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Abstract. Using the technique of Adimurthy, F. Pacella and S.L. Yadava
[1], we extend an uniqueness result for a class of non-autonomous semilinear

equations in M.K. Kwong and Y. Li [8]. We also observe that combining the
results of [1] with bifurcation theory, one can obtain a detailed picture of the

global solution curve for a class of concave-convex nonlinearities.

1. Introduction

Our main result deals with uniqueness of positive solution for a class of semilinear
equations

(1.1) ∆u + q(|x|)u + up = 0 for |x| < R u = 0, when |x| = R.

Here x ∈ Rn, u = u(x), and q = q(r) is a given differentiable function. The constant
p is assumed to be subcritical, 1 < p ≤ n+2

n−2 . This problem was studied by M.K.

Kwong and Y. Li [8]. In Theorem 2 of that paper a condition for uniqueness of

positive radial solution is given. Namely, they define the constants β = 2(n−1)(p−1)
p+3

and L = 2(n−1)(np+n−2p−4)
(p+3)2 , and show that the problem (1.1) has at most one

positive solution, provided that 1 < p < n+2
n−2 , n ≥ 3, and the function

(1.2) G(r) := rβq(r) − Lrβ−2 has a ∧ property,

i.e. there exists some c ∈ [0, R] so that the function G(r) is increasing on [0, c), and
decreasing on (c, R] (notice that both increasing and decreasing G(r) are included
in this definition). Since the condition (1.2) can be cumbersome to verify, M.K.
Kwong and Y. Li [8] provide the following corollary: condition (1.2) can be replaced
by

(1.3) rβq(r) is a nondecreasing function.

Using the technique of Adimurthy, F. Pacella and S.L. Yadava [1], we prove unique-
ness of positive solution of (1.1) for n ≥ 1, 1 < p ≤ p∗, where p∗ = n+2

n−2 for n ≥ 3,
p∗ = ∞ for p = 1, 2; and

(1.4)
d

dr

[

r2cnq(r)
]

≥ 0,
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where cn = n(1
2 − 1

p+1 ). For differentiable q(r) our condition (1.4) improves the

condition (1.3) for all dimensions n, as one easily checks that inequality 2cn > β is
equivalent to p being subcritical. Our condition (1.4) provides also an extension of
the full uniqueness result in M.K. Kwong and Y. Li [8], as the following example
shows.

Example. Take n = 4, p = 2 and R = 50. Then one has 2c4 = 4/3 > β = 6/5.
Compute also L = 24/25 and β − 2 = −4/5. Assume that

q(r) = 0.02 +
20

1 + r4/3
.

Then r4/3q(r) is increasing so that condition (1.4) holds. On the other hand,

rβq(r) − Lrβ−2 = 0.02r6/5 +
20r6/5

1 + r4/3
−

24

25
r−4/5

is not of type ∧ on (0, 50).

We remark that approaches of M.K. Kwong and Y. Li [8] and of
Adimurthy, F. Pacella and S.L. Yadava [1] are similar. Both papers show that any
two positive solutions cannot intersect, which is done by examining the ratio of the
solutions. Adimurthy, F. Pacella and S.L. Yadava [1] use a Pohozhaev identity to
complete the argument, whereas M.K. Kwong and Y. Li [8] were using the energy
function.

In Section 3 we consider the problem

(1.5) ∆u + λ (uq + up) = 0 for |x| < R, u = 0 for |x| = R,

depending on a positive parameter λ, with 0 < q < 1 < p ≤ p∗, where p∗ is
the critical exponent, defined above. This problem was the focus of the above
mentioned paper of Adimurthy, F. Pacella and S.L. Yadava [1], where it is proved
that any two positive solution cannot intersect. We observe that this result implies
that at any turning point any non-trivial solution of the corresponding linearized
system is of one sign. This allows us to use the bifurcation theory in the spirit of P.
Korman, Y. Li and T. Ouyang [7] and T. Ouyang and J. Shi [9] to obtain an exact
multiplicity result, together with a detailed picture of the solution curve. Earlier a
similar result was obtained in [9], but for p ≤ n

n−2 .

2. Uniqueness for the equation ∆u + q(r)u + up = 0

We consider positive radially symmetric solutions for the semilinear Dirichlet
problem on a ball |x| < R in Rn

(2.1) ∆u + f(r, u) = 0 for |x| < R, u = 0 on |x| = R.

We set, as is customary, F (r, u) =
∫ u

0
f(r, s) ds, and introduce the function H(r) =

1

2
ru2

r + αuur + rF (r, u), with a constant α to be chosen shortly. Then using the

equation (2.1), one easily verifies that

H ′ + n−1
r H =(2.2)

(

1 − n
2 + α

)

u2
r + nF (r, u)− αuf(u, r) + rFr(r, u).

