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POSITIVITY FOR THE LINEARIZED PROBLEM
FOR SEMILINEAR EQUATIONS

Philip Korman — Tiancheng Ouyang

Abstract. Using recent results of M. Tang [10], we provide a simple ap-

proach to proving positivity for the linearized problem of semilinear equa-

tions, which is crucial for establishment of exact multiplicity results, and
for symmetry breaking.

1. Introduction

When one studies multiplicity of positive solutions of the Dirichlet problem

(1.1) ∆u + f(u) = 0, for |x| < 1, u = 0 when |x| = 1

crucial role is usually played by the corresponding linearized problem

(1.2) ∆w + f ′(u)w = 0, for |x| < 1, w = 0 when |x| = 1,

see e.g. P. Korman, Y. Li and T. Ouyang [4] or T. Ouyang and J. Shi [7]. Recall
that by the classical theorem of B. Gidas, W.-M. Ni and L. Nirenberg [2] positive
solutions are radially symmetric, and hence they satisfy the equation (2.1) below,
with (2.2) giving the corresponding linearized problem, in view C. S. Lin and
W.-M. Ni [6]. In the studies of symmetry-breaking bifurcation, i.e. when there
are non-radial solutions bifurcating off the curve of radial ones, central role was
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again played by the linearized problem, see e.g. J. Smoller and A. Wasserman [9]
and P. Korman [3]. In both cases the interest was in the nodal properties of
the solution of the linearized problem (2.2). For exact multiplicity results it was
necessary to prove that w(r) cannot change sign, while for symmetry breaking
one needed in [3] to prove that w(r) cannot change sign more than once. In both
cases this was one of the most difficult steps. In this work we observe that a
certain zeta function, introduced recently by M. Tang [10] provides a considerable
simplification in the analysis of w(r). In particular, we obtain a short and self-
contained proof of positivity of w(r) in case of cubic f(u) = u(u − a)(c − u).
The previous proof in T. Ouyang and J. Shi [7] was using some deep results of
M. K. Kwong and L. Zhang [5].

In case of symmetry breaking we obtain a result extending the one in [3], with
a considerable relaxation of conditions in the region where f(u) < 0, especially
in the case of n = 2.

2. Positivity for the linearized problem

We assume that f ∈ C1(R+) satisfies f(0) ≤ 0, and that f(u) < 0 for
u ∈ (0, b) and f(u) > 0 for u ∈ (b, c) for some 0 < b < c ≤ ∞. In view of the
classical theorem of B. Gidas, W.-M. Ni and L. Nirenberg [2] positive solutions
of the Dirichlet problem (1.1) are radially symmetric, with u′(r) < 0, and hence
they satisfy

(2.1) u′′ +
n− 1

r
u′ + f(u) = 0, u′(0) = 0, u(1) = 0.

By the result of C. S. Lin and W.-M. Ni any solution of the linearized problem
(1.2) is also radially symmetric, and hence it satisfies

(2.2) w′′ +
n− 1

r
w′ + f ′(u)w = 0, w′(0) = 0, w(1) = 0.

We shall give conditions under which w(r) is of one sign, which are crucial for
exact multiplicity results, as well as conditions under which w(r) cannot have
more than one interior root, with applications to symmetry breaking. Following
M. Tang [10], we consider the functions ξ(r) = rn−1(u′w − uw′) and ζ(r) =
rn[u′w′+f(u)w]+(n−2)rn−1u′w. While ξ(r) can be regarded as the Wronskian
of u and v, the function ζ(r) is a useful invention of M. Tang. As was observed
in M. Tang [10], these functions have the following derivatives

ξ′(r) = rn−1[uf ′(u)− f(u)]w,(2.3)

ζ ′(r) = 2f(u)wrn−1.(2.4)

Clearly, u(0) > b for any positive solution (otherwise multiply by u and integrate,
to obtain a contradiction). Denote by η the point where u(η) = b, i.e. f(u(r)) > 0
on [0, η) and f(u(r)) < 0 on (η, 1). It is well-known that w(r) cannot vanish on
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(η, 1). To underscore the usefulness of ζ(r), observe that this assertion follows
immediately by integrating (2.4) between the (hypothetical) largest root of w(r)
on (η, 1) and 1. We shall also need the following function from M. Tang [10]:

Q(r) = rn[u′2 + f(u)u] + (n− 2)rn−1u′u.

Theorem 2.1.

