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NON-SINGULAR SOLUTIONS OF TWO-POINT PROBLEMS,

WITH MULTIPLE CHANGES OF SIGN

IN THE NONLINEARITY

PHILIP KORMAN

(Communicated by Joachim Krieger)

Abstract. We prove that positive solutions of the two-point boundary value
problem

u′′(x) + λf(u(x)) = 0, for −1 < x < 1, u(−1) = u(1) = 0,

satisfying maxu = u(0) > γ, are non-singular, provided that f(u) is predom-
inantly negative for u ∈ (0, γ], and superlinear for u > γ. This result adds
a solution curve without turns to whatever is known about the solution set
for u(0) ∈ (0, γ). In particular, we combine it with the well-known cases of
parabola-like, or S-shaped solution curves.

1. Introduction

We study global solution curves, and the exact multiplicity of positive solutions
of the Dirichlet problem

(1.1) u′′(x) + λf(u(x)) = 0, for −1 < x < 1, u(−1) = u(1) = 0 ,

where λ is a positive parameter. Since positive solutions are symmetric with respect
to the midpoint of the interval, it is convenient to pose the problem on the interval
(−1, 1). Our problem is autonomous, and so this does not restrict the generality.
Any positive solution u(x) is an even function, and u′(x) < 0 for x ∈ (0, 1), so that
u′(0) = 0, and u(0) = max[−1,1] u(x). This follows immediately by observing that
any solution is symmetric with respect to any of its critical points (of course, the
theorem of B. Gidas, W.-M. Ni, and L. Nirenberg [1] is also applicable here). We
shall need the corresponding linearized problem

(1.2) w′′ + λf ′(u(x))w = 0, for −1 < x < 1, w(−1) = w(1) = 0 .

The following lemma is known; see, e.g., P. Korman [3] or [4]. We include its proof
for completeness.

Lemma 1.1. Assume f(u) ∈ C1(R̄+). Let u(x) be a positive solution of (1.1),
with

(1.3) u′(1) < 0.

If the problem (1.2) admits a non-trivial solution, then this solution does not change
sign, i.e., we may assume that w(x) > 0 on (−1, 1).
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Proof. The function u′(x) also satisfies the linear differential equation in (1.2). By
the condition (1.3), u′(x) is not a constant multiple of w(x). Hence, by Sturm’s
comparison theorem, the roots of u′(x) are interlaced with those of w(x). If w(x)
had a root ξ inside the right half-interval (0, 1), then u′(x) would have to vanish on
(ξ, 1), which is impossible. �

We remark that the condition (1.3) holds automatically if f(0) ≥ 0, as follows
by Hopf’s boundary lemma.

There are some standard conditions for solutions of (1.1) to be non-singular,
which means that the problem (1.2) has only the trivial solution. (Non-singular
solutions of (1.1) can be continued in λ, in view of the implicit function theorem.)
Namely, if f(0) ≥ 0, and

f ′(u) >
f(u)

u
(or if f ′(u) <

f(u)

u
), for all u > 0 ,

then the problem (1.2) has only the trivial solution. Indeed, writing the equation

(1.1) in the form u′′ + f(u)
u u = 0, we conclude by Sturm’s comparison theorem

that there is a root of w(x) �≡ 0 between the roots ±1 of u(x), which is impossible,
since w(x) is positive. In [3] we proved the following result (a similar result was
previously given by R. Schaaf [8]).

Theorem 1.1. Assume that f(u) ∈ C1(R̄+), f(u) < 0 on (0, γ), while f(u) > 0
on (γ,∞), for some γ > 0. Assume also that

f ′(u) >
f(u)

u
, for all u > γ .

Then any positive solution of (1.1), satisfying (1.3), is non-singular, i.e., the prob-
lem (1.2) admits only the trivial solution.

Recall that the solution set of of (1.1) can be faithfully represented by curves in
the (λ, u(0)) plane, with u(0) being the maximum value of the solution u(x); see
e.g., [3], or [4]. The above theorem implies that there are no turns on the solution
curves, once u(0) > γ. What is remarkable here is that no additional assumptions
are imposed on f(u) on the interval where it is negative. In this note we present
a much stronger result, replacing the condition f(u) < 0 on (0, γ) by an integral
condition. The new result adds a solution curve without turns to whatever is known
about the solution set for u(0) ∈ (0, γ), thus providing exact multiplicity results
in cases where there are exactly three or exactly four solutions; see the bifurcation
diagrams for Theorems 3.2, 3.3, and 3.4. Such exact multiplicity results are rare.

