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Abstract

We extend the classical Pohozaev’s identity to semilinear elliptic systems of Hamiltonian
type, providing an alternative and simpler approach to the results of E. Mitidieri [8],
R.C.A.M. Van der Vorst [15], and Y. Bozhkov and E. Mitidieri [2].
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1 Introduction

Any solution u(x) of semilinear Dirichlet problem on a bounded domain Ω ⊂ Rn

∆u + f(u) = 0 in Ω, u = 0 on ∂Ω (1.1)

satisfies the well known Pohozaev’s identity
∫

Ω

[2nF (u) + (2 − n)uf(u)] dx =
∫

∂Ω

(x · ν)|∇u|2dS . (1.2)

Here F (u) =
∫ u

0 f(t) dt, and ν is the unit normal vector on ∂Ω, pointing outside. (From the
equation (1.1),

∫
Ω uf(u) dx =

∫
Ω |∇u|2 dx, which gives an alternative form of the Pohozaev’s

identity.) A standard use of this identity is to conclude that if Ω is a star-shaped domain with
respect to the origin, i.e. x·ν ≥ 0 for all x ∈ ∂Ω, and f(u) = u|u|p−1, for some constant p, then
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the problem (1.1) has no non-trivial solution in the super-critical case, when p > n+2
n−2 . In this

note we present a proof of Pohozaev’s identity, which appears a little more straightforward
than the usual one, see e.g. L. Evans [3], and then use a similar idea for systems, generalizing
the well-known results of E. Mitidieri [8]. After completing this work, we found out that this
result appeared previously in Y. Bozhkov and E. Mitidieri [2]. However, our proof is different,
and it appears to be much simpler. Similarly, we derive Pohozhaev’s identity for a version of
p-Laplace equation.

Let z = x · ∇u = Σn
i=1xiuxi . It is easy to verify that z satisfies

∆z + f ′(u)z = −2f(u) . (1.3)

We multiply the equation (1.1) by z, and subtract from that the equation (1.3) multiplied by
u, obtaining

Σn
i=1

[
(zuxi − uzxi)xi + xi

∂

∂xi
(2F (u) − uf(u))

]
= 2f(u)u . (1.4)

Clearly,

Σn
i=1xi

∂

∂xi
(2F − uf) = Σn

i=1

∂

∂xi
[xi(2F − uf)] − n(2F − uf) .

We then rewrite (1.4)

Σn
i=1 [(zuxi − uzxi) + xi(2F (u) − uf(u))]xi

= 2nF (u) + (2 − n)uf(u) . (1.5)

Integrating over Ω, we conclude the Pohozaev’s identity (1.2). (The only non-zero boundary
term is Σn

i=1

∫
∂Ω

zuxiνi dS. Since ∂Ω is a level set of u, ν = ± ∇u
|∇u| , i.e. uxi = ±|∇u|νi. Then

z = ±(x · ν)|∇u|, and Σn
i=1uxiνi = ±|∇u|.)

It appears natural to refer to (1.5) as a differential form of Pohozaev’s identity. For radial
solutions on a ball, the corresponding version of (1.5) played a crucial role in the study of
exact multiplicity of solutions, see T. Ouyang and J. Shi [9], and also P. Korman [6].

2 Non-existence of solutions for a class of systems

The following class of systems has attracted considerable attention recently

∆u + Hv(u, v) = 0 in Ω, u = 0 on ∂Ω
∆v + Hu(u, v) = 0 in Ω, v = 0 on ∂Ω ,

(2.1)

where H(u, v) is a given differentiable function, see e.g. the following surveys: D.G. de
Figueiredo [4], P. Quittner and P. Souplet [13], B. Ruf [14], see also P. Korman [5]. This
system is of Hamiltonian type, which implies that it has some of the properties of scalar
equations.

More generally, we assume that H(u1, u2, . . . , um, v1, v2, . . . , vm), with integer m ≥ 1, and
consider the Hamiltonian system of 2m equations

∆uk + Hvk = 0 in Ω, uk = 0 on ∂Ω, k = 1, 2, . . . , m
∆vk + Huk = 0 in Ω, vk = 0 on ∂Ω, k = 1, 2, . . . , m .

(2.2)
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We call solution of (2.2) to be positive, if uk(x) > 0 and vk(x) > 0 for all x ∈ Ω, and all
k. We consider only the classical solutions, with uk and vk of class C2(Ω) ∩ C1(Ω̄). We have
the following generalization of Pohozaev’s identity, see also [2].