(a) Assume that

K(u) ≡ uf ′(u)
f(u)

is decreasing for u ∈ (b, c) and lim
u→c

K(u) > 1,(2.5)

Q(r) > 0 for r ∈ (0, η).(2.6)

Then w(r) cannot have more than one interior root on (0, η).
(b) If, in addition,

(2.7) K(u) < 1 for u ∈ (0, b),

then w(r) has no interior roots on (0, 1), i.e. we may assume that w(r) >

0 on [0, 1).

Proof. (a) Assume on the contrary that w(r) has two interior roots 0 <

τ < τ < η, so that w(r) > 0 on [0, τ) and w(r) < 0 on (τ, τ). (Observe that
τ < η, since w has no roots on (η, 1), i.e. we have f(u) > 0 on [0, τ ].) We consider
a function O(r) = 2ξ(r)/γ′ − ζ(r), with a positive constant γ′ to be specified.
Using (2.3) and (2.4), we compute

(2.8) O′(r) =
2
γ′

f(u)rn−1(K(u)− γ)w,

with γ = γ′+1. Observe that by our conditions K(u(r)) is an increasing function
of r, with K(u(0)) > 1. We now fix γ (and hence γ′) by setting γ = K(u(τ)).
Then we see from (2.8) that the function O(r) is decreasing on (0, τ). Since
O(0) = 0, it follows that O(r) < 0 for r ∈ (0, τ). Since ξ(τ) > 0, while ξ(τ) < 0,
there exists a t ∈ (τ, τ) so that ξ(t) = 0. It follows that

(2.9) ζ(t) = −O(t) > 0.

On the other hand, since u(t)/w(t) = u′(t)/w′(t),

ζ(t) =
[
tn

(
u′w′

u

w
+ f(u)u

)
+ (n− 2)tn−1u′u

]
w

u
= Q(t)

w(t)
u(t)

< 0,

contradicting (2.9).
(b) We now exclude the possibility that w(r) has exactly one interior root

τ , so that w(r) > 0 on [0, τ) and w(r) < 0 on (τ, 1). The argument is similar.
Clearly, τ ∈ (0, η). Again, we consider the function O(r), and set γ = K(u(τ)) >

1. Thanks to the assumption (2.7), we see from (2.8) that O(r) is decreasing on
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(0, 1). (Observe that at r = τ both K(u(r))− γ and w(r) change sign, while at
r = η both K(u(r))− γ and f(u(r)) change sign.) It follows that O(1) < 0, i.e.
ζ(1) = −O(1) > 0. But ζ(1) = u′(1)w′(1) < 0, a contradiction. �

Remarks 2.2. (a) Assume that we know that w(r) cannot vanish in the
region where u(r) > ρ, for some ρ ∈ (b, c). Then we may replace the condition
limu→c K(u) > 1 by requiring that K(ρ) > 1 and K(u) < K(ρ) for u ∈ (ρ, c).

(b) The first part of the theorem was also proved in T. Ouyang and J. Shi [8]
by a different and more involved method. The second part could be also proved
by using a certain integral identity of M. K. Kwong and L. Zhang [5], see [4] or
[8] for details. We see that considering the function O(r), as above, provides a
unified and simplified approach.

(c) We needed positivity of Q(r) only between the roots of w(r). So if,
for example, w(r) cannot vanish in the region where u(r) is greater than some
constant, then we do not need Q(r) to be positive in that region. In particular,
in case n = 2 the condition (2.6) can be dropped.

(d) We show that are many f(u) for which K(u) is decreasing. To emphasize
the dependence on f(u), we denote Kf (u) = uf ′(u)/f(u). Then we have for any
two functions f and g

(2.10) Kf = Kg + Kf/g.

So if Kf is decreasing, the same is true for Kupf , for any p > 0. Also, we see
from (2.10) that

Kf2 = Kf + Ff2/f = 2Kf ,

and in general Kfm = mKf . Hence Kfm is decreasing, provided Kf is decreas-
ing.

We now give some conditions on f(u) under which Q(r) > 0, i.e. the condition
(2.6) holds. Following M. Tang [10], we let

P (r) = rn(u′2 + 2F (u)) + (n− 2)rn−1u′u,

where as usual F (u) =
∫ u

0
f(t) dt. Then

Q(r)− P (r) = rn(uf(u)− 2F (u)),

and

(2.11) P ′(r) = rn−1[2nF (u)− (n− 2)uf(u)] ≡ rn−1I(u).

