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ABSTRACT 

Both theoretical and computational studies of long-term behavior for a general 
class of parabolic systems with asymptotically time-periodic coefficients are presented. 
The results are applied to the l[iotka-Volterra systems, describing interaction of two 
competing species. 

1. INTRODUCTION 

We study asymptotic behavior of quasimonotone asymptotically time-peri- 
odic parabolic systems; that is, roughly speaking, parabolic systems with 
off-diagonal elements increasing. We prove some general results on existence 
and uniqueness of periodic solutions, which we then use to get bounds on the 
o-limit sets. We apply our results to asymptotically time-periodic Lotka-Volt- 
erra competition systems with diffusion and Dirichlet boundary conditions, 
for which our conclusions complement the recent work of P. Hess and A. C. 
Lazer [S]. 

Most of our results were suggested by numerical computations. In addi- 
tion, we present a number of computations in cases where known results do 
not apply, suggesting possibilities for development. In particular, all the 
results seem to extend numerically for time-periodic and nonhomogeneous 
boundary conditions and to the initial data not satisfying compatibility condi- 
tions. For Lotka-Volterra competition systems our computations show that in 
some cases a superior on the average species may become extinct. 

Sections 4 and 5 are numerical in nature. Section 4 deals with approxima- 
tion of the principal eigenvalue and eigenfunction for a periodic- 
parabolic operator. We show the problem can be reduced to finding the 
principal eigenpair of a positive definite matfix with all entries positive, for 
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which we use the power method with surprisingly fast convergence. Section 5 
contains some computations and remarks on P. de Mottoni and A. Schiaffino’s 
[lO] example of a periodic Lotka-Volterra system with multiple coexistence 
states. 

2. PRELIMINARY RESULTS ON PERIODIC PARABOLIC 
EQUATIONS 

Let a be a smooth domain in R”. For (x, t) E 0 x R we denote 

LA4 = 2 Qij( SC, t)Uij + e a,( X, t)Ui + ao( x, t)u, (W 
i,j= 1 i= 1 

With Oij, ai, a, E Ca*a/2(n x R) for some CY > 0 and p-perio&ic in t, 
p > 0. Assume further that for all x and t : aij = aji, EFj = 1 aij( X, t)ei sj > 

pJ 5 1’ for all e E R” and some p, > 0, and that a&x, t) < 0. We denote 
by u(x, t; t+,j (and sometimes by u(x, t; u,,f>> the solution of 

24, - Lu =f( x, t) in 0, u =0 o&Q, t > 0 (2.2) 

u( x, 0) = u()( x). cm 
The following result is proved in H. Amann [ 11. 

LEMIMA 2.1. For any p-periodic in t function fcx, t) E Ca*a/2(fi X R) 
the problem (2.2) has a unique p-periodic solution, denoted uf, and uf > 0 if 
f > 0, uf E C2+a*1+a’2(fi x R). 

We add the following stability assertion. It could also be derived from the 
abstract results of P. TakaE [llj; h owever, we present a direct proof for 
completeness. i 

LEMMA 2.2. For any continuous data u,(x) such 7 YJ~ :“lae problem 
(2.2-3) is classically solvable for t > 0 (e.g., u. E C$n‘. we [l, p. 201) we 
have 4x, t; u,,) + u&x, t) as t -+ m unifody ‘q rl. 

PROOF. Note that Lemma 2.1 implies that uAf = Auf for any constant A. 
If If(x, t)l < M for all x and t, we can choose A 3 1 such t&t u _A M < 
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u,(x) < UAM for all x E a (Hopfs lemma implies that au,,/h < 0 on 
aa, and recall also that uM > 0). Set I+,(x, t) = uhM. Define I+( x, t) as the 
solution of 

Vu - Lu, =f(x,t) in R, VI=0 on a0 
(2 4) . 

q(O) = q)( x, p>( = qJ( 0)). 

Since u&x, p) = u&, p) is smooth in fi, it satisfies Equation (2.1) on 
altZ, thus providing the compatibility condition of Theorem 7 in [4,qp. 65, 
751. Hence (2.4) is classically solvable and ul( x, t) E C2+ a~1 +,I’( Sz X R). 

By the maximum principle it follows that 

ul(x,t) < u&t) forall x E a, t > 0. (2 5) . 

Next we define v,(x, t) as the solution of 

uzt - Lu2 =f(x,t) in a, u2 = 0 on da, u2( x,0) = 3+(x, p). 

