A remark on Pinney's equation

Philip Korman
Department of Mathematical Sciences
University of Cincinnati
Cincinnati Ohio 45221-0025

Abstract

We show that Pinney's equation [2] with a constant coefficient can be reduced to its linear part by a simple change of variables. Also, Pinney's original solution is simplified slightly.

Key words: Pinney's equation, general solution.
AMS subject classification: 34A05.
In 1950 Edmund Pinney published a very influential paper [2], which was less than half a page long. That paper provided a general solution of the nonlinear differential equation

$$
\begin{equation*}
y^{\prime \prime}+a(x) y+\frac{c}{y^{3}}=0, \quad y\left(x_{0}\right)=q \neq 0, y^{\prime}\left(x_{0}\right)=p \tag{1}
\end{equation*}
$$

with a given function $a(x)$ and a constant $c \neq 0$. Namely, the solution is

$$
\begin{equation*}
y(x)= \pm \sqrt{u^{2}(x)-c v^{2}(x)}, \tag{2}
\end{equation*}
$$

where $u(x)$ and $v(x)$ are the solutions of the linear equation

$$
\begin{equation*}
y^{\prime \prime}+a(x) y=0 \tag{3}
\end{equation*}
$$

for which $u\left(x_{0}\right)=q, u^{\prime}\left(x_{0}\right)=p$, and $v\left(x_{0}\right)=0, v^{\prime}\left(x_{0}\right)=\frac{1}{q}$. One takes "plus" in (2) if $q>0$, and "minus" if $q<0$. Clearly, $u(x)$ and $v(x)$ form a
fundamental set of (3), and by Liouville's formula their Wronskian at any x is the same as at x_{0}, i.e.,

$$
u^{\prime}(x) v(x)-u(x) v^{\prime}(x)=1, \text { for all } x
$$

A substitution of $y=\sqrt{u^{2}(x)-c v^{2}(x)}$ into (1) gives

$$
y^{\prime \prime}+a(x) y+\frac{c}{y^{3}}=-c \frac{\left[u^{\prime}(x) v(x)-u(x) v^{\prime}(x)\right]^{2}-1}{\left[u^{2}(x)-c v^{2}(x)\right]^{\frac{3}{2}}}=0 .
$$

If $c<0$, the solution is valid for all x, while for $c>0$ some singular points are possible.

The nonlinear equation equation (1) possessing a general solution is very special, and it attracted a lot of attention (there are currently 92 MathSciNet and 543 Google Scholar citations). It turns out that this equation was considered back in 1880 by Ermakov [1].

Our remark is that in case of constant $a(x)=a_{0}$, Pinney's equation becomes linear for $z(x)=y^{2}(x)$. Indeed, we multiply the equation

$$
\begin{equation*}
y^{\prime \prime}+a_{0} y+\frac{c}{y^{3}}=0 \tag{4}
\end{equation*}
$$

by y^{\prime}, and integrate to get

$$
\begin{equation*}
y^{\prime 2}+a_{0} y^{2}-c y^{-2}=p^{2}+a_{0} q^{2}-c \frac{1}{q^{2}} . \tag{5}
\end{equation*}
$$

Now multiply the same equation by y :

$$
\begin{equation*}
y y^{\prime \prime}+a_{0} y^{2}+c y^{-2}=0 \tag{6}
\end{equation*}
$$

and set $z=y^{2}$. Since $y y^{\prime \prime}=\frac{1}{2} z^{\prime \prime}-y^{\prime 2}$, by using (5), one transforms (6) to

$$
z^{\prime \prime}+4 a_{0} z=2\left(p^{2}+a_{0} q^{2}-c \frac{1}{q^{2}}\right), \quad z(0)=q^{2}, z^{\prime}(0)=2 p q .
$$

References

[1] V.P. Ermakov, Second order differential equations, Kiev University Izvestia, 9, 125 (1880) (Russian).
[2] E. Pinney, The nonlinear differential equation $y^{\prime \prime}+p(x) y+c y^{-3}=0$, Proc. Amer. Math. Soc. 1, 681 (1950).

