
solution curve changes its direction, which, as it turns out, is determined by the
function

h(u) = 2F (u)− uf(u).(2.9)

We state our main result next.

Theorem 2.1. Assume that f(u) satisfies the conditions (1.2), (1.3) and (1.4).
With h(u) ≡ 2F (u)− uf(u) assume that

h(α) < 0.(2.10)

Then the solution curve of (2.1) is exactly S-shaped, i.e. it starts at λ = 0, u = 0,
it makes exactly two turns, and then continues for all λ > 0 without any more
turns.

Proof. By the implicit function theorem there is a curve of positive solutions of
(2.1) starting at λ = 0, u = 0. This curve continues for increasing λ until a possible
singular solution (λ0, u) (i.e. (2.2) has nontrivial solutions), at which the Crandall-
Rabinowitz Theorem 1.1 applies. A standard calculation shows that the function
τ(s) defined in that theorem satisfies

τ ′′(0) = −λ0

∫ 1

0 f ′′(u)w3dx∫ 1

0 f(u)wdx
.(2.11)

Indeed, differentiating the equation (2.1) twice in s, we have

u′′ss + λf ′(u)uss + 2λ′f ′(u)us + λf ′′(u)u2
s + λ′′f(u) = 0.

Setting here s = 0, and using that τ ′(0) = 0 and us|s=0 = w(x), we get

u′′ss + λ0f
′(u)uss + λ0f

′′(u)w2 + τ ′′(0)f(u) = 0.(2.12)

Multiplying (2.12) by w, and the equation (2.2) by uss, subtracting and integrating,
we obtain (2.11). In P. Korman, Y. Li and T. Ouyang [8] it was shown that one
may assume w(x) to be positive on (−1, 1), and that the denominator in (2.11) is
positive. It follows by (2.11) that when u(0) < α, only turns to the left in the (λ, u)
“plane” are possible. Next we need a formula that gives the direction in which the
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solution curve travels, derived in K.J. Brown, M.M.A. Ibrahim and R. Shivaji [3].
With ρ = u(0) and h(u) as defined previously, they show that

d

dρ
λ(ρ)1/2 =

1√
2

∫ 1

0

h(ρ)− h(ρv)
[F (ρ)− F (ρv)]3/2

dv.(2.13)

We see that dλ
dρ < 0 and the curve travels to the left, provided

h(ρ) < h(s) for all s ∈ (0, ρ).(2.14)

We now discuss the function h(u). Since

h′(u) = f(u)− uf ′, h′′(u) = −uf ′′,

it follows that the function h′(u) is decreasing on (0, α) and increasing on (α,∞).
Since h(0) = 0, h′(0) = f(0) > 0, it follows that there exist u1 and u2, with
u1 < α < u2, such that h′(u1) = h′(u2) = 0 and

h′ = f(u)− uf ′(u) > 0 for u ∈ (0, u1) ∪ (u2,∞),(2.15)

h′ = f(u)− uf ′(u) < 0 for u ∈ (u1, u2).(2.16)

Indeed, existence of the first root u1 < α follows immediately by (2.10). As for the
second root u2, if it did not exist, we would have

f(u) < uf ′(u) for all u > α.(2.17)

Integrating (2.17), we would have

f(u) >
f(α)

α
u for all u > α,

contradicting the assumption (1.4), in the case ū = ∞. If ū < ∞, then we get a
contradiction by plugging ū into this inequality. Returning to the function h(u),
we notice that h(0) = 0 and h(u) is concave on (0, α). By (2.15) h(u) is decreasing
on (α, u2), at u2 it takes its absolute minimum, and then increases for all u > u2.
The graph of h(u) is given by Figure 2. One sees that the condition (2.14) holds
for all u ∈ (α, u2), i.e. as long as α < u(0, λ) < u2 the solution curve travels to the
left.

We now claim that for β = u2 the condition (2.3) holds. Indeed, since h(u2) < 0,
we have

f(u2)u2 > 2F (u2).
Hence

f2(u2)− 2F (u2)f ′(u2) > f2(u2)− f(u2)u2f
′(u2) = 0,

and the claim follows.
We conclude that for u(0) > u2 Lemma 2.1 applies. We show next that this

implies that only turns to the right in the (λ, u) plane are possible. We proceed
similarly to P. Korman, Y. Li and T. Ouyang [8]. Let (λ0, u0(x)) be a critical point
of (2.1) with u0(0) > u2. The function f ′′(u0(x)) changes sign exactly once on
(0, 1), say at x0 > 0. Clearly

f ′′(u0(x)) < 0 for x ∈ (0, x0), f ′′(u0(x)) > 0 for x ∈ (x0, 1).
(2.18)

