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Synopsis
We apply a version of the Nash—Moser method to prove existence of periodic solutions for nonlinear
elliptic equations and systems, involving singular perturbations. We allow nonlinearities depending on

derivatives of order two more than that of the linear part, thus extending the previous results. Our
result is new even in the case of one equation in one spatial dimension.

1. Introduction

We study the existence of periodic solutions for singularly perturbed elliptic
equations and symmetric systems. This question was initiated by P. Rabinowitz
[5, 6], who considered the problem of finding a function u(x) =u(x,, ..., x,),
which is 27 periodic in all variables and solves

— 2 (ay(X)u)s + u = &f (x, u, Du, D’u, D’u). (1.1)
i,j=1
Here the function f depends on u and its derivatives up to order three, and is also
2w periodic in xq, ..., X,. The operator on the left is assumed to be uniformly
elliptic with coefficients 2z periodic in x4, . . ., x,,. If one attempts to solve (1.1)
using Picard’s iterations, one has a loss of one derivative at each step. P.
Rabinowitz [5] uses J. Moser’s version of the “Nash-Moser” method to prove
solvability of (1.1) for ¢ sufficiently small.
Another approach to this problem was subsequently found by T. Kato [1], by
adopting some of his general techniques developed for evolution equations.
We consider nonlinearities of order two more than that of the linear part, i.e.
problems of the type

—Au + u = g (x, u, Du, D?u, D*u, D). (1.2)

We allow f to depend on the fourth-order derivatives of the type u,,,., provided
a certain positivity condition is satisfied. We prove solvability of (1.2) for small &
by using a slight modification of J. Schwartz’s [7] version of the Nash-Moser
technique, which is rooted in the work of J. Nash. Similar perturbation results
hold for elliptic equations of arbitrary order, and for symmetric elliptic systems of
arbitrary order and size. For perturbations of order greater than two our
technique does not apply, and we do not know of any results in that direction. To
simplify the presentation we restrict ourselves to elliptic operators of the type
(=1)y™A™uy +u, and to second-order elliptic systems with two equations.
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Next we discuss the notation and list some preliminary results. By 7" we
denote the m-torus, T” =0, 2x]". We abbreviate [f = [;.f(x)dx. We write
Uy, = U = Diu for partial derivatives; a;, = D,a;; D®u is the derivative cor-
responding to a multi-index «; D™ denotes the set of all partial derivatives of
order mg. The following notation will be used repeatedly:

D(fg)=f B+ 1 g+ + 1l e,

where we denote f* *g* =1, c,D* "fD"g, with c, the coefficients from the
Leibnitz rule. We shall write || - ||, for the norm on the Sobolev space H™(T"),

| + |, for the one on C™(T"). All positive constants independent of the unknown
functions we denote by c.

We need the following standard lemmas, see [2] for proofs and references.

LemMa 1.1, For any integer m =0 and any £ >0, one can find a constant c(g)
so that

]l = €lvllmsr +c(E)lIvlo-
Lemma 1.2. Suppose fi, f,€ C'(T"), r =0 is an integer. Then

1fall: = c(filo 1 £ll + I falo 11 £ull,).

Lemma 1.3. Suppose wy, ..., w, e C'(T"). Suppose that ¢ = ¢(x, wy, ..., W,)
possesses continuous derivatives up to order v =1 bounded by c for x e T" and
max \w;| <1. Then

G, we, ... wll = c(max [[wil, +1).

If in addition we assume that ¢(x,0,...,0)=0,r=[n/2]+1, then

lo(x, wi, ..., w)ll, =< 6(max ||wi||,) where 6()— 0 ast—0.

