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Abstract

This note gives an unified treatment of the exact multiplicity re-
sults for both S-shaped and reversed S-shaped bifurcation for positive
solutions of the two-point problem

u′′ + λf(u) = 0, for −1 < x < 1, u(−1) = u(1) = 0 ,

depending on a positive parameter λ, for both concave-convex and
convex-concave nonlinearities f(u).
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1 Introduction

In this note we give an unified treatment of the exact multiplicity results
for both S-shaped and reversed S-shaped bifurcation for positive solutions

of the two-point problem

u′′ + λf(u) = 0, for −1 < x < 1, u(−1) = u(1) = 0 .(1.1)
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We show that in essentially the same manner one can derive the result of

the authors on S-shaped bifurcation [9], and the recent result of K.C. Hung
[6] on reversed S-shaped bifurcation.

Recall that positive solutions of (1.1) are even functions, with u′(x) < 0
for x > 0, so that they take the global maximums at x = 0. Moreover, the

maximum value α = u(0) is a global parameter, i.e., it uniquely identifies
the solution pair (λ, u(x)), see e.g., [8]. It follows that the two-dimensional
graph of (λ, α) gives a faithful representation of the solution curves.

We define f(u) to be convex-concave if there is an γ ∈ (0,∞), such that

f ′′(u) > 0 for u ∈ (0, γ), f ′′(u) < 0 for u ∈ (γ,∞).

Similarly, f(u) is called concave-convex if there is an γ ∈ (0,∞), such that

f ′′(u) < 0 for u ∈ (0, γ), f ′′(u) > 0 for u ∈ (γ,∞).

The following result is known, and it has proved to be quite useful, see
P. Korman, Y. Li and T. Ouyang [10], or T. Ouyang and J. Shi [12] (it also

holds for balls in Rn)

Theorem 1.1 (i) Assume that f(u) is convex-concave, and f(0) ≤ 0. Then
the global solution curve admits at most one turn in the (λ, α) plane. More-

over, the turn is to the right.

(ii) Assume that f(u) is concave-convex, and f(0) ≥ 0. Then the global

solution curve admits at most one turns in the (λ, α) plane. Moreover, the
turn is to the left.

In this note we shall consider the cases when f(0) has a “wrong sign”,

i.e., either f(u) is concave-convex and f(0) < 0, or convex-concave, and
f(0) > 0. Following P. Korman and Y. Li [9], we give conditions under

which the solution curve makes exactly two turns, so that it is either S-
shaped, or reversed S-shaped. We show that the argument in P. Korman

and Y. Li [9] can cover both cases. We also simplify that argument in several
places. We show that the reversed S-shaped bifurcation can be seen as a
“dual version” of the S-shaped bifurcation. In particular, we easily recover

one of the main results of K.C. Hung [6], and suggest a generalization. We
also provide some extra information on the reversed S-shaped curve. K.C.

Hung [6] also discusses the broken reversed S-shaped curves, in case f(u)
is concave-convex and has three roots (Theorems 1.2 and 2.2 in [6]). Our

results imply the Theorem 1.2 from that paper (which originated in [13]),
but not the stronger Theorem 2.2.

2



2 Solution curves with at most two turns

We shall need the linearized problem corresponding to (1.1)

w′′ + λf ′(u)w = 0, −1 < x < 1, w(−1) = w(1) = 0.(2.1)

Recall that (λ, u(x)) is called a critical point (or a singular solution) of

(1.1), if the problem (2.1) admits non-trivial solutions. In such a case w(x)
is an even function, and it does not change sign (thus for the rest of this

paper we assume that w(x) > 0 for all x), see e.g., [8]. We assume that
f(u) ∈ C2[0,∞), and define a function I(u) ≡ f2(u) − 2F (u)f ′(u), where

F (u) =
∫ u
0 f(t) dt. The following lemma has originated from P. Korman, Y.

Li and T. Ouyang [10], and P. Korman and Y. Li [9]. (Since both u(x) and

w(x) are even functions, we may restrict the integrals below to the interval
(0, 1).)

Lemma 2.1 (i) Assume that f(u) is convex-concave and there is a β > γ,
such that

I(β) = f2(β) − 2F (β)f ′(β) ≥ 0.(2.2)

Let (λ, u) be any critical point of (1.1), such that u(0) ≥ β, and let w(x) be
any non-trivial solution of the linearized problem (2.1). Then

∫ 1

0
f ′′(u(x))u′(x)w2(x) dx > 0,(2.3)

∫ 1

0
f ′′(u(x))w3(x) dx < 0,(2.4)

and the solution curve turns to the right.