To show that Q(r) is positive, suffices to show that both P (r) and uf(u)−2F (u)
are positive.
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Lemma 2.3. Assume that uf(u)−2F (u) > 0 for u > b, (i.e. where f(u) > 0),
and one of the following three conditions holds:

(a) I(u) = 2nF (u)− (n− 2)uf(u) > 0 for u > b,
(b) I(u) = 2nF (u)− (n− 2)uf(u) < 0 for u > 0,
(c) I(u) < 0 for u ∈ (0, c), I(u) > 0 for u > c, for some c > 0.

We claim that P (r) > 0 for r ∈ (0, η) (i.e. where f(u) > 0).

Proof. Since P (0) = 0 and P (1) > 0, it follows by integrating (2.11) that
P (r) > 0 for r ∈ (0, η). (In case (a) P (r) is increasing on (0, η), in case (b)
is decreasing for all r, and in the last case P (r) is positive for all r.) Since
Q(r) > P (r) over (0, η), the proof follows. �

Example 2.4. Consider positive solutions of the cubic problem

(2.12) u′′ +
n− 1

r
u′ + u(u− b)(c− u) = 0, u′(0) = 0, u(1) = 0,

with constants c > 2b > 0. Then any non-trivial solution of the corresponding
linearized problem (2.2) is of one sign. We verify that the Theorem 2.1 applies.
The function f(u) = u(u− b)(c− u) is convex for u ∈ (0, (b + c)/3) and concave
when u > (b + c)/3. It is easy to see, see below or [4] and [7], that w(r) cannot
vanish in the region where f(u) is concave, so that we only need to verify that
Q(r) > 0 in the region where u ∈ J ≡ (0, b+c

3 ). Compute

uf(u)− 2F (u) = u3

[
− 1

2
u +

1
3
(b + c)

]
> 0 on J.

Turning to P (r), observe that P (0) = 0, P (1) > 0, and

(2.13) P ′(r) = rn−1I(u) = rn−1u2

[
n− 4

2
u2 +

−n + 6
3

(b + c)u− 2bc

]
.

If n ≥ 4, the quadratic polynomial in the square brackets in (2.13) is negative
when u = 0, and changes sign at most once for u > 0. We see that P ′(r)
is either negative or changes sign exactly once on (0, 1), with negative values
near r = 1. In both cases P (r) is positive. When n = 3 we have a quadratic
−u2/2+(b+ c)u− 2bc which is positive at u = c, and since any positive solution
of (2.12) satisfies u(0) < c, we see that again P ′(r) changes sign at most once,
and we proceed similarly. In case n = 2, we see directly from the definition of
Q(r) that it is positive between any two roots of w(r), since f(u) is positive
there.

Observing that K(u) = u(ln f(u))′, one easily verifies that

K ′(u) = − b

(u− b)2
− c

(c− u)2
< 0

for all u ∈ (0, c) \ {b}. Since K(0) = 1, the condition (2.7) holds. Following [8],
we define α = (b + c)/3 (i.e. f ′′(α) = 0), and ρ = α− f(α)/f ′(α). It was shown
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in [8] that w(r) cannot vanish in the region where u(r) > ρ (a sharper statement
than w(r) not vanishing where u > α, which was used above). We recall the
proof for completeness. One begins by observing that

(2.14) f ′(u) <
f(u)
u− ρ

for all u ∈ (ρ, c).

Indeed, if we define g(u) = f(u) − f ′(u)(u − ρ), then g(α) = 0 and g′(u) =
−f ′′(u)(u− ρ), so that g(u) has a minimum at α and (2.14) follows. If we now
consider a test function z(r) = u(r)− ρ, then z(r) > 0, while in view of (2.14),

z′′ +
n− 1

r
z′ + f ′(u(r))z = −f(u) + f ′(u)(u− ρ) < 0,

and hence, by a standard comparison argument, w(r) cannot vanish where u(r) >

ρ. We now observe that since K(u) is decreasing,

K(ρ) > K(α) = 1 +
ρf ′(α)
f(α)

> 1.

This completes verification of the condition (2.5) (see also Remark 2.2(a)).

3. Application to symmetry breaking

We show that the results of the preceeding section can be used to prove that
symmetry breaking occurs for semilinear equations on balls. We now recall the
basic set up, and some results from P. Korman [3].