(2 6) . 

Its existence follows as shown previously. By (2.5) and the maximum principle 
it follows that u2(x, t) < u,(x, t) for all x E a and t > 0. Continuing this 
way, we define v,(x, t) = u(x, t; u,_Jx, p)), n > 2 and obtain a 
decreasing sequence of iterates. Similarly, starting with uO( x, t) = 
u _ A M ( x, t 1, we obtain an increasing sequence of iterates u,J x, t 1. 

Applying the maximum principle again, we see that ui < Vi for all i, and SO 

for all x and t, 

Call u(x, t) = lim,,, u,(x, t), u(x, t) = limn_ u$x, t). Clearly, u = u = 
0 on $a. By the interior Schauder’s estimates [4, p. 641, u,( x, t ) are 
uniformly bounded in C 2+a-1+a’2( M x [tl, t2]) for any K CC a and 0 c t, 

< t, < T. Hence u&x, t) converge to u(x, t) in C2*‘(K X [tl, t2]), i.e., u(x, 
t) is a solution of (2.2). 

Ne3xt we show that u( x, t 1 is periodic in t. Write 

Iu(w+p) -u(x,t)l~lun-l(X,t+p) -Un(XJ)l 

+luw + p) - u,&,t + p)l 

+Iu&,t) -U(XJ)l* 
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The first teim on the right is zero by periodicity of Equation (2.2). The other 
two are less than any 6 > 0 for every fixed x and t, provided 12 is large, 
which proves periodicity. By the uniqueness claim of Lemma 2.1, u(x, t) = 
v(x, t) = iL/. 

The functions u&x, t) E C(a X [O, p]) converge monotonously to a 
continuous Us. By Vitali’s theorem the convergence is uniform. 

Turning to the stability, notice that by the maximum principle, 

~,(~,t)‘~~(x,t;u,) < q(x,t) forall x E G and t > 0. 

For np < t < (n + l)p, we have u,(x, t) = u,+~(x, t - np) and v,(M) = 

v,+,(w - np), which are uniformly close. 

I&MARK. In our numerical experiments with (2.1) in case L = A and 
a = (0,2), we were obtaining good approximations of l-periodic solutions by 
t = 2 for most of f(x, t) and uO( x) that we tried. Moreover, we obtained 
similar results when u,(x) f 0 on an, and for time-periodic Dirichlet data, 
which suggests that Lemmas 2.1 and 2.2 might admit considerable generaliza- 
tions. 

LEMMA 2.3. The pe%dic solution uf depends continuous& on f( x, t), 
i.e., if g(x, t) E C”B”/~(~ x R) is another p-periodic iz t function, then for 

any 8 > 0, Iuf - ~gl~o~~~[~,P~~ < E, provided if - gl~o~~x~o.p~~ < 6, 6 = 
&F). Mmeover, uf is monotone in f, i.e., ifg(x, tj >, ftx, t) for all x and t, 
then ug > Uf. 

PROOF. I_& u( x, t) be solution of 

u, - Lu =g(x,t) inl-l, u=O on 6Q, 

u(x,o) = Uf( 0). 

By the maxkuum principle u&x, t) < u(x, t), and by Lemma 2.2, u(x, t) 

tends uniformly to U&Y, c). Hence, u 
In view of the monotonicity, it su fi! 

>, uf. 
ces to prove the continuity claim for 

g = f + 8. If the claim was false one would find a sequence cJ + 0 such that 
for some e, > 0 and all j, 

IUf -ff+q Ico(vx[o p]) 3 %- 
I 

(2 7) . 
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The sequence (us } is uniformly bounded in C2+ a*1+a’2(fi x [0, T]) for any 
T > 0 (by the Sciauder’s estimates 1. IIence a subsequence will converge in 
CS1(a X [0, T]) to a periodic solution of (2.21, which by uniqueness is Us. 
But that contradicts (2.7). 

LEMMA 2.4. Let a(t) and b(t) b e continuous p-periodic functions, and 
let u(t) be a solution of 

ti + a(t)u = b(t). (2.8) 

Assume that either one of the following two conditions is satisfied, 

(i) A = jl a(r) dt > 0, and b(t) > 0 for all t; 
(ii) A < 0, and b(t) < 0 for all t. 

Then (2.8) hu.s a positive p-periodic solution (which in the first case attracts 
all other solutions as t + +m, and in the second case repels). 