Lemma 1.4, Let I, k, m be non-negative integers, k <m. Then

el lier = clluellmy flulli ™.
The following theorem is a slight modification of J. Schwartz’s form of J.
Nash’s implicit function theorem, see [3] for proof. We denote B = H™(T") X
o XHM T =H™T"Y. Hu=(uy, ..., u)eB", then |[u|l,. = Yi=1 || tllm

Tueorem 1.5. Let Flu]: B"— B™ % (0= a=m) be a (non-linear) operator
with the domain D(F) = {u e B", ||ull,, <&, 6 >0}. Suppose that

(i) F[u] has two continuous Frechet derivatives both bounded by c;

(ii) there exists a map L(u) with domain D(L) = D(F) and range in the space
B(B™™% B™™%) of bounded linear operators on B™™ % to itself, such that

(iia) F'[u}L(u)h =h, he B" % ue D(F),

(iib) [|L(0)AllpoS € e llar b€ B ue D(F),

(HC) “L(u)F[u]“WH-SaS C(l + Hu“m+9w)) ue BT_!—QD( N D(F)
Then if ||F[0)|l,—n is small enough (compared with c), F[D(F)] contains the
origin.
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2. A priori estimates and existence for the linear problem
Lemma 2.1. Consider the problem (mg = integer > 0)
u+(—=1)™A™u+ Lu =f(x), (2.1)

where

Lu= 2, a,(x)Du+ 2, bg(x)Dfu+ 2, c,(x)D"u

|| =2mp 1B1=2mg+1 lyl=mg+1
All the functions a,, bg, c,, u and f are assumed to be 2r-periodic in each variable
x;, i.e. x € T". Assume that
(=)™t > o (x)82=0 forall xeT" (2.2)

jyl=mo+1

and for any collection of real numbers &,, indexed by the multi-index vy. For
integer k =0, denote

a4 = ]315%5;0 |ale, by = mgtx 1bgles Cx = Iygiiiﬂ 1€y Lk
Pe= i+ bi + ¢

Dimg+3 = Pmg+3 Pmgra = Pmg+3Pmo+3 T Pmgrds + -+
Di= Pmg+3Pie1 T PmgraPi—2 T+ o« + Proi Prmgss T P, [ Z=mg + 5.

Then if Ppyea <&y with &, sufficiently small, one has the following a priori
estimates (m-integer):

clifllm, for O=m=mg+2,

el e + lello= 9 c(Ifllm + Prmgrs 1 m-1F Pmgsa 1 F llm—2
+oo A pallfllgs2), for m>mg+2.

Proof. Multiply (2.1) by u and integrate over 1",

uu + (=1)™A™u)+ | uLu= | fu. 2.3)
J Juru=]

Denote I= ) [ bguD fu. We integrate by parts successively, taking one
iBl=2mqg+1

derivative from DPu at each step. After 2m + 1 steps, we obtain
I=—-1+...,

where all the terms not shown on the right-hand side have bg differentiated

exactly once. Solving for /, and using further repeated integration by parts, we
estimate

IS Cbr710+1 Hull;znos CEq “uni‘lo
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Similarly (using previously defined notation)

> c,D*"u u=(—1)’”0+1[ > ¢, (D)

fyl=mot+1 lvi=mo+1

D R =72 7Lt R SR v L7

lyl=mg+1 lYI=mo+1
Yo 1Y
+ D%c,u u].
lyl=mo+1

As above, we see that all terms on the right hand side from the second one
onwards are bounded by c ¢l 42 HullmeScel llul|z+1. Using these remarks
and our conditions, we easily estimate from (2.3)
el + llello = c {1 flos
which implies (2.2) for m =0.
Higher-order estimates are obtained by differentiating the equation (2.1).