2. The main result

As usual, we denote F (u) =
∫ u

0
f(t) dt.

Theorem 2.1. Assume that f(u) ∈ C1(R̄+), and for some γ > 0, it satisfies

(2.1) f(γ) = 0, and f(u) > 0 on (γ,∞),

(2.2) f ′(u) >
f(u)

u
, for u > γ ,

(2.3) F (γ)− F (u) =

∫ γ

u

f(t) dt < 0, for u ∈ (0, γ) .
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Then any positive solution of (1.1), satisfying

(2.4) u(0) > γ, and u′(1) < 0 ,

is non-singular, which means that the problem (1.2) admits only the trivial solution.

Proof. Assume, on the contrary, that the problem (1.2) admits a non-trivial solution
w(x) > 0. Let x0 ∈ (0, 1) denote the point where u(x0) = γ, so that the condition
(2.2) holds for 0 ≤ x < x0. From the equations (1.1) and (1.2), we get

(w′u− wu′)
′
= −

[
f ′(u)− f(u)

u

]
uw < 0, for 0 ≤ x < x0 .

Integrating this over (0, x0),

(2.5) w′(x0)u(x0)− w(x0)u
′(x0) < 0 .

We claim that

(2.6) (x0 − 1)u′(x0)− u(x0) > 0 .

Indeed, denoting q(x) ≡ (x− 1)u′(x)− u(x), we see that q(1) = 0, while

q′(x) = (x− 1)u′′(x) = (x− 1) [u′(x)− u′(x0)]
′
.

We integrate this formula over (x0, 1), and perform integration by parts

−q(x0) =

∫ 1

x0

(x− 1) [u′(x)− u′(x0)]
′
dx = −

∫ 1

x0

[u′(x)− u′(x0)] dx ,

so that

q(x0) =

∫ 1

x0

[u′(x)− u′(x0)] dx > 0 ,

which is the same as the desired inequality (2.6), provided we can prove that

(2.7) u′(x)− u′(x0) > 0, for x ∈ (x0, 1) .

The “energy” E(x) = 1
2u

′2(x) + F (u(x)) is easily seen to be constant, so that
E(x) = E(x0), or

1

2
u′2(x) + F (u(x)) =

1

2
u′2(x0) + F (γ) .

By the assumption (2.3),

1

2

[
u′2(x)− u′2(x0)

]
= F (γ)− F (u(x)) < 0, for x ∈ (x0, 1) .

It follows that u′2(x) < u′2(x0), justifying (2.7), and then giving (2.6).
Next, we observe that the function u′′(x)w(x)−u′(x)w′(x) is constant over [0, 1].

(Just differentiate this function, and use the corresponding equations.) Evaluating
this function at x = x0, and at x = 1, and observing that u′′(x0) = −f(u(x0)) =
−f(γ) = 0, we have

(2.8) −u′(x0)w
′(x0) = −u′(1)w′(1) ,

which implies, in particular, that

(2.9) w′(x0) < 0 .

Using the assumption (2.4), we also have

(2.10) u′(x)w′(x)− u′′(x)w(x) = u′(1)w′(1) > 0, for all x ∈ (0, 1) .
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The function z(x) ≡ xu′(x) is easily seen to satisfy

z′′ + f ′(u)z = −2f .

Combining this equation with (1.2), we express

(z′w − w′z)
′
= −2fw = −2 [F (u(x))− F (γ)]

′ w(x)

u′(x)
.

Integrating this over (x0, 1), we get (observe that z′ = u′ + xu′′, z′(x0) = u′(x0))

M ≡ −u′(1)w′(1)− u′(x0)w(x0) + x0u
′(x0)w

′(x0)

= −2

∫ 1

x0

[F (u(x))− F (γ)]′
w(x)

u′(x)
dx

= 2

∫ 1

x0

[F (u(x))− F (γ)]
w′(x)u′(x)− w(x)u′′(x)

u′2(x)
dx > 0 ,

in view of (2.3) and (2.10).
On the other hand, using (2.8) and (2.5), and then (2.6) and (2.9), we have

M < −u′(x0)w
′(x0)− w′(x0)u(x0) + x0u

′(x0)w
′(x0)(2.11)

= w′(x0) [(x0 − 1)u′(x0)− u(x0)] < 0 ,

a contradiction. �

Observe that we only needed
∫ γ

u
f(t) dt ≤ 0 for u ∈ (0, γ), with the inequality

being strict on a set of positive measure.

