INTERNATIONAL PUBLICATIONS (USA)

Communications on Applied Nonlinear Analysis Volume 17(2010), Number 4, 81–88

Pohozaev's Identity and Non-existence of Solutions for Elliptic Systems

Philip Korman
University of Cincinnati
Department of Mathematical Sciences
Cincinnati Ohio 45221-0025

Communicated by the Editors (Received August 28, 2010; Accepted September 25, 2010)

Abstract

We extend the classical Pohozaev's identity to semilinear elliptic systems of Hamiltonian type, providing an alternative and simpler approach to the results of E. Mitidieri [8], R.C.A.M. Van der Vorst [15], and Y. Bozhkov and E. Mitidieri [2].

Key words: Pohozaev's identity, Non-existence of solutions.

AMS Subject Classification: 35J57

1 Introduction

Any solution u(x) of semilinear Dirichlet problem on a bounded domain $\Omega \subset \mathbb{R}^n$

$$\Delta u + f(u) = 0 \text{ in } \Omega, \quad u = 0 \text{ on } \partial\Omega$$
 (1.1)

satisfies the well known Pohozaev's identity

$$\int_{\Omega} \left[2nF(u) + (2-n)uf(u) \right] dx = \int_{\partial\Omega} (x \cdot \nu) |\nabla u|^2 dS.$$
 (1.2)

Here $F(u) = \int_0^u f(t) dt$, and ν is the unit normal vector on $\partial\Omega$, pointing outside. (From the equation (1.1), $\int_{\Omega} u f(u) dx = \int_{\Omega} |\nabla u|^2 dx$, which gives an alternative form of the Pohozaev's identity.) A standard use of this identity is to conclude that if Ω is a star-shaped domain with respect to the origin, i.e. $x \cdot \nu \geq 0$ for all $x \in \partial\Omega$, and $f(u) = u|u|^{p-1}$, for some constant p, then

the problem (1.1) has no non-trivial solution in the super-critical case, when $p > \frac{n+2}{n-2}$. In this note we present a proof of Pohozaev's identity, which appears a little more straightforward than the usual one, see e.g. L. Evans [3], and then use a similar idea for systems, generalizing the well-known results of E. Mitidieri [8]. After completing this work, we found out that this result appeared previously in Y. Bozhkov and E. Mitidieri [2]. However, our proof is different, and it appears to be much simpler. Similarly, we derive Pohozhaev's identity for a version of p-Laplace equation.

Let $z = x \cdot \nabla u = \sum_{i=1}^{n} x_i u_{x_i}$. It is easy to verify that z satisfies

$$\Delta z + f'(u)z = -2f(u). \tag{1.3}$$

We multiply the equation (1.1) by z, and subtract from that the equation (1.3) multiplied by u, obtaining

$$\Sigma_{i=1}^{n} \left[(zu_{x_i} - uz_{x_i})_{x_i} + x_i \frac{\partial}{\partial x_i} (2F(u) - uf(u)) \right] = 2f(u)u.$$
 (1.4)

Clearly,

$$\sum_{i=1}^{n} x_i \frac{\partial}{\partial x_i} (2F - uf) = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} [x_i (2F - uf)] - n(2F - uf).$$

We then rewrite (1.4)

$$\sum_{i=1}^{n} \left[\left(z u_{x_i} - u z_{x_i} \right) + x_i (2F(u) - u f(u)) \right]_{x_i} = 2nF(u) + (2 - n)u f(u). \tag{1.5}$$

Integrating over Ω , we conclude the Pohozaev's identity (1.2). (The only non-zero boundary term is $\sum_{i=1}^n \int_{\partial\Omega} z u_{x_i} \nu_i \, dS$. Since $\partial\Omega$ is a level set of $u, \, \nu = \pm \frac{\nabla u}{|\nabla u|}$, i.e. $u_{x_i} = \pm |\nabla u| \nu_i$. Then $z = \pm (x \cdot \nu) |\nabla u|$, and $\sum_{i=1}^n u_{x_i} \nu_i = \pm |\nabla u|$.)

It appears natural to refer to (1.5) as a differential form of Pohozaev's identity. For radial solutions on a ball, the corresponding version of (1.5) played a crucial role in the study of exact multiplicity of solutions, see T. Ouyang and J. Shi [9], and also P. Korman [6].