I?MOF. Denote h(t) = exp( ji a(T) d7). Then by direct integration it 
follows that (2.8) has a p-periodic solution given by 

jJ b(r)h(?) d? 
, co = eA _ 1 . 

In case (i) its positivity is obvious, and in case (ii) 

c0 + j-tb(r)h(r) d? 3 c0 + /‘b(r)h(T) dT > 0. 
0 0 

kt h, and cg,(x)> Oin Sz satisfjl -AQ~ = A,Q, in iI, Q~ = Oon ail. 

THEOREM 2.1. Consider the problem 

u, - k(t)Au = u(a( x, t) - b( x, t)u) in a, u =0 onan, 

(2.10) 

with the p-periodicfirnctions k(t) E C”(R), a(x, t) and b(x, t) E Ca*a/2(~ 
X R), and k(t) 2 k, > 0, b(x, t) > b, > 0 for all x and t. Assume also 
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u(x,O) E @,2(n). We considei- two possibilities. 

6) Assume there exists a p-periodic function a,(t) E C”(R), such that 

a(x, t) >, a,,(t) and [‘a&r) dT > I,lPk(7) dr. (2.11) 
0 0 

when problem (2.10) has a unique positive p-periodic in t solution, to which 
all other non-negatioe solutions of (2.H.O tend uniformly in x as t + +F 
Moreover, this solution is continuous and monotone increasing in a( x, t). 

(ii) If, on the other hand, there is a p-periodic in tj&xtion a,(t) E C “(IO 
such that 

a( x, t) < al(t) with /xlal@) d7 < A1 i’k(T) d7, 

then any solution of (2.10) with non-negatii;e data tends to zero uniformly in 
xast -+ +=. 

PROOF. 

(i) To apply Theorem 3.1 we need super- and subsolutions. Large 
constants are clearly supersolutions. Let u(t) be the positive p-periodic 
solution of 

v’(t) + (A&t) -q,(t))+) = -1, 

which exists by Lemma 2.4. Then it is easy to check that #(x, t) = m&&(t) 

is a positive subsolution of (2.lO), provided E is sufficiently small. By 
Theorem 3.1, Problem (2.10) has a positive p-periodic in t solution that 
attracts all strictly positive data (i.e., u(x, 0) >, Sq$ x) for some 6 > 0). If the 
data is assumed to be only non-negative, then the strong parabolic maximum 
principle implies that u(x, T) is strictly positive for any r > 0, and the 
stability claim follows. The monotonicity and continuity claims are proved as 
in Lemma 2.3, using the usual monotone iterations. 

(ii) Let w(t) be a positive p-periodic solution of 

w’ + &k(t) - a,(t))w = 1. 



Asymptotically Periodic Systems 209 

It is easy to check that (~h( x, t ) = A&)&) is a supersolution of (2.10) for 
any A ) 0. Take a subsolution # = 0. It follows by Theorem 3.1 that (2.10) 
has a maximal non-negative p-periodic solution iE. By the strong maximum 
principle U is either strictly positive or zero. In the first case for A small we 
would have a supersolution pA below U, which is impossible by Proposition 
3.1. Hence U = 0 and the claim follows. 

3. QUASIMONOTONE PERIODIC PARABOLIC SYSTEMS 

We study the periodic and asymptotically periodic systems of the form 

u, - L( x, t,D)u =f( x, t, u) in fi X R, u = 0 on t9G. (3.1) 

Here u(x, t) = (z&l,. . . , u”‘), L = (L’, . . . , L”‘) with each L’ of the form 
(2.1) and satisfying the same conditions as listed there. The vector-valued 
functionj = (f’, . . . , fnl): Q x R’“+ ’ + R”’ is assumed to be of the class 
c”9a’2(a x R) f or any u belonging to some bounded set D c Rm, and 
locally Lipschitz continuous in u uniformly with respect to (x, t) E fi X R. 

DEFINITION. We say that f(x, t, u) is quasimonotone increasing in u on 
D if 

af’ 
7 2 0 
au’ 

for all i #j, x E a, t E R, UED. . (3 2) 

. 
DEFINITION. A p-periodic in t vector-valued function @(x, t) = 

(It’ , . . . , I/? “)) is called a subsolution of (3.1) if 

~~-L(x,t,D)~~f(x,t,~) inflXR, IJ?< 0 on afi. (3.3) 

A supersolution p( x, t) is defined by reversing the preceding inequalities. 