By stretching the function w(x) we may assume that the functions w(x) and −u′0(x)
intersect at x0. We claim that x0 is the only point on (0, 1) where they intersect.
Indeed, the functions w(x) and −u′0 are solutions of the same linear equation (2.2).
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h(u)

u1 α u2 u

Figure 2. The function h(u)

If x1 is another intersection point, adjacent to x0, then we can find a constant µ 6= 1
and a point x ∈ (x0, x1) so that µw(x) = −u0(x) and µw′(x) = −u′0(x), i.e. two
distinct solutions with the same initial conditions, a contradiction. By Lemma 2.1
it follows that ∫ 1

0

f ′′(u0(x))w2wdx <

∫ 1

0

f ′′(u0(x))w2(−ux)dx < 0.(2.19)

Indeed, −ux > w where f ′′ > 0, and −ux < w where f ′′ < 0. Hence the integrand
on the right is pointwise greater than the one on the left. By (2.19) the numerator
in (2.11) is negative, which means that only turns to the right are possible for
u(0) > u2.

We now return to the curve of solutions, which started at λ = 0, u = 0. It is
well-known that u(0, λ) is increasing on this curve for all λ; see e.g. E.N. Dancer [6].
By the time u(0, λ) reaches α, the curve already travels to the left. Since f ′′(u) > 0
for u < α, it follows by (2.11) that only turns to the left are possible before u(0, λ)
reaches α, and hence exactly one such turn occurred. As u(0, λ) keeps increasing
between α and u2, the function h(u) keeps decreasing, and hence (2.14) continues
to hold, and so the solution curve keeps travelling to the left until u(0, λ) reaches
u2. When u(0, λ) > u2, only turns to the right are possible, and indeed exactly
one such turn will occur, for if the curve kept travelling to the left it would have
nowhere to go (solutions of (2.1) are bounded for bounded λ). Hence the solution
curve is exactly S-shaped.

Finally, there is only one solution curve, since (in case f(u) > 0 for all u) on
our curve of solutions, the value u(0) varies from 0 to ∞, while the value of u(0)
uniquely identifies the solution; see e.g., E.N. Dancer [6]. (In the case where f(u)
vanishes at some ū, one argues similarly.)
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Next we discuss a generalization of Theorem 2.1, obtained by replacing the sub-
linearity condition (1.4) by the following “weak sublinearity condition”(

f(u)
u

)′
≤ 0 for some u = u0 > α.(2.20)

Theorem 2.2. Assume that f(u) satisfies the conditions (1.2), (1.3) and (2.20).
Then the solution curve of (2.1) is either exactly S-shaped as described in the pre-
vious theorem, or else after exactly two turns it tends to infinity at some finite
λ̄ > 0.

Proof. We begin by observing that our conditions allow f(u) to be asymptotically
linear as u → ∞. Indeed, starting with any f(u) satisfying (1.2) and (1.3), we
may, by adding a large constant, obtain a function satisfying the condition (2.20)
as well, at any u0 > α. This leaves f(u) free to have any behavior at infinity, which
is consistent with concavity, in particular it can be asymptotically linear. This
implies that the solution curve may go to infinity at some finite λ = λ̄.

The proof proceeds similarly to the previous theorem. When it comes to the
existence of u2, the second root of h(u), we observe that if it did not exist, we
would have

f(u) < uf ′(u) for all u > α,

contradicting the assumption (2.20). As before, the curve makes precisely one turn
before u(0) reaches α. We claim that the curve cannot go to infinity as it travels

to the left. Indeed, setting w(u) =
(

f(u)
u

)′
, we observe that by (2.20) w(u0) ≤ 0.

Since

w′(u) +
2
u

w(u) =
f ′′(u)

u
< 0,

we obtain by integrating the above equation

u2w(u) = u2
0w(u0) +

∫ u

u0

sf ′′(s) ds < 0 for all u ≥ u0.

We conclude that f(u)
u is decreasing for all u > u0. Hence if f(u) is asymptotical

to au + b, with constants a and b, then b > 0. This implies that bifurcation from
infinity is to the left; see e.g. [1]. We conclude that the solution curve cannot go
to infinity on its way to the left.

Hence as before the curve will make exactly one more turn to the right, and then
it may go to infinity at some finite λ̄, see Figure 1(b).