2 Non-existence of solutions for a class of systems

The following class of systems has attracted considerable attention recently

$$\Delta u + H_v(u, v) = 0 \text{ in } \Omega, \quad u = 0 \text{ on } \partial\Omega$$

$$\Delta v + H_u(u, v) = 0 \text{ in } \Omega, \quad v = 0 \text{ on } \partial\Omega,$$
 (2.1)

where H(u, v) is a given differentiable function, see e.g. the following surveys: D.G. de Figueiredo [4], P. Quittner and P. Souplet [13], B. Ruf [14], see also P. Korman [5]. This system is of Hamiltonian type, which implies that it has some of the properties of scalar equations.

More generally, we assume that $H(u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_m)$, with integer $m \ge 1$, and consider the Hamiltonian system of 2m equations

$$\Delta u_k + H_{v_k} = 0 \text{ in } \Omega, \quad u_k = 0 \text{ on } \partial \Omega, \quad k = 1, 2, \dots, m$$

$$\Delta v_k + H_{u_k} = 0 \text{ in } \Omega, \quad v_k = 0 \text{ on } \partial \Omega, \quad k = 1, 2, \dots, m.$$
(2.2)

We call solution of (2.2) to be positive, if $u_k(x) > 0$ and $v_k(x) > 0$ for all $x \in \Omega$, and all k. We consider only the classical solutions, with u_k and v_k of class $C^2(\Omega) \cap C^1(\overline{\Omega})$. We have the following generalization of Pohozaev's identity, see also [2].

Theorem 2.1 Assume that $H(u_1, u_2, ..., u_m, v_1, v_2, ..., v_m) \in C^2(\mathbb{R}_+^m \times \mathbb{R}_+^m) \cap C(\overline{\mathbb{R}}_+^m \times \overline{\mathbb{R}}_+^m)$. For any positive solution of (2.2), and any real numbers $a_1, ..., a_m$, one has

$$\int_{\Omega} \left[2nH(u,v) + (2-n)\sum_{k=1}^{m} \left(a_k u_k H_{u_k} + (2-a_k) v_k H_{v_k} \right) \right] dx
= 2\sum_{k=1}^{m} \int_{\partial\Omega} (x \cdot \nu) |\nabla u_k| |\nabla v_k| dS .$$
(2.3)

Proof. Define $p_k = x \cdot \nabla u_k = \sum_{i=1}^n x_i u_{kx_i}$, and $q_k = x \cdot \nabla v = \sum_{i=1}^n x_i v_{kx_i}$, k = 1, 2, ..., m. These functions satisfy the system

$$\Delta p_k + \sum_{j=1}^m H_{v_k u_j} p_j + \sum_{j=1}^m H_{v_k v_j} q_j = -2H_{v_k}, \quad k = 1, 2, \dots, m$$

$$\Delta q_k + \sum_{j=1}^m H_{u_k u_j} p_j + \sum_{j=1}^m H_{u_k v_j} q_j = -2H_{u_k}, \quad k = 1, 2, \dots, m.$$
 (2.4)

We multiply the first equation in (2.2) by q_k , and subtract from that the first equation in (2.4) multiplied by v_k . The result can be written as

$$\Sigma_{i=1}^{n} \left[(u_{kx_i} q_k - p_{kx_i} v_k)_{x_i} + (-u_{kx_i} q_{kx_i} + v_{kx_i} p_{kx_i}) \right]
+ H_{v_k} q_k - \Sigma_{i=1}^{m} H_{v_k u_i} p_j v_k - \Sigma_{i=1}^{m} H_{v_k v_i} q_j v_k = 2v_k H_{v_k}.$$
(2.5)

Similarly, we multiply the second equation in (2.2) by p_k , and subtract from that the second equation in (2.4) multiplied by u_k , and write the result as

$$\Sigma_{i=1}^{n} \left[(v_{kx_i} p_k - q_{kx_i} u_k)_{x_i} + (-v_{kx_i} p_{kx_i} + u_{kx_i} q_{kx_i}) \right]
+ H_{u_k} p_k - \Sigma_{j=1}^{m} H_{u_k u_j} p_j u_k - \Sigma_{j=1}^{m} H_{u_k v_j} q_j u_k = 2u_k H_{u_k}.$$
(2.6)