Denote D% = u?®, |8| = m. Differentiate (2.1) and multiply the resulting equation
by u?,

J (@O + (~1)™ j B ATy

+ > fu‘s(aaD“u‘s—%a},D"‘ua“l%-. ..+ D%,D%)

lor|=2mq

+ > | ub(bgDPu® +bDPu’ +. ..+ D%y DFu)

1B1=2mp+1

+ > u®(c,D*u’ + DUl - - 4 DécyDZ”u) = ff‘su‘s. (2.4)

lyi=mgo+1

For m >my+ 2, we estimate (using repeated integration by parts on the first
group of terms and the Schwarz inequality on the second)

A=

fu‘s(aaD STLIRR BN 5 L Ve S S Ui B VA

a3 peyd~med 4 D%, D)

= Cpprn || Ui + € el
+ (&) (@hgss 14 lusme—3 T - - + @ [Ull3my),

while A = ca,, 42 Hullf,ﬁmos Cc&q HquMmo for m =my+ 2. Similarly (see the esti-
mate of I above)

} > fué(bﬁDﬁu5+...+D%ﬁDﬁu)
1B1=2mo+1
B pgis 118 + € 110170 + (&) BTgrs 11l ot - - - + B 18 5mge)s
=4 for m>mo+2,

Cbm0+2 Hu”%n+m0: for m= Mo +2.
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Next,

> | e uDul = (=1ymtt Y fcy(u6+”)2 +...,
lyI=mg+1 fyl=mo+1
where the first term on the right-hand side is positive by our assumptions, and all

the others are easily estimated by cCpyiz ||t]l5sm,, The remaining terms
involving c, are estimated as before:

> u®(ciD*u® ' +.. .+ D%,D*u)

|7I=mq+1

€ Cmgrz [[Wlltmo + € [l + () (Chnga Nttlomsme—r -+ € [UlBmgsa),

for m>my+2,

€ Comgsz |Ul|20ime, fOr m=mgo+2.
Using all these estimates in (2.4), summing in 6 and fixing ¢ and &, sufficiently
small, we easily get the estimates:
el o + 2t llo = CUULf i + Prmgs 1l lm4mg1
+ Pmgra [llmamg—2t -+ - P [[Ullamgs2) TOor m>mg+2,
from which the proof easily follows.
LemMa 2.2. Assume all conditions of Lemma 2.1, and that p,<c and

feH™T"), m>mgy+[n/2]+3. Then, for p,, .. sufficiently small, the problem
(2.1) has a unique solution of class H™*™(T™).

Proof. For c=const>0,0=<e=1, and x € T", consider an auxiliary problem
u+ (=1)"A™y + eLu + o(=1)" " Ay =, (2.5)

This is a uniformly elliptic equation on T", so that its index as an operator from
Hmramer2(T™) to H™(T™) is defined and homotopy invariant. By letting e— 0, we
get an equation

U+ (=1 A™u + o(—1)™ ATty =

whose index (and hence that of (2.5)) is zero, as can be seen by a simple Fourier
analysis. One easily sees that the estimates of Lemma 2.1 also hold for (2.5) with
c independent of ¢. This implies that (2.5) can have at most one solution, and
since its index is zero, it is solvable. Let u“ be the solution of (2.5) corresponding
to e=1. Since ||ty 4m,=c¢ uniformly in >0, it follows that as o— 0 along
some sequence, u’—u in H™ ™ '(T") along a subsequence, where u is a
solution of (2.1). Applying Lemma 2.1 again, we conclude that u € H™*™(T").

3. Existence for singular perturbation eguations

The following is a perturbation result, providing existence of a ‘“small”
solution.

THEOREM 3.1. On the iorus T" consider the equation

Flul=u+ (-1)™A™u + f(x, u, Du, ..., D*™*%) =(. (3.1)
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Assume that f =fi(x, u, Du, ..., D" %u) + ¢fy(x, u, Du, . .., D*™%%), with
fi(x,0,0,...,00=0f/0u(x,0,0,...,0)=0(/8Du(x,0,0,...,0)=0, where
D% is any derivative present among the arguments of f. Denote a, = of /3D “u for
la| <2mg, bg=0f/3DPu for |Bl=2mo+1. For |a|=2m+2, assume that
3f/8Du=0 unless a=2y for some |y|=mo+1; in such a case denote
¢, = 3f/8D*"u. For x € T" and all other variables of f being sufficiently small in

absolute values, assume that (—1)™*' > ¢,E2=0 for any collection of real
lyi=mo+1

numbers &,, and that f € C* with o= 19mq+ 10[n/2] + 31. Then for & sufficiently
small the problem (2.1) has a 27 periodic in each x; solution of class C*™**(T™).