THEOREM 3.1. Assume that L and f are p-periodic in t, and there is a 
pair of p-periodic in t super- and subsolutions with 3, G Q on fl X R. 
Assume f is quasimonotone increasing in u for # G u < Q. Then (3.1) has 
minimal and muximul p-periodic in t solutions u_(x, t) and G( x, t), respec- 

tively. The ccp-limit set for any regular solution with data u(x, 0) E C:(0) 
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in tk order interval [t/i(x, 01, Q(X, 011 is contaid in [zl(x, t), % t)] 
(thmgbt the paper the a&nit set is understood with t;espect to unifkm 
conaeqpnce in x und t). 

PROOF. Existence of u and ?i is of course standard; however we review 
the construction briefly, since we need it to prove stability. We construct a 
sequence of approximations (u,(x, t)} defined as p-periodic solutions of 

4 - Lui + Mu: = Mu;_, +f’(x,t, u,+) in a, 

u; = 0 on&& i=l,..., m, (3 4) . 

where the constant M > 0 on the right is chosen so large that the right-hand 
side is an increasing function of ui_ r. The iterates starting with llco = #(x, t) 

d converge increasing in n to u_ (and the ones starting with u, = Q(X, t) 

will produce another sequence u,( x, 9 ) converging to G). 
Turning to thz stability, notice that by the maximum principle for weakly 

coupled parabolic systems #(x, t) < u(x, t) < Q(X, t) for all x E a and 
t > 0. Define Ud x, t) = (v,‘, . . . , Ulm) as the solution of 

v,i, -LU;+MU,‘= M@+f(x,t, 9) inn, 

u; =0 on aa, i= 1 m, ,.... U,‘(x,0)=u’(x,0). 

By the same maximum principle u( x, t ) > e/l( x, t ) for all x and t. Since by 
Lemma 2.1, L7Jx, t) + ul( x, t) [as defined in (3.4 uniformly in x, it follows 
that for any q > 0 we can find TI, so that 

u(x,t) rul(x,t) - 61 fort>& and XE~. 

By our assumptions on f it follows that for aH x and t > Tl 

Mui+fi(x,t,u) 2 Mui+f(x,t,u,) - S,, with i&+0 when q+O. 

Next kr t > TI we define &(x, t) as the solution of 
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By the maximum principle U(X, t> z Us&, t) for t 2 Z’i and all x E a. By 
Lemmas 2.2 and 2.3, Us(x, t) tends to a p-periodic solution of the preceding 
equation, which is close to the p-periodic solution of the same equation with 

6, = 0, that is, U&X, t). Hence for t > T, and all x, 

u(x,t) a.Q(x,t) - 62, where ~9~ + 0 when 6, -+ 0, 

and so on. 
The following lemma asserts that the bounds on the o-limit set of (3.1) are 

stable under small perturbations. 

LEMMA 3.1. Let v(x, t) = (v’, . . . , vm) be the solution of the system 
(3.1) with f vk.zced by another p-periodic function g(x, t, u), satisfying the 
same wnditions, and assume all other conditions of the Theorem 3.1 are 
satisjkd with the same 9 and Q, and suppose jnauy that 

If(x,t,u)-g(x,t,u)l<a forallxEn, t3.8 and $f<U<Q. 

If ,v and Ti are, respectively, the m.tnimul and the mu&r& -periodic 
solutions of the new system, then for all x cind t, 1% - ,vl + Iii - 5 P < 8, and 
~+OwhenS+O. Moreooer,ifg>fthenu_<_vandh<E. 

PROOF. Since C, g, 5 and ,v are uniform limits of solutions of linear 
parabolic problems, the proof easily follows using Lemma 2.3. 

Next we consider asymptotically periodic systems. In the following f, u_, ii, 
#, and Q are defined as in Theorem 3.1. 

THEOREM 3.2. Consider the quasimonotone system 6~ E R”) 

v,-Lv=g(x,t,v) in&v=0 orida, 

v(x,O) = Q(X) E w,“vp(n). (3 5) . 