We now restrict to the problem

(2.3) u′′ +
n − 1

r
u′ + q(r)u + up = 0 for r < R, u = 0 on |x| = R.
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Here q(r) is a positive function of class C1(0, R) ∩ C[0, R], and p is a sub-critical
power, 1 < p ≤ p∗, where p∗ = n+2

n−2 , if n > 2 and p∗ = ∞ for n = 1, 2. For this

problem it is convenient to select α = n
p+1 . Then (2.2) takes the form

(2.4) H ′ +
n − 1

r
H = (1 − cn)u2

r + cnqu2 +
1

2
rq′u2,

where cn = n(1
2 − 1

p+1 ). Notice that condition 1 < p ≤ n+2
n−2 for n ≥ 3 is equivalent

to

(2.5) 0 < cn ≤ 1,

and in the cases n = 1, 2 we have (2.5) for any 1 < p < ∞.

Multiplying the equation (2.4) by the integrating factor rn−1, and integrating
over [r1, r2] ⊂ (0, 1), we obtain the generalized Pohozhaev identity,

∫ r2

r1

[

(1 − cn)u2
r + cnqu2 + 1

2rq′u2
]

rn−1 dr(2.6)

= rn−1
2 H(r2) − rn−1

1 H(r1),

which will be used later. Notice that the quantity on the left in (2.6) is positive,
provided that rq′ + 2cnq > 0, i.e. if

(2.7)
d

dr

[

r2cnq(r)
]

≥ 0,

and in case cn = 1 (i.e., p = p∗) the above inequality is assumed to be strict on a
set of positive measure. It is easy to see that (2.7) implies that q(r) is a positive
function.

We need the following simple observation.

Lemma 2.1. Assume that q(r) > 0 for all r ∈ (0, R). Then any positive solution
of (2.3) satisfies

u′(r) < 0 for all x ∈ (0, R).

Proof: It is clear from the equation (2.3) that any critical point of the solution
inside (0, R) would have to be a point of local maximum, and hence r = 0 is the
only critical point.

Theorem 2.1. Assume that 0 < q(r) ∈ C1(0, R) ∩ C[0, R] satisfies the condition
(2.7), and p ≤ p∗ is subcritical. Then any two positive solutions of (2.1) do not
intersect (i.e. they are strictly ordered on (0, R)).

Proof: We follow closely Adimurthy et al [1], and use their notation. Let v1(r)
and v2(r) be two positive solutions of (2.1) with v1(0) < v2(0). Assume on the

contrary that solutions intersect. It follows that the function z(r) ≡ v1(r)
v2(r)

becomes

greater than 1 somewhere on (0, R), while z(0) < 1. Let ξ0 ∈ (0, R] be the first
local maximum of z(r) with z(ξ0) > 1, and denote t0 = z(ξ0). If ξ0 = R, then

(2.8) t0 =
v′1(R)

v′2(R)
.

If ξ0 ∈ (0, R), then z′(ξ0) = 0. In both cases we have

(2.9) 1 < t0 =
v1(ξ0)

v2(ξ0)
=

v′1(ξ0)

v′2(ξ0)
,

(2.10) v1(r) < t0v2(r) for all r ∈ [0, ξ0).
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We claim that

(2.11)
v′1(r)

v′2(r)
< t0 for all r ∈ [0, ξ0).

Denote p = v′1v2 − v1v
′
2. Then from the equation (2.1) written at both v1 and v2

we obtain

(2.12)
d

dr

(

rn−1p(r)
)

+ rn−1v1v2

(

vp−1
1 − vp−1

2

)

= 0.

From the definition of ξ0 as the first point of maximum of z(r) (with maximum
value above one), it follows that v1(r) and v2(r) intersect exactly once on (0, ξ0).
Let r1 < ξ0 be such that v1(r1) = v2(r1). Then the function rn−1p(r) vanishes at
r = 0 and r = ξ0, it is increasing on (0, r1), and decreasing on (r1, ξ0). It follows
that p(r) is positive on (0, ξ0), i.e., using Lemma 2.1,

(2.13)
v′1(r)

v′2(r)
<

v1(r)

v2(r)
for all r ∈ [0, ξ0).

From (2.13) and (2.10) the claim (2.11) follows.