(ii) Assume that f(u) is concave-convex and there is a β > γ, such that

I(β) = f2(β) − 2F (β)f ′(β) ≤ 0.(2.5)

Let (λ, u) be any critical point of (1.1), such that u(0) ≥ β, and let w(x) be

any non-trivial solution of the linearized problem (2.1). Then

∫ 1

0
f ′′(u(x))u′(x)w2(x) dx < 0,(2.6)

∫ 1

0
f ′′(u(x))w3(x) dx > 0,(2.7)

and a turn to the left occurs.
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Proof: We shall derive a convenient expression for the integral in (2.3).

Differentiating (2.1), we get

w′′

x + λf ′(u)wx + λf ′′(u)u′w = 0.(2.8)

Multiplying the equation (2.8) by w, the equation (2.1) by wx, subtracting

and integrating over (0, 1), we express

λ

∫ 1

0
f ′′(u)u′w2 dx = w′2(1) − λw2(0)f ′(u(0)).(2.9)

By differentiation, we verify that u′′(x)w(x)− u′(x)w′(x) is equal to a con-

stant for all x, and hence

u′′(x)w(x)− u′(x)w′(x) = −λw(0)f(u(0)), for all x ∈ [0, 1].

Evaluating this expression at x = 1, we obtain

w′(1) =
λw(0)f(u(0))

u′(1)
.(2.10)

Multiplying (1.1) by u′, and integrating over (0, 1), we have

u′2(1) = 2λF (u(0)).(2.11)

Using (2.11) and (2.10) in (2.9), we finally express

∫ 1

0
f ′′(u)u′w2 dx =

w2(0)

2F (u(0))
I(u(0)) .(2.12)

Let us prove part (ii) of the lemma (part (i) is similar, and it was proved
in P. Korman and Y. Li [9]). Since

I ′(u(0)) = −2F (u(0))f ′′(u(0)) < 0, for u(0) > β,

we conclude that I(u(0)) < I(β) ≤ 0, and, in view of (2.12), the inequality

(2.6) follows. (Observe that F (u(0)) > 0 for any positive solution.)

Turning to the proof of (2.7), consider the function p(x) ≡ w(x)
−u′(x) . Since

p(1) = 0, and since u′′(x)w(x)− u′(x)w′(x) is equal to a constant for all x,
we have

p′(x) = −u′(1)w′(1)

u′(x)2
< 0 ,
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which implies that the function p(x) is positive and decreasing on (0, 1). Let

x0 be the point where f ′′(u(x)) changes sign (i.e., u(x0) = γ, and f ′′(u(x)) >

0 on (0, x0), and f ′′(u(x)) < 0 on (x0, 1)). By scaling w(x), we may achieve

that w(x0) = −u′(x0), or p(x0) = 1. Then w(x) > −u′(x) on (0, x0), and
w(x) < −u′(x) on (x0, 1), and using (2.6), we have

∫ 1

0
f ′′(u(x))w3 dx >

∫ 1

0
f ′′(u(x))w2(−u′(x)) dx > 0 ,

concluding the proof. ♦
We shall use the following lemma (see e.g., [8]).

Lemma 2.2 Assume that f ′′(u) < 0 (f ′′(u) > 0) for u ∈ (0, δ), for some
δ > 0. Then only turns to the right (left) are possible on the curve of positive
solutions of (1.1), while u(0) ∈ (0, δ).

Recall that the maximum value of solution, α = u(0), uniquely identifies

the solution pair (λ, u(x)) of (1.1), and the solution set of (1.1) can be
faithfully depicted by the planar curves in the (λ, α) plane. It is natural

to ask: which way the solution curve travels through a given point (λ, α)?
Define

h(u) = 2F (u) − uf(u) ,

where, as usual, F (u) =
∫ u
0 f(t) dt. The following result is from P. Korman

[7], see also the discussion in P. Korman [8] of the preceding results in [11],

[2], and [14].

Theorem 2.1 (i) Assume that

h(α) < h(u), for 0 < u < α.(2.13)

Then the positive solution of (1.1), with maximum value u(0) = α, travels

to the left in the (λ, α) plane, i.e., λ′(α) < 0. (This solution is unstable, see
P. Korman [8] for the definition and details.)