3. Applications

Our condition (2.3) implies that F (γ) ≤ 0. Let γ1 ≥ γ be defined by

F (γ1) = 0 .

(In case F (γ) = 0, we have γ1 = γ.) Our condition (2.2) implies that f(u)
u is

increasing for u > γ, and so the limit L = limu→∞
f(u)
u ≤ ∞ exists.

We consider positive solutions of the problem

(3.1) u′′(x) + λf(u(x)) = 0, for −1 < x < 1, u(−1) = u(1) = 0 ,

where λ is a positive parameter. Recall that u(0) gives the maximum value of any
solution. Moreover, the value of u(0) gives the global parameter on the solution
curves, uniquely identifying the solution pair (λ, u(x)); see e.g., [3]. Hence, the set
of positive solutions of (3.1) can be represented by curves in the (λ, u(0)) plane,
giving us the solution curves.

Theorem 3.1. Assume that f(u) ∈ C1(R̄+); satisfies the conditions (2.1), (2.2)
and (2.3). Then all positive solutions of (3.1), satisfying u(0) > γ, lie on a unique
solution curve joining (δ,∞) to (δ1, γ1) in the (λ, u(0)) plane, with some 0 ≤ δ <
δ1 ≤ ∞. If L = ∞, then δ = 0, and in case L < ∞, we have δ > 0. If F (u) <

0 for all u ∈ (0, γ), then δ1 = 1
2

(∫ γ1

0
du√
−F (u)

)2

< ∞, and δ1 = ∞ in case

maxu∈(0,γ) F (u) ≥ 0.
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Proof. We begin by showing the existence of positive solutions, with u(0) > γ. We
use “shooting”, considering for x > 0 the solutions of

(3.2) u′′(x) + f(u(x)) = 0, u(0) = u0, u′(0) = 0 .

The “energy” 1
2u

′2(x) + F (u(x)) is constant, and so

(3.3)
1

2
u′2(x) + F (u(x)) = F (u0), for all x .

Let u0 > γ be such that F (u0) > F (u) for all u ∈ (0, u0). Then the solution of (3.2)
is decreasing, and u′(x) cannot become zero, or tend to zero, by (3.3). It follows
that u(x) becomes zero at some x0, and then by rescaling we get a solution of (3.1)
at some value of λ.

This solution is non-singular by Theorem 2.1. We now continue this solution in
λ, using the implicit function theorem. For decreasing λ, the solution curve goes
to infinity, as described in the statement of the theorem, by standard results; see
e.g., [3]. For increasing λ, the solution curve either continues for all λ, or at some
λ = δ1, and the corresponding u = ū(x), we have ū′(1) = 0, and the solutions
become sign-changing for λ > δ1. Then

(3.4)
1

2
ū′2(x) + δ1F (ū(x)) = 0 .

It follows that F (ū(0)) = 0, and so ū(0) = γ1, and F (u) < 0 for u ∈ (0, γ1). We
conclude that in case maxu∈(0,γ) F (u) ≥ 0, the solution ū(x) with ū′(1) = 0 is not
possible, and therefore the curve of positive solutions continues for all λ. In case
F (u) < 0 for all u ∈ (0, γ), the existence of ū(x) follows by shooting and scaling, as
above (with u0 = γ1), and the value of δ1 is computed by integration of (3.4). �

This result can be used in many situations. It adds a solution curve, which has no
turns, to whatever is known about the solution set for u(0) ∈ (0, γ). In particular,
it can be used with the well-known cases of parabola-like (see P. Korman, Y. Li,
and T. Ouyang [7], or S.-H. Wang [10]), or S-shaped solution curves (see P. Korman
and Y. Li [5], or S.-H. Wang [11]), giving the following results.

Theorem 3.2. Assume that the function f(u) ∈ C2(R̄+) has three positive roots
0 < a < b < γ, and

f(0) = 0, f(u) < 0 on (0, a) ∪ (b, γ), f(u) > 0 on (a, b) ∪ (γ,∞) ,

F (b) =

∫ b

0

f(u) du > 0 .