Assume that for any E > 0 one canjkl Tl > 0 and two p-petiodicfinctions 
fJx, t, VI and f2(x, t, v) such that fi < g < f2 ad Ifi -f I < 6, i = 1, 2, 
for aa t > T,, x E a and rl, < u < Q. (This condition impk that g ten& to 
f un@mly in x and v.) Assume the finctions f Ir f2, and g are quasimono- 
ton43 increasing ar8 saOkJr __ _ +‘& the sanz smoothness conditions as f in Theomm 
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3.1, and that for each of these functions (9 and 9 ore super- and subsolutions. 
&&wnefinaay that #(x, t) < vk, t) < Q(X, t) for all t > T, and x (5 a. 
Then the Olin& set of the solution of (3.5) is contained in the o&r interval 
1% 4. 

PROOF. By the maximum principle for t > maxW,, &I, 

v(x,t;vo,fJ aJ(x,t;v,,g) 0J(x,t;Vg,f& 

Both v(x, t; we, fi), i = 1,2, tend by Theorem 3.1 to the order intervals [gfi, 
@j-J, which by kmma 3.1 are uniformly close to 12.4, 5i]. 

EXAMPLE. In the conditions of Theorem 2.! (i), let d(x, t) + a( x, t) as 
t + 00 unSo~~~11y in x. Then any non-negative solution of 

z,-k(t)hz=z(d(x,t) -b(x,t)z) ins‘1, x=0 onaSk 

converges as t + = to the unique p-ptiodic solution of (2.18). (Indeed we 
can take fi.2 = z(a + E - bz), 0 < 8 < Ed, Q = M, # = ~Q,V with M > 0 

large and eO, S > 0 small.) 
Next we shall give some simple conditions for uniqueness that are similar 

to the ones given in [9] for the autonomous systems; see also 
P. TakaE [al]. 

DEFINITION. Wesaythatavectorfktionfl(x,t,u):IRXRXR!+R” 
is sub&near kr u if for any constant 0 < y < 1 

f( x, i, rt() 2 yf( x, t, 24) for x E a, t > 0 and u 2 0. (3.6) 

We say that f is strictly sublinear if in addition for any fixed IA > 0,0 < y < 1 
and 1 < i < m the fknctions E’(x, t, yu) and yf ‘(x, t, u3 are not identically 
equal on Q X R. 

PROPOSITION 3.1. If the problem (3.1) with f as in Tkorem 3,1 and 
moreover str~ly sublinear, has a positive p-periodic solution u, then it 
cannot have a positive p-periodic supersolution p < u, Q =# u. (In particular, 
this implies uniqueness of a positive p?eriodic solution. The last conclusion 
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ah follows from [ll].) 

PROBF. Assume such (9 exists. Let 0 < y < 1 be the maximal number 
suchthat Q & yu.set z = Q - yu. Notice that by strict sublinear?y off, no 
component of x can be identically zero. Then for M > 0 sufficiently large 
and any 1 < i < m, it follows by (3.6), 

zf - LZ’ + Mzi 2 MQ' + f i( x, t, Q) - Myu’ -f i( x, t, 7~) 2 0, 

z’( x, 0) >, 0, 

with both inequalities being strict on some open sets. By the maximum 
principle 2 > 0 on Q X R,, which contradicts the maximality of y. 

In the following we denote by &z) the principal eigenvalue of the 
periodic parabolic problem 

24, - Lu - a( x, t)u = pu in a, u =0 on aR, (3-V 

and by #,<a> > 0 the corresponding p-periodic eigenfunction. Existence of 
such eigenptirs is known; see e.g., 151. We abbreviate p1 = JL,CO>, #r = #JO>. 

PROPOSITION 3.2. Consider Problem (3.1) with p-periodic L and f as in 
Theorem 3.1. Assume that for all 1 < i < m, any x E Ry. h E R+ we have 

f’(x,t,z+he) <fi(x,t,x) +pJz, withe=(l,l,..., l)ERm, 

(3 8) . 

and both si&s c,’ (329 are mt identical. Then the conclusion of Proposition 
3.1 holds. 

PROOF. This time we let y > 0 to be the minimal number such that 
QaU - yql. By our assumptions, the last inequality is strict on some set in 
each component. Setting z = Q - u + r&, we obtain for M > 0 brge and 
anylQib?IZ, 

z: - Lz’ -3. &4zi > M( 9i + ye,) + f i( x, t, Q) - Mu’ -f i( x, t, u) 

“.ycE1?&3 M(Q' + W,) +f’(x,t, Q + rh) 

-Mu’ - f’(x, t, u) > 0, 
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with the inequality strict on some open set. This contradicts the minimality of 

Ys 
Next we study periodic competition systems of the type 

u, = k,(t)Au +u(a(x, t) 4(x, t)u -c( x, t)u) in a, u=O on &I 

u, = kJt)Au+u(d(x, t) -e(x, t)u -f(x, t)u) in a, u=O on &I, 

wo 
where k,(t) and k,(t) are positive p-periodic fimctions of class C”(a) and 
a v**=> f are either p-periodic or asymptotically p-periodic functions of class 
ca.a’2(a x R) and f&h ermore b, c, e, and f are strictly positive. 