(ii) Assume that

h(α) > h(u), for 0 < u < α.(2.14)

Then the positive solution of (1.1), with maximum value u(0) = α, travels

to the right in the (λ, α) plane, i.e., λ′(α) > 0. (This solution is stable.)

The following is the central result of this paper.
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Theorem 2.2 (i) Assume that f(u) is convex-concave, and f(0) > 0. As-

sume that h(γ) ≤ 0, and f(u) > 0 for u > γ. Then the global solution curve
admits at most two turns in the (λ, α) plane. Moreover, only turns to the

right are possible if u(0) > γ.

(ii) Assume that f(u) is concave-convex, and f(0) < 0. Assume that h(γ) ≥
0, and f(u) > 0 for u > γ. Then the global solution curve admits at most
two turns in the (λ, α) plane. Moreover, only turns to the left are possible if
u(0) > γ.

Proof: Let us prove the part (ii) first. We have h(0) = 0, h′(u) =
f(u) − uf ′(u), h′′(u) = −uf ′′(u). Since h′′(u) > 0 on (0, γ), and h(γ) > 0,

there exists u1 ∈ (0, γ) so that h′(u) < 0 on (0, u1) and h′(u) > 0 on (u1, γ),
see Figure 1.

u1 γ u2

h(u)

Figure 1: The function h(u) for part (ii)

-

6

u

On (γ,∞) we have h′′(u) < 0, so that either h′(u) > 0 on (γ,∞), or

there is a point u2 where h′(u2) = 0. In the first case, the solution curve
travels to the right for all u(0) > γ, in view of the Theorem 2.1. In that case

the global solution curve has at most one turn, a turn to the right occurring
where u(0) < γ (f(u) is concave in that range, see Lemma 2.2). Turning to

the second case, we have by our assumptions f(u2) > 0, and then h′(u2) = 0
implies that f ′(u2) > 0. Since h(u2) > 0, we have f(u2)u2 < 2F (u2) and
then

I(u2) = f2(u2) − 2F (u2)f
′(u2) < f2(u2) − f(u2)u2f

′(u2) = 0 .

By the second part of Lemma 2.1 (with β = u2) it follows that only turns

to the left are possible when u(0) > u2. Since only turns to the right are
possible when u(0) < γ, and the curve travels to the right when u(0) ∈
(γ, u2], the proof follows. (At most one turn, to the right, is possible for
u(0) ≤ u2.)
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The part (i) is proved similarly. The function h(u) for this case is given

in Figure 2. This time only turns to the left are possible when u(0) < γ, the
solution curve travels to the left when u(0) ∈ (γ, u2], and only turns to the

right are possible when u(0) > u2, see [9] for more details.

u1

γ

u2

h(u)

Figure 2: The function h(u) for part (i)

-

6

u

The following exact multiplicity result follows easily.

Theorem 2.3 Assume that f(u) is concave-convex, and f(0) < 0. Assume
that f(u) has exactly one root, i.e., f(u) < 0 on [0, a), f(u) > 0 on (a,∞)

for some a > 0, and

lim
u→∞

f(u)

u
= ∞ .(2.15)

Assume also that γ > a, and we have F (γ) > 0 and h(γ) ≥ 0. Define

θ ∈ (0, γ) by F (θ) = 0. Then all positive solutions of (1.1) lie on a unique
solution curve, which is reversed S-shaped in the (λ, u(0)) plane. Namely,

one end of this curve starts at λ1 = 1
2

(

∫ θ
0

du√
−F (u)

)2

, u(0) = θ (and also

u′(±1) = 0). From the point (λ1, θ), the curve travels to the left, it makes
exactly two turns, and it tends to infinity as λ → 0.

Proof: We begin with the positive solution of (1.1) satisfying u′(±1) = 0.

Since 1
2u′2 + λF (u) = constant, for that solution we have

1

2
u′2 + λF (u) = 0 ,

and, in particular, u(0) = θ. (Existence of such solution follows by solving

u′′ + f(u) = 0, u(0) = θ, u′(0) = 1, and then scaling, so that the first root
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occurs at x = 1.) On (0, 1) we have du
dx

= −
√

2λ
√

−F (u), and integrating

over (0, 1), we calculate λ = λ1 = 1
2

(

∫ θ
0

du√
−F (u)

)2

. This solution, call

it u1(x), is non-singular in the class of even functions. Indeed the function

u′

1(x) is an odd solution of the linearized problem (2.1) (computed at u1(x)).
Hence, (2.1) has no non-trivial even solutions. By the Implicit Function