Adding the equations (2.5) and (2.6), we get

$$\begin{split} \Sigma_{i=1}^{n} \left[u_{kx_{i}}q_{k} - p_{kx_{i}}v_{k} + v_{kx_{i}}p_{k} - q_{kx_{i}}u_{k} \right]_{x_{i}} + H_{u_{k}}p_{k} + H_{v_{k}}q_{k} - \Sigma_{j=1}^{m}H_{u_{k}u_{j}}p_{j}u_{k} \\ - \Sigma_{j=1}^{m}H_{u_{k}v_{j}}q_{j}u_{k} - \Sigma_{j=1}^{m}H_{v_{k}u_{j}}p_{j}v_{k} - \Sigma_{j=1}^{m}H_{v_{k}v_{j}}q_{j}v_{k} = 2u_{k}H_{u_{k}} + 2v_{k}H_{v_{k}} \,. \end{split}$$

We now sum in k, then switch the orders of summation in i and k in the second group of terms on the left (the ones involving H), putting the result into the form

Writing,

$$\begin{split} \Sigma_{i=1}^n x_i \frac{\partial}{\partial x_i} (2H - \Sigma_{k=1}^m u_k H_{u_k} - \Sigma_{k=1}^m v_k H_{v_k}) &= \Sigma_{i=1}^n \frac{\partial}{\partial x_i} \left[x_i (2H - \Sigma_{k=1}^m u_k H_{u_k} - \Sigma_{k=1}^m v_k H_{v_k}) \right] \\ &- n (2H - \Sigma_{k=1}^m u_k H_{u_k} - \Sigma_{k=1}^m v_k H_{v_k}) \,, \end{split}$$

we obtain the differential form of Pohozaev's identity

$$\begin{split} \Sigma_{k=1}^{m} \Sigma_{i=1}^{n} \left[u_{kx_{i}} q_{k} - p_{kx_{i}} v_{k} + v_{kx_{i}} p_{k} - q_{kx_{i}} u_{k} + x_{i} \left(2H - \Sigma_{k=1}^{m} u_{k} H_{u_{k}} - \Sigma_{k=1}^{m} v_{k} H_{v_{k}} \right) \right]_{x_{i}} \\ &= 2nH + \left(2 - n \right) \left(\Sigma_{k=1}^{m} u_{k} H_{u_{k}} + \Sigma_{k=1}^{m} v_{k} H_{v_{k}} \right) \,. \end{split}$$

Integrating, we obtain as before

$$\int_{\Omega} \left[2nH(u,v) + (2-n) \left(\sum_{k=1}^{m} u_k H_{u_k} + \sum_{k=1}^{m} v_k H_{v_k} \right) \right] dx
= 2\sum_{k=1}^{m} \int_{\partial\Omega} (x \cdot \nu) |\nabla u_k| |\nabla v_k| dS.$$
(2.7)

(Since we consider positive solutions, and $\partial\Omega$ is a level set for both u_k and v_k , we have $\nu = -\frac{\nabla u_k}{|\nabla u_k|} = -\frac{\nabla v_k}{|\nabla v_k|}$, i.e., $u_{ki} = -|\nabla u_k|\nu_i$ and $v_{ki} = |\nabla v_k|\nu_i$ on the boundary $\partial\Omega$.) From the first equation in (2.1), $\int_{\Omega} v_k H_{v_k} dx = \int_{\Omega} \nabla u_k \cdot \nabla v_k dx$, while from the second equation $\int_{\Omega} u_k H_{u_k} dx = \int_{\Omega} \nabla u_k \cdot \nabla v_k dx$, i.e., for each k

$$\int_{\Omega} v_k H_{v_k} \, dx = \int_{\Omega} u_k H_{u_k} \, dx \, .$$

Using this in (2.7), we conclude the proof.

Remark Here and later on, we consider only the classical solutions. Observe that by our conditions and elliptic regularity, classical solutions are in fact of class $C^3(\Omega)$, so that all quantities in the above proof are well defined. Also, it suffices to assume that Ω is starshaped with respect to any one of its points (which we then take to be the origin).

As a consequence, we have the following non-existence result.

Proposition 1 Assume that Ω is a star-shaped domain with respect to the origin, and for some real constants $\alpha_1, \ldots, \alpha_m$, and all $u_k > 0$, $v_k > 0$, we have

$$nH + (2 - n)\sum_{k=1}^{m} (\alpha_k u_k H_{u_k} + (1 - \alpha_k) v_k H_{v_k}) < 0.$$
(2.8)

 \Diamond

Then the problem (2.2) has no positive solutions.