The problems of this type as well as their autonomous versions have been 
studied by a number of people; see, e.g., [S, 7,9] and the references therein. 
It turns out that the asymptotic behavior of (3.9) is governed largely by the 
stability of the semitrivial solutions (u*, 0) and (0, u*) where u” is the 
solution of the first equation in (3.9) when u is set equal to zero, and u’ is 
defined similarly. P. Hess and A. C. Lazer [S] have studied abstract competi- 
tion models and found that if both semitrivial solutions are unstable then 
“compression” occurs, i.e., a situation similar to our Theorem 3.1. Conditions 
for instat&ty of semitrivial solutions can be easily given in terms of pl(a - 
cu*3 and $&,(d - eu*). More explicit sufficient conditions were given by P. 
Hess and A. C. Lazer in case of (3.9) with periodic coefficients and Neumann 
boundary cxmditions [S, p. Zs]. Their result can be easily modified to cover 
the Robin&oundary conditions, but not the Dirichlet case, since the positivity 
of +r on fi was used. The foilowing result fills the gap and moreover allows 
asymptoticahy periodic coefficients. Define 

fM = sup f(t). 
(-a* ml 

THEOREM S.3. For Problem (3.9) with periodic we#iients, assume there 
exist p-periodicjimctbns a,(t), a&) E Cat R) such that 

a(x,t) -c(x,t) ‘al(t), 
M 

M>a2(t), 

/ 

P 
ai dt > A, 

/ 
’ ki dt, i=l,2. 

0 0 
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Then (3.9) has positive p-periodic solutions (u_, Ti) and (E, _v), such that any 

other positive p-periodic solution of (3.9) satisfws u_ < u < Z, ,v < v < 5, 
and for any nonze~ data u(x, 0) 3 0 and v(x, 0) 2 0 the o-limit set of the 
co;rresponding solution of (3.91 is contained in the o& rectangle Q = [u, E] 
X [g, “VI. Mmeovet, if one perturbs the system (3.9) rq&cing a(x, t) by 

a(x,t) + a,(x, t), . . . , ftx, t) by f(x, tl + fJx, t) with al,. . . , fi tending to 
zero uniformly in x as t + a, then the *limit set of any non-negative 
solution is stiu in Q. 

PRCKIF. By letting ti = -v we transform (3.9) into 8 new system 

u, = k,Au -I- u(a - bu + 5) in Q, u=O on&I 
(3.10) 

i& = k,A’v+ e(d - eu +fi) in Sz, C=O on ~?a, 

which is quasimonotone increasing in u > 0 and 5 < 0. Let ul be a positive 
p-periodic solution of 

u, =k,(t)Au +u a ( -h-c(f)y(c+1)E.) in& u=Oond& 

and similarly v1 a positive p-periodic solution of 

v =k,(t)Av+v d e t ( - (i), -fv-(e+l)qJ ina, v=O on aa, 

whose existence for sufficiently small e0 follows by Theorem 2.1. Then 
p = ((a/b), + go, -q) and += (I.+ -(d/f)M - co) are super- and 
subsolutions of (3.101, and Theorem 3.1 applies (the inequality # < (9 follows 
easily by the maximum principle). To apply Theorem 3.2, define f 1 = f _, 

fi =f+ ad 

f 
u(a + E - bu + c5) 

= f ij(dTE-eu +fv) ’ 

with 0 < E < Ed. One checks that for lsl sufficiently small, c1 = e,(~,), Y, 
and rl/ are super- and subsolutions for both fi and fi. Using comparison 
arguments and Theorem 2.1, one shows that solutions of (3.10) lie eventually 
between 9 and 9, and the proof follows. 
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REMARKS. 

1. On the basis of the second part of Theorem 2.1, one can easily write 
down conditions for stability of one or both semitrivial solutions, and then get 
conditions for extinction of one of the species. 