Theorem, we can continue the solution point (λ1, u1(x)) in λ to obtain even
solutions. It turns out that we get positive solutions for λ < λ1 (and sign

changing even solutions for λ > λ1). Indeed, differentiating (1.1) in λ, we
get

u′′

λ + λf ′(u)uλ + f(u) = 0, for −1 < x < 1, uλ(−1) = uλ(1) = 0 ,

and then it is easy to verify that uλ = 1
2xu′(x). (Both functions satisfy the

same equation, and are zero at x = 1.) Since uλ < 0 for x ∈ (0, 1), we obtain
positive solutions for λ < λ1. We now continue this solution curve (which at

first travels to the left). The graph of h(u) is as in the Figure 1 (at least for
u ∈ (0, γ)). By the Theorem 2.1, the solution curve travels to the right, by
the time u(0) = γ. Hence the solution curve has made exactly one turn to

the right before that (recall that f ′′(u) < 0 on (0, γ), see Lemma 2.2). Since
f(u) is superlinear, the solution curve cannot travel to the right indefinitely,

see e.g., [8]. By the Theorem 2.2, only turns to the left are possible for
u(0) > γ, so that the solution curve will make exactly one turn to the left,

and then tend to infinity. Using (2.15) again, we conclude that λ → 0. ♦
We remark that the graph of h(u) is exactly as in the Figure 1, i.e., there

is u2 such that h′(u2) = f(u2) − u2f
′(u2) = 0. Observe that u1 and u2 are

the points where a straight line out of the origin is tangent to the graph of
f(u). Our conditions on f(u) imply existence of two such points.

The case when γ ≤ a is covered by the following result.

Theorem 2.4 Assume that f(u) is concave-convex, and f(0) < 0. Assume
that f(u) has exactly one root, i.e., f(u) < 0 on [0, a), f(u) > 0 on (a,∞) for

some a > 0, and the condition (2.15) holds. Assume that γ ≤ a. Then any
positive solution of (1.1) is non-singular, i.e., the corresponding linearized

problem (2.1) has only the trivial solution. Let θ > a be such that F (θ) =
0. Then all positive solutions of (1.1) lie on a unique solution curve in

the (λ, u(0)) plane. One end of this curve starts at λ1 = 1
2

(

∫ θ
0

du√
−F (u)

)2

,

u(0) = θ (and also u′(±1) = 0). From (λ1, θ) the curve travels to the left, it
makes no turns, and it tends to infinity as λ → 0.
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Proof: With k(u) ≡ f(u) − uf ′(u), we have k(a) = −af ′(a) ≤ 0,

k′(u) = −uf ′′(u) < 0 for u > a. It follows that k(u) < 0 for u > a, i.e.,

f ′(u) >
f(u)

u
for u > a. By the Theorem 3.1 in [8], any positive solution of

(1.1) is non-singular, and the proof follows. ♦
We now recall the result of P. Korman and Y. Li [9], which follows from

the Theorem 2.2 in the same way as the Theorem 2.3.

Theorem 2.5 Assume that f(u) > 0 for all u ≥ 0, f(u) is convex-concave

and limu→∞

f(u)
u = 0. Assume also that h(γ) ≤ 0. Then the solution curve

of (1.1) is exactly S-shaped. Namely, it starts at (λ = 0, u = 0), it makes
exactly two turns, and then continues for all λ without any more turns.

We now present generalizations of the above results, allowing for multiple
changes of sign for f ′′(u).

Theorem 2.6 (i) In the conditions of the Theorem 2.3, let µ > u2 be such

that h(µ) < h(u) for all u ∈ [0, µ), see Figure 1. Then the Theorem 2.3
remains true if for u > µ we no longer require that f ′′(u) > 0, replacing this

by a weaker condition that h′(u) = f(u)− uf ′(u) < 0.

(ii) In the conditions of the Theorem 2.5, let µ > u2 be such that h(µ) > h(u)

for all u ∈ [0, µ), see Figure 2. Then the Theorem 2.5 remains true if for
u > µ we no longer require that f ′′(u) < 0, replacing this by a weaker

condition that h′(u) = f(u)− uf ′(u) > 0.

Proof: Let us prove the case (i), and the other one is similar. We know
from the proof of the Theorem 2.3 that the solution curve is exactly reversed

S-shaped for u(0) ∈ [0, µ). By the Theorem 2.1, the solution curve continues
to travel to the left for all u(0) > µ. ♦
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