Theorem 2.1 Assume that H(u1, u2, . . . , um, v1, v2, . . . , vm) ∈ C2(Rm
+ ×Rm

+ )∩C(R̄m
+ × R̄m

+ ).
For any positive solution of (2.2), and any real numbers a1, . . . , am, one has

∫
Ω [2nH(u, v) + (2 − n)Σm

k=1 (akukHuk + (2 − ak)vkHvk)] dx
= 2Σm

k=1

∫
∂Ω

(x · ν)|∇uk||∇vk| dS .
(2.3)

Proof. Define pk = x · ∇uk = Σn
i=1xiukxi, and qk = x · ∇v = Σn

i=1xivkxi, k = 1, 2, . . . , m.
These functions satisfy the system

∆pk + Σm
j=1Hvkujpj + Σm

j=1Hvkvjqj = −2Hvk , k = 1, 2, . . . , m

∆qk + Σm
j=1Hukuj pj + Σm

j=1Hukvj qj = −2Huk, k = 1, 2, . . . , m .
(2.4)

We multiply the first equation in (2.2) by qk, and subtract from that the first equation in
(2.4) multiplied by vk. The result can be written as

Σn
i=1 [(ukxiqk − pkxivk)xi + (−ukxiqkxi + vkxipkxi)]

+Hvkqk − Σm
j=1Hvkujpjvk − Σm

j=1Hvkvjqjvk = 2vkHvk .
(2.5)

Similarly, we multiply the second equation in (2.2) by pk, and subtract from that the second
equation in (2.4) multiplied by uk, and write the result as

Σn
i=1 [(vkxipk − qkxiuk)xi + (−vkxipkxi + ukxiqkxi)]

+Hukpk − Σm
j=1Hukujpjuk − Σm

j=1Hukvjqjuk = 2ukHuk .
(2.6)

Adding the equations (2.5) and (2.6), we get

Σn
i=1 [ukxiqk − pkxivk + vkxipk − qkxiuk]xi

+ Hukpk + Hvkqk − Σm
j=1Hukuj pjuk

−Σm
j=1Hukvjqjuk − Σm

j=1Hvkuj pjvk − Σm
j=1Hvkvjqjvk = 2ukHuk + 2vkHvk .

We now sum in k, then switch the orders of summation in i and k in the second group of
terms on the left (the ones involving H), putting the result into the form

Σm
k=1Σn

i=1 [ukxiqk − pkxivk + vkxipk − qkxiuk]xi

+Σn
i=1xi (2H − Σm

k=1ukHuk − Σm
k=1vkHvk)xi

= 2Σm
k=1ukHuk + 2Σm

k=1vkHvk .

Writing,

Σn
i=1xi

∂
∂xi

(2H − Σm
k=1ukHuk − Σm

k=1vkHvk) = Σn
i=1

∂
∂xi

[xi(2H − Σm
k=1ukHuk − Σm

k=1vkHvk)]
−n(2H − Σm

k=1ukHuk − Σm
k=1vkHvk) ,

we obtain the differential form of Pohozaev’s identity

Σm
k=1Σn

i=1 [ukxiqk − pkxivk + vkxipk − qkxiuk + xi (2H − Σm
k=1ukHuk − Σm

k=1vkHvk)]xi

= 2nH + (2 − n) (Σm
k=1ukHuk + Σm

k=1vkHvk) .
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Integrating, we obtain as before
∫
Ω

[2nH(u, v) + (2 − n) (Σm
k=1ukHuk + Σm

k=1vkHvk)] dx
= 2Σm

k=1

∫
∂Ω

(x · ν)|∇uk||∇vk| dS .
(2.7)

(Since we consider positive solutions, and ∂Ω is a level set for both uk and vk, we have
ν = − ∇uk

|∇uk| = − ∇vk

|∇vk| , i.e., uki = −|∇uk|νi and vki = |∇vk|νi on the boundary ∂Ω.) From
the first equation in (2.1),

∫
Ω

vkHvk dx =
∫
Ω
∇uk · ∇vk dx, while from the second equation∫

Ω
ukHuk dx =

∫
Ω
∇uk · ∇vk dx, i.e., for each k

∫

Ω

vkHvk dx =
∫

Ω

ukHuk dx .

Using this in (2.7), we conclude the proof. ♦

Remark Here and later on, we consider only the classical solutions. Observe that by our
conditions and elliptic regularity, classical solutions are in fact of class C3(Ω), so that all
quantities in the above proof are well defined. Also, it suffices to assume that Ω is star-
shaped with respect to any one of its points (which we then take to be the origin).