Assume that there is an α ∈ (a, b), so that

f ′′(u) > 0 for u ∈ (0, α), f ′′(u) < 0 for u ∈ (α, b) .

Assume, finally, that f(u) satisfies the conditions (2.2) and (2.3). Also, assume

for definiteness that limu→∞
f(u)
u = ∞. Then the set of positive solutions of (3.1)

consists of two solution curves. The lower curve is parabola-like, opening to the
right, and the upper one is given by Theorem 3.1, with δ = 0, and δ1 = ∞. In
particular, there is a critical λ0, so that the problem (3.1) has exactly one positive
solution for λ ∈ (0, λ0), exactly two positive solutions at λ = λ0, and exactly three
positive solutions for λ > λ0.
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�

�

λ

u(0)

λ0

Bifurcation diagram for Theorem 3.2

Theorem 3.3. Assume that the function f(u) ∈ C2(R̄+) has two positive roots
0 < a < γ, and

f(u) > 0 on [0, a) ∪ (γ,∞), f(u) < 0 on (a, b) .

Assume that there is an α ∈ (0, a), so that

f ′′(u) > 0 for u ∈ (0, α), f ′′(u) < 0 for u ∈ (α, a) .

Defining h(u) = 2F (u)− uf(u), we assume that

h(α) < 0 .

Assume, finally, that f(u) satisfies the conditions (2.2) and (2.3). Also, assume

for definiteness that limu→∞
f(u)
u = ∞. Then the set of positive solutions of (3.1)

consists of two solution curves. The lower curve is S-shaped, and the upper one is
given by Theorem 3.1, with δ = 0, and δ1 = ∞. In particular, there are two critical
numbers λ0 < λ1, so that the problem (3.1) has exactly two positive solutions for
λ ∈ (0, λ0), exactly three positive solutions at λ = λ0 and λ = λ1, exactly four
positive solutions for λ ∈ (λ0, λ1), and exactly two positive solutions for λ > λ0.

�

�

λ

u(0)

λ0 λ1

Bifurcation diagram for Theorem 3.3

Finally, we consider the case of broken reverse S-shaped curves, considered pre-
viously by J. Shi and R. Shivaji [9], and K.-C. Hung [2]. We have the following
result.
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Theorem 3.4. Assume that the function f(u) ∈ C2(R̄+) has three positive roots
0 < a < b < γ, and

f(u) < 0 on [0, a) ∪ (b, γ), f(u) > 0 on (a, b) ∪ (γ,∞) ,

(3.5)

∫ b

0

f(u) du > 0,

∫ γ

a

f(u) du < 0 .

Assume that

f ′′(u) < 0 for u ∈ (0, b) .

Assume, finally, that f(u) satisfies the condition (2.2). Also, assume for definite-

ness that limu→∞
f(u)
u = ∞. Then the set of positive solutions of (3.1) consists of

two solution curves. The lower curve is parabola-like, opening to the right, and the
upper one is without any turns, and it joins (0,∞) to (∞, γ1) in the (λ, u(0)) plane.
The lower branch of the lower curve terminates at some finite λ̄ (at λ̄, u′(1) = 0,
and the solutions are sign-changing for λ > λ̄).

�

�

λ

u(0)

λ̄

Bifurcation diagram for Theorem 3.4

Proof. Observe that (3.5) implies that (2.3) holds. Theorem 3.1 applies, and pro-
vides us with the upper curve. For u(0) ∈ (a, b), only turns to the right are possible
on the solution curve, see [3], and since f(0) < 0, arguing as above, we see that the
lower branch terminates at some finite λ̄. �

Let us compare this result with Theorem 2.2 in K.-C. Hung [2]. We do not impose
any concavity assumptions on f(u) for u ∈ (b,∞), and we dropped several technical
assumptions. However, we added an extra condition

∫ γ

a
f(u) du < 0, which K.-C.

Hung [2] does not have. For the cubic f(u) = (u− a)(u− b)(u− c), 0 < a < b < c,
K.-C. Hung’s theorem produces the optimal result (i.e., the bification diagram is

the same as for Theorem 3.4), requiring only that
∫ b

0
f(u) du > 0, while our result

requires that in addition,
∫ c

a
f(u) du < 0. On the other hand, our result allows

many changes in convexity on (b,∞).
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