Proof. We use the identity (2.3), with $a_k/2 = \alpha_k$. Then, assuming existence of positive solution, the left hand side of (2.3) is negative, while the right hand side is non-negative, a contradiction.

Example Assume that m=2, and consider $H(u_1,v_1,u_2,v_2)=\frac{1}{p}\left(v_1^p+v_2^p\right)+u_1^ru_2^s$, with $p>\frac{2n}{n-2}$, and $r+s>\frac{2n}{n-2}$. Then the inequality (2.8) holds, with $\alpha_1=\alpha_2=\frac{1}{2}$. It follows that the system

$$\begin{split} & \Delta u_1 + v_1^{p-1} = 0 \quad \text{in } \Omega, \quad u_1 = 0 \ \text{on } \partial \Omega, \\ & \Delta v_1 + r u_1^{r-1} u_2^s = 0 \quad \text{in } \Omega, \quad v_1 = 0 \ \text{on } \partial \Omega, \\ & \Delta u_2 + v_2^{p-1} = 0 \quad \text{in } \Omega, \quad u_2 = 0 \ \text{on } \partial \Omega, \\ & \Delta v_2 + s u_1^r u_2^{s-1} = 0 \quad \text{in } \Omega, \quad v_2 = 0 \ \text{on } \partial \Omega \end{split},$$

has no positive solutions.

In case m = 1, we recover the following result of E. Mitidieri [8]. We provide some details, in order to point out that some restrictions in [8] can be relaxed.

Proposition 2 Assume that Ω is a star-shaped domain with respect to the origin, and for some real constant α , and all u > 0, v > 0 we have

$$\alpha u H_u(u,v) + (1-\alpha)v H_v(u,v) > \frac{n}{n-2} H(u,v).$$
 (2.9)

Then the problem (2.1) has no positive solution.

Comparing this result to E. Mitidieri[8], observe that we do not require that $H_u(0,0) = H_v(0,0) = 0$.

An important subclass of (2.1) is

$$\Delta u + f(v) = 0 \text{ in } \Omega, \quad u = 0 \text{ on } \partial\Omega$$

$$\Delta v + g(u) = 0 \text{ in } \Omega, \quad v = 0 \text{ on } \partial\Omega,$$
(2.10)

which corresponds to H(u,v) = F(v) + G(u), where as before, $F(v) = \int_0^v f(t) dt$, $G(u) = \int_0^u g(t) dt$. Unlike [8], we do not require that f(0) = g(0) = 0. The Theorem 2.1 now reads as follows.

Theorem 2.2 Let $f, g \in C(\bar{R}_+)$. For any positive solution of (2.10), and any real number a, one has

$$\int_{\Omega} \left[2n(F(v) + G(u)) + (2 - n) \left(avf(v) + (2 - a)ug(u) \right) \right] dx
= 2 \int_{\partial\Omega} (x \cdot \nu) |\nabla u| |\nabla v| dS.$$
(2.11)

We now consider a particular system

$$\Delta u + v^p = 0 \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega$$

$$\Delta v + q(u) = 0 \text{ in } \Omega, \quad v = 0 \text{ on } \partial \Omega,$$
 (2.12)

with $g(u) \in C(\bar{R}_+)$, and a constant p > 0.

Theorem 2.3 Assume that Ω is a star-shaped domain with respect to the origin, and

$$nG(u) + (2-n)\left(1 - \frac{n}{(n-2)(p+1)}\right)ug(u) < 0, \text{ for all } u > 0.$$
 (2.13)

Then the problem (2.12) has no positive solution.

Proof. We use Pohozaev's identity (2.11), with $f(v) = v^p$. We select the constant a, so that

$$2nF(v) + (2-n)avf(v) = 0,$$

i.e., $a = \frac{2n}{(n-2)(p+1)}$. Then, assuming existence of a positive solution, the left hand side of (2.11) is negative, while the right hand side is non-negative, a contradiction.

Observe that in case p=1, the Theorem 2.3 provides a non-existence result for a biharmonic problem with Navier boundary conditions (in E. Mitidieri [8], a separate identity was used to cover the biharmonic case)

$$\Delta^2 u = g(u) \text{ in } \Omega, \quad u = \Delta u = 0 \text{ on } \partial\Omega.$$
 (2.14)

Proposition 3 Assume that Ω is a star-shaped domain with respect to the origin, and the condition (2.13) holds. Then the problem (2.14) has no positive solution.