As a consequence, we have the following non-existence result.

Proposition 1 Assume that Ω is a star-shaped domain with respect to the origin, and for
some real constants α1, . . . , αm, and all uk > 0, vk > 0, we have

nH + (2 − n)Σm
k=1 (αkukHuk + (1 − αk)vkHvk) < 0 . (2.8)

Then the problem (2.2) has no positive solutions.

Proof. We use the identity (2.3), with ak/2 = αk. Then, assuming existence of positive
solution, the left hand side of (2.3) is negative, while the right hand side is non-negative, a
contradiction. ♦

Example Assume that m = 2, and consider H(u1, v1, u2, v2) = 1
p

(vp
1 + vp

2) + ur
1u

s
2, with

p > 2n
n−2

, and r + s > 2n
n−2

. Then the inequality (2.8) holds, with α1 = α2 = 1
2
. It follows

that the system
∆u1 + vp−1

1 = 0 in Ω, u1 = 0 on ∂Ω ,

∆v1 + rur−1
1 us

2 = 0 in Ω, v1 = 0 on ∂Ω ,

∆u2 + vp−1
2 = 0 in Ω, u2 = 0 on ∂Ω ,

∆v2 + sur
1u

s−1
2 = 0 in Ω, v2 = 0 on ∂Ω

has no positive solutions.

In case m = 1, we recover the following result of E. Mitidieri [8]. We provide some details,
in order to point out that some restrictions in [8] can be relaxed.

Proposition 2 Assume that Ω is a star-shaped domain with respect to the origin, and for
some real constant α, and all u > 0, v > 0 we have

αuHu(u, v) + (1 − α)vHv(u, v) >
n

n − 2
H(u, v) . (2.9)
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Then the problem (2.1) has no positive solution.

Comparing this result to E. Mitidieri[8], observe that we do not require that Hu(0, 0) =
Hv(0, 0) = 0.

An important subclass of (2.1) is

∆u + f(v) = 0 in Ω, u = 0 on ∂Ω
∆v + g(u) = 0 in Ω, v = 0 on ∂Ω ,

(2.10)

which corresponds to H(u, v) = F (v) + G(u), where as before, F (v) =
∫ v

0
f(t) dt, G(u) =∫ u

0 g(t) dt. Unlike [8], we do not require that f(0) = g(0) = 0. The Theorem 2.1 now reads as
follows.

Theorem 2.2 Let f, g ∈ C(R̄+). For any positive solution of (2.10), and any real number
a, one has ∫

Ω
[2n(F (v) + G(u)) + (2 − n) (avf(v) + (2 − a)ug(u))] dx

= 2
∫
∂Ω

(x · ν)|∇u||∇v| dS .
(2.11)

We now consider a particular system

∆u + vp = 0 in Ω, u = 0 on ∂Ω
∆v + g(u) = 0 in Ω, v = 0 on ∂Ω ,

(2.12)

with g(u) ∈ C(R̄+), and a constant p > 0.

Theorem 2.3 Assume that Ω is a star-shaped domain with respect to the origin, and

nG(u) + (2 − n)
(

1 −
n

(n − 2)(p + 1)

)
ug(u) < 0 , for all u > 0 . (2.13)

Then the problem (2.12) has no positive solution.

Proof. We use Pohozaev’s identity (2.11), with f(v) = vp. We select the constant a, so that

2nF (v) + (2 − n)avf(v) = 0 ,

i.e., a = 2n
(n−2)(p+1) . Then, assuming existence of a positive solution, the left hand side of

(2.11) is negative, while the right hand side is non-negative, a contradiction. ♦

Observe that in case p = 1, the Theorem 2.3 provides a non-existence result for a bihar-
monic problem with Navier boundary conditions (in E. Mitidieri [8], a separate identity was
used to cover the biharmonic case)

∆2u = g(u) in Ω, u = ∆u = 0 on ∂Ω . (2.14)

Proposition 3 Assume that Ω is a star-shaped domain with respect to the origin, and the
condition (2.13) holds. Then the problem (2.14) has no positive solution.
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Finally, we consider the system

∆u + vp = 0 in Ω, u = 0 on ∂Ω
∆v + uq = 0 in Ω, v = 0 on ∂Ω .

(2.15)

The curve 1
p+1 + 1

q+1 = n−2
n is called a critical hyperbola. We recover the following well

known result of E. Mitidieri [8], see also R.C.A.M. Van der Vorst [15]. (Observe that we relax
the restriction p, q > 1 from [8].)