2. Using Proposition 3.2, we can translate the uniqueness results of 
McKenna-Walter [9] to our situation. However, a fundamental problem 
remains open: does instability of semitrivial solutions imply uniqueness of a 
p-periodic solution? 

3. The trick of converting (3.9) to a quasimonotone increasing form by 
letting 5 = -V is known, see 191. In Korman-Leung [7] it was shown that a 
similar trick works for larger systems iff all variables can be divided into two 
groups, such that any two variables from different groups compete and any 
two variables from the same group cooperate. All our results extend to such 
systems. 

For the cases when one or two of the semitrivial solutions are stable there 
are some general results in [S]. Here we illustrate these cases numerically. 
The phenomena we observed in our numerical examples are not for the most 
part covered by the results of [S]. 

(i) Both semitrivial solutions are stable. We computed solutions of the 
following system [a = (0, 211: 

Ut = u,, +u(a+psin2rt-u-_-v), u(0) =u(2) =o 
(3.11) 

vt = vxx + v(d - eu - v), v(0) = v( 2) = 0, 

with a =6,d=S,c=e=2,p = 3. We verified the stability of semitrivial 
solutions computationally: by setting c - 0 in the first equation (then u -+ u”) 
and observing that the v component of the solution coverges to zero, we 
conclude stability of (u*, 0) (alternatively we could compute pl(d - eu*) by 
using the results of the next section1. Similarly we verified that (0, u*) is 
stable. 

We started with u(x, 0) = v(x, 0) = 1. Not surprisingly, v * 0, since u is 
a superior on the average species. Next we considered a = 6, c = e = 2, 
d = 5, p = 3, u( X, 0) = 1 but v( X, 0) = 5. This time u --p 0, i.e., the supe- 
rior on the average species went extinct, as a result of being outnumbered 
initially. When a = 6, c = e = 2, d = 5, u(x, 0) = VCX, 0) = 1, but p = 
- 12, then again the superior species u went extinct as a result of initially 
declining carrying capacity. Finally we tried a = 6, d = 5, p = 3, u(x, 
0) = v(x, 0) = 1, e = 2 but c = 2 + 2/ln(2 + t). Here again the superior 
in the long run species u went extinct because of the stiff initial competition. 

(ii) One semitrivial solution is stable, another unstable. We consider again 
(3.11) with a = 6, d = 5, c = 0.5, e = 1, and p = 3. Similarly to the .J 
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preceding we had verified computationally that (u*, 0) is stable and (0, v*) is 
unstable. We had computed solutions for various choices of utr, 0) and 
u( x, 0), and in all cases we had V( x, t) + 0, even for u(x, 0) ‘“small” and 
V( x, 0) “large.” These computations suggest that either (3.11) has no positive 
p-periodic solution, or else such a solution has a small domain of attraction. 

4. COMPUTATION OF PRINCIPAL EIGENPAIRS FOR A CLASS 
OF PERIODIC PARABOLIC PROBLEMS 

We are interested in computing the principal eigenvalue and eigenfunction 
of the following problem: the function u( x, t ) is a nontrivial p-periodic in t 
solution of 

u, - k(t)Au - a(x, t)u = pu in Sz, u = 0 on aa, (4.1) 

with p-periodic in t coefficients k(t) E CQ( R) and a(x, t) E Cp*a”2 
(a x A), k > 0. It is known (see Lazer [S]) that the smallest eigenvalue ccl 
of @.I> is simpie and the corresponding eigenfunction #i can be taken 
positive. We had mentioned in the previous sections the importance of /-ci for 
bifurcation of positive solutions. 

We replace the domain fi by the uniform square mesh Jz, of step size h, 
denoting k = (k,, . . . , k,), xk = (k,h, . . . , k,h) and uk = u(xk). We re- 
place the Laplacian by its finite difference version 

n 

c 
uk+e, - 2uk + uk-ei 

i=l h2 
, 

and then we number the grid points in an arbitrary way x1, . . . , x N, which 
produces the ordering of corresponding values of t.4 xl: u 1, . . . , tlpJ, ui = 

u( xi). The problem (4.1) is then replaced by the following: find the nontrivial 
p-periodic vector function u(t) = (u # ), . . . , UN (t )I9 such that 

ii(t) - A(t)u(t) = p(t), (4.2) 

with symmetric matrix A(t), such that all of its off-diagonal elements are 
either strictly positive or identically zero. We assume the ordering of the grid 
points is such that (A + ~1)” has all its entries positive for large enough 
7 > 0 and n (e.g., order A by rows). 
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PROPoSITION 4.1. The eigendues of (4.2) are pi = - l/p In pi > where 
am the Fbquet mu&p&em of A(t). 