We now distinguish between two cases.
Case 1. ξ0 = R. Taking a linear combination of two Pohozhaev identities, the
ones for v1(r) and v2(r) respectively, we have

(1 − cn)
∫ R

0

(

v′1
2
− t20v

′
2
2
)

rn−1 dr +
∫ R

0
Q(r)

(

v2
1 − t20v

2
2

)

rn−1 dr(2.14)

= 1
2

(

v′1
2
(R) − t20v

′
2
2
(R)

)

Rn,

where Q(r) = d
dr

[

r2cnq(r)
]

≥ 0. In view of (2.8) the quantity on the right is zero,
while the one on the left is negative by (2.10) and (2.11), a contradiction.
Case 2. ξ0 < R. Similarly to the above we have

(1 − cn)
∫ ξ0

0

(

v′1
2
− t20v

′
2
2
)

rn−1 dr +
∫ ξ0

0
Q(r)

(

v2
1 − t20v

2
2

)

rn−1 dr(2.15)

= ξn−1
0

[

Hv1
(ξ0) − t20Hv2

(ξ0)
]

,

where by Hv1
(ξ0) we denote the function H(r) defined above, with v1(r) replacing

u(r). The quantity on the left is negative as before. Using the definition of t0 and
the formula (2.9), we see that two pairs of terms cancel on the right. What remains
is

ξn−1
0

(

Hv1
(ξ0) − t20Hv2

(ξ0)
)

= ξn
0

[

F (v1, r) − t20F (v2, r)
]

=
ξn

0

(p+1)

(

vp+1
1 (ξ0) −

v2

1
(ξ0)

v2

2
(ξ0)

vp+1
2 (ξ0)

)

> 0,

since v1(ξ0) > v2(ξ0). We reached a contradiction again. It follows that v1(r) and
v2(r) cannot intersect.

The following uniqueness result is then an immediate corollary.

Theorem 2.2. In the conditions of the preceding theorem the problem (2.1) has at
most one positive radial solution.

Proof: By the preceding theorem any two solutions v1(r) and v2(r) of (2.1) are
strictly ordered. Multiplying the equation for v1(r) by v2(r), and the equation for
v2(r) by v1(r), integrating over (0, R) and subtracting, we obtain a contradiction.



ON UNIQUENESS OF SOLUTIONS 5

3. Exact multiplicity and the global solution curve for the

equation ∆u + λ(uq + up) = 0

We begin by recalling some facts on the more general equations of the type

(3.1) ∆u + λf(u) = 0 for |x| < R, u = 0 on |x| = R,

depending on a positive parameter λ. By the classical theorem of B. Gidas, W.-M.
Ni and L. Nirenberg [5] positive solutions of (3.1) are radially symmetric, which
reduces (3.1) to

(3.2) u′′ +
n − 1

r
u′ + λf(u) = 0 for 0 < r < R, u′(0) = u(R) = 0.

We shall also need the corresponding linearized equation

(3.3) w′′ +
n − 1

r
w′ + λf ′(u)w = 0 for 0 < r < R, w′(0) = w(R) = 0.

The following lemma was proved in [6].

Lemma 3.1. Assume that the function f(u) ∈ C2(R̄+), and the problem (3.3) has
a nontrivial solution w at some λ. Then

(3.4)

∫ 1

0

f(u)wrn−1 dr =
1

2λ
u′(1)w′(1).

The following lemma is known, see e.g. E.N. Dancer [4]. We present its proof
for completeness.

Lemma 3.2. Positive solutions of the problem (3.2) are globally parameterized by
their maximum values u(0, λ). I.e., for every p > 0 there is at most one λ > 0, for
which u(0, λ) = p.

Proof. If u(r, λ) is a solution of (3.2) with u(0, λ) = p, then v ≡ u( 1√
λ
r) solves

(3.5) v′′ +
n − 1

r
v′ + f(v) = 0, v(0) = p, v′(0) = 0.

If u(0, µ) = p for some µ 6= λ, then u( 1√
µr) is another solution of the same prob-

lem. This is a contradiction in view of the uniqueness of solutions for initial value
problems of the type (3.5), see [10].

Let (λ0, u0) be a solution of (3.2). We call this solution to be non-singular if
w(r) ≡ 0 is the only solution of the linearized problem (3.3). By the implicit
function theorem we can then continue (λ0, u0) to nearby λ’s. If (λ0, u0) is a
singular solution of (3.2), i.e. the problem (3.3) has a nontrivial solution w(r), then
in view of Lemma 3.1, the Crandall-Rabinowitz [3] theorem applies at (λ0, u0) (see
[7] for more details). According to that theorem either we can still continue the
solution to nearby λ’s, or a simple turn occurs, i.e., near the point (λ0, u0) we have
two solutions to one side of λ0, and no solutions to the other side. In the latter
case we shall refer to (λ0, u0) as a turning point.