Proof. Consider F[u] as a map F: B¥(T")— H"~*(T"), where B*(T")=
{ue HYT"): ||u||, = 9d}, with constant 6 >0 and positive integers u = o to be
specified. We shall solve (3.1) by applying Theorem 1.5. Notice that

F'lulv=v+(~1)™A™v + Lv (L as defined in (2.1)).

It is straightforward to show that F'[u], F"[u] are continuous and bounded

operators provided p — a>[n/2], o =2my+2 (see [2, 3] for similar arguments).
~ Conditions (iiz) and (iib) of Theorem 1.5 follow directly from Lemmas 2.1 and
2.2. We need to require that yu — o =mg+[n/2] + 4 for Lemma 2.2. Assuming
further that a =2mq+ [n/2] + 3, we estimate, using Lemma 1.3,

Pm—a = C(Hu”y—a+[n/2]+1+2mo+2 + 1) = C((S + 1) =c,
Prgr2 = O(Hu||m0+2+[n/2]+1+2mo+2) =0(58) as 60,
which makes both Lemmas 2.1 and 2.2 applicable. To verify condition (iic), we
apply Lemma 2.1 again:
HL<u)F[u]Hu+SwSC(IIF[u]lln+8w+pmo+3 “F[u]nu+8a~1 o

+pu+8a’ |iF[u]||m0+2)' (32)
If we denote T=|u| W70~ then by Lemma 1.4 (since u=m,+
[n/2] +5)
Hu“k ¢ “ulIftk+-_920_[n/2]_5)/(“+90(_m0‘IHIZ]_S)
% ”ullm0+[n/2]0 [n/2]=5)(u+9a—me—[r/2]—5)] < C’L'k mo—[n/2]— 5 (33)
for k=my+[n/2}+6,..., u+9%x —1. Then by (3.3),

ok < c(Ullirpnmgsampss + 1) =c(T¥T™ 2+ 1), k=mo+3,..., u+8a;

pe=c(t"™ 2+ 1), k=my+3,...,u+8aqa;
NF[u]lle = c(te|lkrampen + 1) < c(zFFmom P73 4 1),
k=u—-2myg—1,...,u-+8a;
HF[ ]Hk G, k=m0+2:m0+3;‘~,M—Zmo—Z.

Using these estimates in (3.2), we estimate
L) F[u]llsso = c(v* 52+ 1) < c(|[ullmaoa + 1),

provided that u+8a+my—2=u+9%« —my—[n/2]-5. By fixing a=2mq+
[n/2}+3, u=3my+2[n/2]+7, po=u+8«, and § sufficiently small we satisfy
all of the above requirements, and conclude the proof. [
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Remark 3.2. It is clear from the proof that if we assume f to be of class C” with
v> o, then the solution is of class C*™0™2*7#o and if f e C* so does the
solution.

Example 3.3. Let a, ¢ be 2x periodic in each x; and C™ in all arguments;
a(x)=0 for x e T". The equation
Au—u = a(xX)u} ¢ px, + €¢(x, u, Du, D*u)

has a solution u € C™(T™) for e sufficiently small.

4. A symmetric singularly perturbed system

We show that the results of the preceding sections extend to symmetric
systems. To simplify the presentation, we consider two equations of second order,
but our results easily generalise to an arbitrary order and number of equations.
As before we start with a priori estimates and existence for the linear case.