According to the classical theorem of B. Gidas, W.-M. Ni and L. Nirenberg
[2] any positive solution of the problem (depending on a positive parameter λ)

(3.1) ∆u + λf(u) = 0 for |x| < 1, u = 0 for |x| = 1.

is radially symmetric, i.e. u = u(r), with r = |x|, and u(r) satisfies (2.1). More-
over, they proved that u′(r) < 0 for all r ∈ (0, 1). If f(0) ≥ 0 then as we vary
λ solutions of (3.1) stay positive, and hence radially symmetric. Indeed, there
are two ways in which positive solutions may eventually become sign-changing:
either they develop an interior root, or a zero slope at the boundary r = 1. The
first possibility cannot happen since positive solutions are decreasing functions,
and the second one is ruled out by the Hopf’s boundary lemma. Hence for the
symmetry breaking it is necessary that

f(0) < 0.

It was shown in P. Korman [3] that symmetry breaking actually occurs, provided
the linearized equation (2.2) cannot have more than one interior zero. Our The-
orem 2.1 provides conditions for that to happen. In fact, we have the following
result.
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Theorem 3.1. Assume that f(u) ∈ C2(R+), and there is some b > 0 so
that

f(u) < 0 for u ∈ [0, b), f(u) > 0 for u > b,

and that

lim
u→∞

f(u)
ul

= m > 0, where l <
n + 2
n− 2

if n ≥ 3, l < ∞ for n = 1, 2.

Assume also that the conditions (2.5) and (2.6) hold. Then there is a λ0 > 0,
so that for λ ∈ (0, λ0) there is a curve of positive (and hence radial) solutions of
(3.1). At λ = λ0 there is a n-dimensional family of symmetry breaking solutions
bifurcating off this curve.

Proof. Existence of positive solutions for small λ follows from A. Am-
brosetti, D. Arcoya and B. Buffoni [1]. By the Theorem 2.1 in [3] the curve
of positive solutions cannot be continued for all λ (the function f(u) has no sta-
ble roots). Hence after some λ0 solutions on the curve must cease to be positive.
As was mentioned above, we have u′(1) = 0 at λ0. By the Theorem 2.1 above
the solution of the linearized equation (2.2) cannot have more than one interior
root on (0, 1). Hence the Theorem 4.1 in P. Korman [3] applies, implying that
symmetry breaking occurs at λ0. �

Example 3.2. f(u) = up−a, with constants 1 < p < (n + 2)/(n− 2) for n >

2 and 1 < p < ∞ for n = 2, and a > 0. Here the second part of the Theorem 2.1
applies, implying that w > 0 (which was already observed in [3] in case p <

n/(n− 2)), and hence the Theorem 3.1 applies, implying that symmetry breaking
occurs. Indeed, here K(u) = pup/(up − 1), and K ′(u) = −ap2up−1/(up − a)2.
We see that limu→∞K(u) = p > 1, and K(u) is decreasing for all u > 0. Since
also K(0) = 0, we see that the conditions (2.5) and (2.7) hold. Turning to the
condition (2.6), compute uf(u) − 2F (u) = au + (1 − 2/(p + 1))up+1 > 0. We
also observe that here

(3.2) I(u) = −a(n + 2)u +
[

2n

p + 1
− n + 2

]
up+1.

The quantity in the square bracket is positive, and hence either the second or
the third case of the Lemma 2.3 holds.

Example 3.3. Let us consider a modification of the above example, begin-
ning with the case of n = 2, and 1 < p < ∞. The function f(u) is negative for
u ∈ [0, p

√
a) and positive for u > p

√
a. We now consider an arbitrary modification

of f(u) on the interval [0, p
√

a), which keeps f(u) negative there, and f( p
√

a) = 0.
The first part of the Theorem 2.1 applies, implying that w cannot change sign
more than once. Again, the Theorem 3.1 applies, implying that the symmetry
breaking occurs.
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In the case n > 2 and 1 < p < (n + 2)/(n− 2), we can allow any modification
of f(u) on the interval [0, p

√
a), which keeps f(u) negative there, and f( p

√
a) = 0,

provided that it keeps I(u) < 0 on the interval (0, p
√

a). Indeed, from (3.2) we see
that I( p

√
a) < 0, and hence either the second or the third case of the Lemma 2.3

continues to hold for the modified function.

Acknowledgments. P. K. wishes to thank Moxun Tang for sending him a
preprint of the remarkable paper [10].
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