We study exact multiplicity of positive solutions for the semilinear
Dirichlet problem on a ball |x| < R in Rn

(3.6) ∆u + λ (uq + up) = 0 for |x| < R, u = 0 on |x| = R,

depending on a positive parameter λ. We assume that the constants p and q satisfy

(3.7) 0 < q < 1 < p ≤ p∗,
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where p∗ = n+2
n−2 for n ≥ 3, p∗ = ∞ for n = 1, 2. Notice that positive solutions of

(3.6) are radial, so that they satisfy (3.2), and the corresponding linearized equation
is given by (3.3).

Lemma 3.3. Assume that (λ0, u0) is a turning point of (3.6). Then

(3.8) w(r) > 0 for all r ∈ [0, R).

Proof: In view of Lemma 3.1 the Crandall-Rabinowitz theorem applies at (λ0, u0)
(see [7] for more details). According to that theorem near the point (λ0, u0) the
difference of two solutions is asymptotic to a factor of w(r), which implies that
w(r) > 0 for all r ∈ [0, R), if and only if for λ close to λ0 any two solutions on the
solution curve passing through (λ0, u0) do not intersect. By Lemma 2.1 in [1] any
two positive solutions of (3.2) do not intersect, completing the proof.

Theorem 3.1. Assume the condition (3.7) is satisfied. Then there is a critical
λ0 > 0, such that for λ > λ0 the problem (3.6) has no positive solutions, it has
exactly one positive solution for λ = λ0, and exactly two positive solutions for
λ < λ0. Moreover, all positive solutions lie on a single smooth solution curve,
which for λ < λ0 has two branches denoted by 0 < u−(r, λ) < u+(r, λ), with
u−(r, λ) strictly monotone increasing in λ and limλ→ 0 u+(0, λ) = ∞.

Proof: According to A. Ambrosetti et al [2] there is a λ∗ > 0, such that for
λ ∈ (0, λ∗) the problem (3.6) has at least two positive solutions. On the other hand,
it is easy to see that no positive solutions are possible for large λ. Indeed, we can
find an α > 0 so that uq + up > αu for all u > 0. Then from (3.6)

λ1

∫

BR

uφ1 = λ

∫

BR

(uq + up) > λα

∫

BR

uφ1,

where (λ1, φ1) is the principal eigenpair of −∆ on BR. It follows that no positive

solutions exist for λ > λ1

α . In view of Lemma 3.1 we can continue any solution
of (3.6), i.e. at each point (λ, u) either implicit function theorem or the Crandall-
Rabinowitz theorem applies, see e.g. [7] for more details.

Let now u(r, λ) be an arbitrary solution of (3.6), λ < λ∗. We continue this solu-
tion for increasing λ. Since by above remarks this curve cannot be continued indef-
initely, it has to reach a turning point (λ0, u0), at which the Crandall-Rabinowitz
theorem applies. In view of Lemma 3.3 we have w(r) > 0 at (λ0, u0), where w(r) is
a solution of the linearized equation. Observe that the function uq + up is concave
for small u > 0, and convex for large u, with exactly one point of inflection. Arguing
exactly as in [7], we see that the function τ (s) defined in the Crandall-Rabinowitz
theorem satisfies

(3.9) τ ′′(0) < 0

at (λ0, u0), as well at any other turning point, see also [9], where this result is
explicitly stated in Theorem 2.3.3. (In [7] the formula (3.9) followed immediately

from the inequality
∫ R

0 f ′′(u)w3rn−1 dr <
∫ R

0 f ′′(u)wu2
rr

n−1 dr, which is true be-
cause the integrand on the right is pointwise larger than the one on the left. Here
f(u) = uq + up. While f ′′(u) has a singularity of order (R − r)q−2 near r = R, by
Hopf’s boundary lemma w(r) is of order R−r near r = R, and hence both integrals
above converge.) It follows that only turns “to the left” are admissible. At (λ0, u0)
we have two solution branches 0 < u−(r, λ) < u+(r, λ). We now continue both
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branches for decreasing λ. In view of (3.9) both branches continue without any
turns. By Lemma 3.2 u(0, λ) is increasing on the upper branch and decreasing on
the lower one. As λ ↓ 0 the lower branch has to tend to zero (there is no other place
for it to go since at λ = 0 there are no positive solutions). Similarly, on the upper
branch u(0, λ) has to go to infinity for λ ↓ λ1, λ1 ≥ 0. We claim that λ1 = 0. In-
deed, on our solution curve u(0, λ) varies from 0 to ∞. By Lemma 3.2 the problem
(3.6) cannot have any solutions, not lying on this curve (since all possible values
of u(0, λ) are taken). But by [2] there are at least two solutions for λ ∈ (0, λ1), a
contradiction.

It follows that the solution set of (3.6) consists of one curve, which makes ex-
actly one turn. This implies all the statements of the theorem, except for the
monotonicity of the lower branch, which is proved similarly to [7].
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