Lemma 4.1. On T" consider the system
u(x) = ay(x)uy — by(x)vy; — a;(x)u; — by(x)v; — aglx)u — bo(x)v =f(x),
U(x) — b,l(x)ul] - Cij(x)vij - b,»(x)u,» - Ci(x)v,‘ — do(x)u - CO(X)U - g(x), (41)
where all the functions involved are 27t periodic in each x;, i=1, ..., n;ay, by, ¢;

are symmetric matrices, and the summation convention is used throughout this
section. Assume that

(i) a(x)E:&; + 2b;(x)Em; + cy(x)nm; =0 for all x e T", En e R™;
(H) lfn >2 thei’l at:,' = bz] = ij EOfOI’ l #]
For integer k =0, denote

P = max (laijlk; lbijik: ]Czﬂk, [@ilies 1Dilks 1€ilies 1aolis 1Bolies 1€olics doli),
iJ

P3=P3, 1= P3Pi-1t PaPi—2t+ ...+ prpstp forl=4

Introduce the vectors U= (4) and F = (}) with the norms ||U||,, = ||t||n + |[U]n,

W] = 111l + g [
Then for p, sufficiently small, the following estimates hold (m = integer)

1Ulm=clFlln for m=0,1,2,

WUl =c(IF|ln +psliFllm—1 +palFllm-2+. .. +pm IFll2) for m=3. (4.2)

Proof. To simplify the presenation, assume that a;(x) = b;(x) = c,(x) == ay(x) =
bo(x) = co(x) =do(x) =0 for all i. Multiply the first equation in (4.1) by u, the
second one by v, integrate both equations over T" and add:

1
j u?+v?) + j laguw; + by(wv; + va) + cv,v;] — 5 f ay

1
-3 f cfj,i]-ﬂu2 + f by (uv; + uv) = jfu + f gu. (4.3)

The second term on the left-hand side in (4.3) is nonnegative, while the last

one is bounded by p, [ (u*+ v?), and then the estimate (4.2) for m =0 easily
follows.
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Next we differentiate both equations in (4.1), and denote D% =u® D% =v?,

|8] = m. Multiply the first equation by u?, the second one by v’ integrate over
T" and add:

f(ué)z—}-j(v‘s)—Jai,uéug—faluau‘s ! fazu‘su‘5 -2 ...—faguauij
[bl]u Vo — jb,,uévg ! sz oy — fb uy, ——J'b,-juf}va
fbl Y jbz 2yl — ..~Jb3uijvé~fcgvsvﬁ
fclva lyl— fczv‘s po—.. fc v, v° J(f‘su +g%°).

Notice that

fa uul —jb,,u v - Jblj ——jcijvgvé

=j(aiju?uf+bi,u‘5v +byulv? + cuivd) — 24( a; (u®?

1
- J‘cij),-j(v %) + f by (uv? +ulv®).

Here the first integral on the right-hand side is positive by (i), while all others are
bounded by cp,(||ull2 + |[v]|Z). Next,

fb 6 5 1 jbl 8—1 é_fbl“(uévé 1+u6 1 6)+Jbl}(uévé 1+u5 -1 6)

The first term on the right-hand side is bounded by cp,(||ul|Z, + ||v||2,). For the
second one, we consider two cases:

Case (i) n=2. Then we may assume that u) ' =u® v '=v° (otherwise
interchange I and j in case they are different, or refer to the next case if they are
equal). Then

}f bq i

Case (ii) n > 2. Then we may assume by the assumption (ii) that i = j (the other
terms are zerc). Then a typical member of the second term is estimated as
follows:

Ub,](u v+ ul TP =

iz

1Jb[]-,p(u Pyl 4yl ?)| =

—e,,, 0—e,
Ubﬂppu/ vy

The terms [aju®u)™' and [cju) 'v® are similarly bounded by cp,(||ull2, +
llv]|%). The remaining terms in (4.4) are estimated in a uniform manner, which

= cp(|lullz + [vl[2).
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we illustrate on one of the terms,

f utud = e Jull+ c(e)p? s

Using all these considerations in (4.4), and summing in all |6] =m, we obtain
(choosing ¢ sufficiently small)

1Ullm=c (1]l + o3 1Ullm-1+ pa N Ullmzt - - - + o [[Ul2),
and the proof follows. [

LemMaA 4.2. For the problem (4.1), assume that all conditions of Lemma 4.1 are
satisfied; f, g e H™(T"), pm=c, m=[n/2)+ 4. Then for p, sufficiently small the
problem (4.1) has a unigue solution with u, ve H™(T").