Finally, we consider the system

$$\Delta u + v^p = 0 \text{ in } \Omega, \quad u = 0 \text{ on } \partial\Omega
\Delta v + u^q = 0 \text{ in } \Omega, \quad v = 0 \text{ on } \partial\Omega.$$
(2.15)

The curve $\frac{1}{p+1} + \frac{1}{q+1} = \frac{n-2}{n}$ is called a *critical hyperbola*. We recover the following well known result of E. Mitidieri [8], see also R.C.A.M. Van der Vorst [15]. (Observe that we relax the restriction p, q > 1 from [8].)

Proposition 4 Assume that p, q > 0, and

$$\frac{1}{p+1} + \frac{1}{q+1} < \frac{n-2}{n} \,. \tag{2.16}$$

Then the problem (2.15) has no positive solution.

Proof. Condition (2.16) is equivalent to (2.13), and the Theorem 2.3 applies. \diamondsuit

In case p = 1, we have the following known result, see E. Mitidieri [8].

Proposition 5 Assume that Ω is a star-shaped domain with respect to the origin, and $q > \frac{n+4}{n-4}$. Then the problem

$$\Delta^2 u = u^q$$
 in Ω , $u = \Delta u = 0$ on $\partial \Omega$

has no positive solutions.

3 Pohozhaev's identity for a version of p-Laplace equation

We consider the following version of p-Laplace equation

$$\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \varphi(u_{x_i}) + f(u) = 0 \text{ in } \Omega, \quad u = 0 \text{ on } \partial\Omega.$$
(3.1)

Here $\varphi(t)=t|t|^{p-2}$, with a constant p>1. This is a variational equation for the functional $\int_{\Omega}\left[\frac{1}{p}\left(|u_{x_1}|^p+\ldots+|u_{x_n}|^p\right)-F(u)\right]dx$. This equation is known to the experts, see P. Lindqvist [7], but it has not been studied much.

Observe that $\varphi(at) = a^{p-1}\varphi(t)$, for any constant a > 0. Also, $\varphi'(t) = (p-1)|t|^{p-2}$, i.e.,

$$t\varphi'(t) = (p-1)\varphi(t). \tag{3.2}$$

Letting, as before, $z = x \cdot \nabla u = \sum_{i=1}^{n} x_i u_{x_i}$, we see that z satisfies

$$\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left[\varphi'(u_{x_i}) z_{x_i} \right] + f'(u) z = -pf(u).$$
(3.3)

To derive (3.3), we consider $u^s(x) \equiv u(sx)$, which satisfies

$$\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \varphi(\frac{\partial}{\partial x_i} u^s) = -s^p f(u^s). \tag{3.4}$$

 \Diamond

(To see that, it is convenient to write (3.1) as $\sum_{i=1}^{n} \varphi'(\frac{\partial}{\partial x_i}u) \frac{\partial^2}{\partial x_i^2}u + f(u) = 0$.) Then differentiating (3.4) with respect to s, and setting s = 1, we obtain (3.3). (Alternatively, to derive (3.3), one could differentiate (3.1) in x_j , then multiply by x_j , and sum in j.)

Proposition 6 Any solution of (3.1) satisfies

$$\int_{\Omega} \left[pnF(u) + (p-n)uf(u) \right] dx = (p-1) \int_{\partial\Omega} (x \cdot \nu) |\nabla u| \sum_{i=1}^{n} \varphi(|\nabla u|\nu_i)\nu_i dS, \qquad (3.5)$$

where ν_i is the i-th component of ν , the unit normal vector on $\partial\Omega$, pointing outside.