Proposition 4 Assume that p, q > 0, and

1
p+1

+ 1
q+1

< n−2
n

. (2.16)

Then the problem (2.15) has no positive solution.

Proof. Condition (2.16) is equivalent to (2.13), and the Theorem 2.3 applies. ♦

In case p = 1, we have the following known result, see E. Mitidieri [8].

Proposition 5 Assume that Ω is a star-shaped domain with respect to the origin, and q >
n+4
n−4 . Then the problem

∆2u = uq in Ω, u = ∆u = 0 on ∂Ω

has no positive solutions.

3 Pohozhaev’s identity for a version of p-Laplace equa-

tion

We consider the following version of p-Laplace equation

Σn
i=1

∂

∂xi
ϕ(uxi) + f(u) = 0 in Ω, u = 0 on ∂Ω . (3.1)

Here ϕ(t) = t|t|p−2, with a constant p > 1. This is a variational equation for the func-

tional
∫

Ω

[
1
p

(|ux1|p + . . . + |uxn|p) − F (u)
]

dx. This equation is known to the experts, see P.

Lindqvist [7], but it has not been studied much.

Observe that ϕ(at) = ap−1ϕ(t), for any constant a > 0. Also, ϕ′(t) = (p − 1)|t|p−2, i.e.,

tϕ′(t) = (p − 1)ϕ(t) . (3.2)

Letting, as before, z = x · ∇u = Σn
i=1xiuxi , we see that z satisfies

Σn
i=1

∂

∂xi
[ϕ′(uxi)zxi ] + f ′(u)z = −pf(u) . (3.3)

To derive (3.3), we consider us(x) ≡ u(sx), which satisfies

Σn
i=1

∂

∂xi
ϕ(

∂

∂xi
us) = −spf(us) . (3.4)
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(To see that, it is convenient to write (3.1) as Σn
i=1ϕ

′(
∂

∂xi
u)

∂2

∂x2
i

u + f(u) = 0.) Then differ-

entiating (3.4) with respect to s, and setting s = 1, we obtain (3.3). (Alternatively, to derive
(3.3), one could differentiate (3.1) in xj, then multiply by xj, and sum in j.)

Proposition 6 Any solution of (3.1) satisfies
∫

Ω

[pnF (u) + (p − n)uf(u)] dx = (p − 1)
∫

∂Ω

(x · ν)|∇u|Σn
i=1ϕ(|∇u|νi)νi dS , (3.5)

where νi is the i-th component of ν, the unit normal vector on ∂Ω, pointing outside.

Proof. Multiply the equation (3.1) by z, and write the result as

(p − 1)Σn
i=1

∂

∂xi
[zϕ(uxi )] − (p − 1)Σn

i=1ϕ(uxi)zxi + (p − 1)f(u)z = 0 . (3.6)

Multiply the equation (3.3) by u, and write the result as

Σn
i=1

∂

∂xi
[uϕ′(uxi)zxi ] − Σn

i=1uxiϕ
′(uxi)zxi + f ′(u)uz = −puf(u) . (3.7)

We now subtract (3.7) from (3.6). In view of (3.2), we have a cancellation, and so we obtain

Σn
i=1

∂

∂xi
[(p − 1)zϕ(uxi) − uϕ′(uxi)zxi ] + [(p − 1)f(u) − uf ′(u)] z = puf(u) .

As before,
[(p − 1)f(u) − uf ′(u)] z = Σn

i=1xi
∂

∂xi
(pF (u)− uf(u))

= Σn
i=1

∂
∂xi

[xi(pF (u) − uf(u))] − n(pF (u) − uf(u)) .
(3.8)

This gives us a differential form of Pohozaev’s identity

Σn
i=1

∂
∂xi

[(p − 1)zϕ(uxi) − uϕ′(uxi)zxi + xi(pF (u) − uf(u))]
= pnF (u) + (p − n)uf(u) .

(3.9)

Integrating, and using the divergence theorem, we conclude the proof. ♦

For star-shaped domains, the right hand side of (3.5) is non-negative, so if

pnF (u) + (p − n)uf(u) < 0 for all u ,

then the problem (3.1) has no non-trivial solutions.

Example For star-shaped domains, the problem

Σn
i=1

∂

∂xi
ϕ(uxi ) + u|u|r−1 = 0 in Ω, u = 0 on ∂Ω

has no non-trivial solutions, provided the constant r satisfies r > np−n+p
n−p

.
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