Proof. To simplify the presentation, we shall again assume that a,=b;,=¢; =
ag=by=co=dy=0. For o =const>0 and 0=¢=1, consider a new system on
T"l.

u— OAu - [ai]‘Mij - tbijvij =f(x),

v — 0Av — thu; — te;uy = gx). (4.5)

Examining the proof of Lemma 4.1, one verifies the following estimates for (4.5):
[l sz + [V llmez = ([ llm + 1gllm)  with ¢ =c(0), (4.6)

el + Ul =< c(ifllm + lIglln) = ¢ with ¢ independent of o. (4.7)

Let S denote the set of ¢ € [0, 1] such that the system (4.5) has a unique solution
with u, v e H™**(T™). Obviously 0 € S.

Omne easily shows that S is open in [0, 1]. (If (4.5) is solvable for 1, then for
|t —t,| small one sets up a contractive mapping on a ball of sufficiently large
radius around the origin in H™**(T"), using the estimate (4.6).) To see that § is
closed in [0,1], we assume there is a sequence of f,—> 1, with corresponding
solution (u,, v,) € H™**(T™) x H™**(T™) of (4.5). This implies existence of some
(u, vy e H"*Y(T™)? so that u,—u and v,— v in H""(T") along a subsequence.
passing to the limit in (4.5) along this subsequence, we see that (u, v) is a solution
of (4.5) corresponding to t=1t, Applying (4.6) we conclude that (u, v)e
H™ (T x H™(T™). We see that (4.5) is solvable for all ¢ in [0, 1]. Denote by
(19, v°) its solution corresponding to £ =1.

Now let o— 0 along some sequence. In view of the estimate (4.7), there exists
some (4, v)e H" Y(T") x H™ (T") so that u’—u and v°—v in H" YT")
along a subsequence. Passing to the limit in (4.5) along this subsequence, we see
that (u, v) is a solution of (4.1). Using (4.7) again, we conclude that (u, v)e
H™(T™ x H™(T").

Next we state the main existence result of this section. Its proof is similar to
that of Theorem 3.1, and is therefore omitted.

TuEOREM 4.3. On the torus T", consider the system
U =fl(x! U, v, Du; DU; DZM, DzU),
v =f(x, u, v, Du, Dv, D*u, D*v). (4.8)
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Assume that f, = fo(x, u, v, Du, Dv, D*u, D*) + &f 3(x, u, v, Du, Dv, D*u, D*v),
With £1(%, 0, + o) 0) =506, 0, o, O) = Fh%, 0, - - - 0) = Fh(x, 0, ..., 0) =0
for p=1,2 and i, k,1=1,...,n For xeT" and all other variables sufficiently
_sh %%

== for all i and j, and

small in absolute values, assume that ) =
dv; Ou; Jvy; OJuy

that if we define

_Oh _9h _%h _5h _%h

i A, 2 i y Qo= /AN bi"‘_;

ouy du; ou Ay ov;
bo"% _S%k 2% c *% d _a_f2

= C'- — —— c. O fracd 0 =
ov Y v, T4 ou) v’ ou’
if i

then these functions satisfy conditions (i) and (ii) of Lemma 4.1. Assume that
f e C™ in all arguments with mo=10{n/2]+31. Then for € sufficiently small the
problem (4.8) has a 2 periodic in each x; solution of class C*(T") x C(T™).
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