Proof. Multiply the equation (3.1) by z, and write the result as

$$(p-1)\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left[z\varphi(u_{x_i}) \right] - (p-1)\sum_{i=1}^{n} \varphi(u_{x_i}) z_{x_i} + (p-1)f(u)z = 0.$$
 (3.6)

Multiply the equation (3.3) by u, and write the result as

$$\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left[u\varphi'(u_{x_{i}}) z_{x_{i}} \right] - \sum_{i=1}^{n} u_{x_{i}} \varphi'(u_{x_{i}}) z_{x_{i}} + f'(u) uz = -puf(u).$$
 (3.7)

We now subtract (3.7) from (3.6). In view of (3.2), we have a cancellation, and so we obtain

$$\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} [(p-1)z\varphi(u_{x_{i}}) - u\varphi'(u_{x_{i}})z_{x_{i}}] + [(p-1)f(u) - uf'(u)]z = puf(u).$$

As before,

$$[(p-1)f(u) - uf'(u)] z = \sum_{i=1}^{n} x_i \frac{\partial}{\partial x_i} (pF(u) - uf(u))$$

$$= \sum_{i=1}^{n} \frac{\partial}{\partial x_i} [x_i (pF(u) - uf(u))] - n(pF(u) - uf(u)).$$
(3.8)

This gives us a differential form of Pohozaev's identity

$$\Sigma_{i=1}^{n} \frac{\partial}{\partial x_i} \left[(p-1)z\varphi(u_{x_i}) - u\varphi'(u_{x_i})z_{x_i} + x_i(pF(u) - uf(u)) \right]$$

$$= pnF(u) + (p-n)uf(u).$$
(3.9)

Integrating, and using the divergence theorem, we conclude the proof.

For star-shaped domains, the right hand side of (3.5) is non-negative, so if

$$pnF(u) + (p-n)uf(u) < 0$$
 for all u,

then the problem (3.1) has no non-trivial solutions.

Example For star-shaped domains, the problem

$$\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \varphi(u_{x_i}) + u|u|^{r-1} = 0 \text{ in } \Omega, \ u = 0 \text{ on } \partial\Omega$$

has no non-trivial solutions, provided the constant r satisfies $r > \frac{np-n+p}{n-p}$.

Acknowledgment Supported in part by the Taft Faculty Grant at the University of Cincinnati. It is a pleasure to thank T. Adamowicz for pointing out the reference [7] to me.

References

[1] T. Adamowicz and A. Kałamajska, On a variant of the maximum principle involving radial *p*-Laplacian with applications to nonlinear eigenvalue problems and nonexistence results, *Topol. Methods Nonlinear Anal.* **34** (2009), no. 1, 1-20.

- [2] Y. Bozhkov and E. Mitidieri, The Noether approach to Pokhozhaev's identities, *Mediterr*. J. Math. 4 (2007), no. 4, 383-405.
- [3] L. Evans, Partial Differential Equations. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, (1998).
- [4] D.G. de Figueiredo, Semilinear elliptic systems: existence, multiplicity, symmetry of solutions, Handbook of Differential Equations, Stationary Partial Differential Equations, Vol. 5, Edited by M. Chipot, Elsevier Science, North Holland, 1-48 (2008).
- [5] P. Korman, Global solution curves for semilinear systems, Math. Methods Appl. Sci. 25 (2002), no. 1, 3-20.
- [6] P. Korman, Uniqueness and exact multiplicity of solutions for non-autonomous Dirichlet problems, Adv. Nonlinear Stud. 6 (2006), no. 3, 461-481.
- [7] P. Lindqvist, Notes on the p-Laplace equation. Report. University of Jyväskylä Department of Mathematics and Statistics, 102. University of Jyväskylä, Jyväskylä, (2006).
- [8] E. Mitidieri, A Rellich type identity and applications, *Comm. Partial Differential Equations* **18** (1993), no. 1-2, 125-151.
- [9] T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problems, II, J. Differential Equations 158 (1999), no. 1, 94-151.
- [10] S.I. Pohozaev, On the eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$. (Russian) Dokl. Akad. Nauk SSSR **165** (1965), 36-39.
- [11] P. Pucci and J. Serrin, A general variational identity, *Indiana Univ. Math. J.* 35 (1986), no. 3, 681-703.
- [12] F. Rellich, Darstellung der Eigenwerte von $\Delta u + \lambda u = 0$ durch ein Randintegral. (German) Math. Z. 46 (1940), 635-636.
- [13] P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, global existence and steady states. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel, (2007).
- [14] B. Ruf, Superlinear elliptic equations and systems, Handbook of Differential Equations, Stationary Partial Differential Equations, Vol. 5, Edited by M. Chipot, Elsevier Science, North Holland, 277-370. (2008).
- [15] R.C.A.M. Van der Vorst, Variational identities and applications to differential systems, Arch. Rational Mech. Anal. 116 (1992), no. 4, 375-398.