3. Applications

As our first application, we now consider f(u) = e
au

u+a . Then f ′(u) > 0 for all
u > 0, f ′′(u) > 0 for 0 < u < 1

2a(a− 2), f ′′(u) < 0 for u > 1
2a(a− 2). If 0 < a ≤ 4,

it was noticed previously (see e.g. R. Shivaji [10]) that f(u) > uf ′(u) for all u > 0,
and hence for any λ the problem (2.1) has a unique solution. (The previous writers
were using the formula (2.13) to conclude uniqueness in this case. Alternatively, one
could use the Sturm comparison theorem to conclude that the linearized equation
(2.2) can have no nontrivial solutions, and so the solution curve cannot turn.)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1018 PHILIP KORMAN AND YI LI

Next we need the following lemma.

Lemma 3.1. Let a0 > 4 be a solution of

1− 2
a

= 4
∫ a

2

e−τ+2

τ2
dτ.(3.1)

(Numerical evaluation shows that a0 ' 4.35.) Then in the case when f(u) = e
au

u+a

we have for all a > a0

h(α) < 0.(3.2)

Proof. First of all notice that for all a > a0

1− 2
a

> 4
∫ a

2

e−τ+2

τ2
dτ.(3.3)

Indeed, denoting by d(a) the difference between the left and right sides in (3.3), we
have that d(a0) = 0 and

d′(a) =
2
a2
− 4

e−a+2

a2
> 0 for a > 4.

This justifies (3.3) and also shows that the equation (3.1) has exactly one solution
in the a > 4 range. Compute

h(α) = 2
∫ 1

2 a2−a

0

e
as

s+a ds−
(

1
2
a2 − a

)
ea−2 ≡ −ea−2a2

2
H,

where

H = 1− 2
a
− 4

a2

∫ 1
2 a2−a

0

e
as

s+a−a+2ds

= 1− 2
a
− 4

a2

∫ 1
2 a2−a

0

e−
a2

a+s +2ds.

We make a change of variables τ = a2

a+s , i.e. s = a2

τ − a, ds = − a2

τ2 dτ . It follows
that

H = 1− 2
a

+ 4
∫ 2

a

e−τ+2

τ2
> 0(3.4)

in view of (3.3), and hence h(α) < 0.

Remark. If the reader is uncomfortable with a (routine) use of a computer to solve
the equation (3.1), one can proceed as follows. In (3.4) set t = τ − 2. Then

H = 1− 2
a
− 4

∫ a−2

0

e−t

(t + 2)2
dt

= 1− 2
a
− 4

∫ a−2

0

e−t

[
1

(t + 2)2
− 1

4

]
dt−

∫ a−2

0

e−tdt

= −2
a

+ e−a+2 +
∫ a−2

0

e−t 4t + t2

(t + 2)2
dt,

which is positive for large a.
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If a > 4, then h′(u) has roots and in fact, u1, u2 = 1
2a2 − a ± a

2

√
a2 − 4a. If

a > a0 ' 4.35, then by Lemma 3.1 the condition (2.10) is satisfied, and hence the
solution curve is exactly S-shaped. This is an improvement of the critical constant
a0 ' 4.4967 obtained by S.H. Wang [11]. We have thus proved the following
theorem.

Theorem 3.1. If a > a0, then the solution curve for the problem

u′′ + λe
au

u+a = 0 on (−1, 1), u(−1) = u(1) = 0

is exactly S-shaped.

Our second example involves f(u) = 1 + u2 − εup, with constants p > 2, and

ε > 0. We compute h(u) = u − 1
3u3 + ε p−1

p+1up+1, and α =
[

2
εp(p−1)

] 1
p−2

. It follows
that

h(α) =
[

2
εp(p− 1)

] 1
p−2

− 1
3

[
2

εp(p− 1)

] 3
p−2

+ ε
p− 1
p + 1

[
2

εp(p− 1)

] p+1
p−2

.

For ε small the leading terms in ε are second and third, and they have the same
order in ε. We will have h(α) < 0 for small ε, provided

1
3

[
2

p(p− 1)

] 3
p−2

>
p− 1
p + 1

[
2

p(p− 1)

] p+1
p−2

.

This is equivalent to
1
3

>
2

p(p + 1)
,

which is true for p > 2. We conclude that for ε small, i.e. if

ε
2

p−2 <
1
3

[
2

p(p− 1)

] 2
p−2

− p− 1
p + 1

[
2

p(p− 1)

] p
p−2

,(3.5)

the solution curve is exactly S-shaped.

Theorem 3.2. Assume that p > 2 and ε satisfies (3.5). Then the solution curve
for

u′′ + λ(1 + u2 − εup) = 0 on (−1, 1), u(−1) = u(1) = 0
is exactly S-shaped.
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