PRooF. Setting u(t) = e -@u(t), we rewrite (4.2) as 

G(t) - A(t)u = 0. (4.3) 

According to the FIoquet theory, the solution of (4.3) can be written as 
u(t) = Ftt)e’%(O), where F(t) is a p-periodic matrix with F(0) = ? - 
identity matrix, and A is a constant matrix. Then the solution of (4.2) ~,~th 
u(0) = u. is 

u(t) = F( t)e(A+~z)‘U,. (4.4) 

For u(t) to be p-periodic, the matrix A + PI must have a zero eigenvalue 
and u. be its eigenvector. Recalling that A = l/p In X(p), where X(t) is 
the fundamental solution matrix of (4.31, the proof follows. 

PROPOSITXON 4.2. Let X( p) be the Floquet matrix of the mutrix A(t) as 
preoiously described. Then X( p! is pcsitiue &$&it@, and al! its enttie.9 are 
positive. 

PROOF. The fundamental solution matrix X(t) satisfies 

i = A(t)X, X(0) = 1. (4.5) 

Consider an IZ x n matrix Z(t) = ey’X(t). Then from (4.51, 

i = (A(t) + yZ)Z, Z(0) = I. (4 6) . 

Fix 7 large so that all diagonal elements of A + yZ are positive. On finite 
time intervals, solution of (4.6) can be obtained as a uniform limit of the 
sequence of iterates defined as follows: Z0 = Z and 

&a = I+ [(A(S) + Y~)&_~(s) di, n > 1; (4 7) . 
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See [2, p. 1681. Iterating in (4.7) with x = A + yl, 

(4 8) . 

It is clear that for sufficiently large n the matrix c/o’ as) c&I” has all entries 
positive, from which it follows that the same is true for X(t). From (4.8) we 
also conclude that X(t) is symmetric. By Liouville’s formula det X(t) > 0 for 
all t >, 0, so that th e eigenvalues of X(t) are nonro for all t. Since the 
eigenvalues vary continuously with t, positive definiteness of X(t) follows. 

From the preceding propositions and the Perron-Frobenius theorem it 
follows that X(p) has eigenvalues 0 < p1 G p2 < l ** c pn with p, simple 
corresponding to a positive eigenvector & and then Problem (4.2) has 
eigenvalues p1 < cc2 < l *= < ~;1, with J,Q simple and corresponding eigen- 
vector ur = e > 0. (The principal eigenfunction &(xj, t) is then obtained by 
solving (4.2) with p= pl and u(O) = g). 

To calculate pn and & we used the power method. Starting with an initial 

guess &,, II&J = 1, we compute & = X!p&_ ,/ilX(p)sk- 111, ad hk = 
( X( p)& _ 1, & _ J Since pn is simple it follows that hk 4 p, and & + 6. 

&AMPLE. kt a = (0,2), p = 1 and consider the eigenvalue problem 

Ut - % - c( x + l)(l + sin 27rt)u = jhu in a, u(0) = u(2) = 0, 

(4 9) . 

with c = 4 and 2?r = 6.283. We subdivided the interval (0,2) into 20 pieces, 
obtaining a 19 X 19 system, which was then solved using Euler’s method 
with time step l/2000, obtaining X(1). We then applied the power method 
starting with so = l/ m (1, 1,. *. , 1). To our great surprise the power 
method converged in just one step, giving cc, = - I.888 and the correspond- 
ing e. [The computation took only several minutes using VAX/PASCAL.) To 
test our program, we set c = 0 -in (4.91, obtaining pi = 2.464 fl: m2/4 as 
expected (@r = sin 7rx/2 XI* 

REMARK. The power method converged in just one step in all our 
experiments with constant k(t). To understand the reason behind this, let us 
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examine the Floquet matrix for the matrix 

corresponding to two-point discretization of the Laplacian. It is clear that 

x(1) = eA has & = 1/ fi<l, ljT as an eigenvector. 

5. A PERIODIC COMPETITION MODEL WITH TWO POSITIVE 
SOLUTIONS 

In [lo] P. de Mottoni and A. SchiafZino have presented the following 
example of a periodic competition system of ODE’s 

i = #(a(t) - b(t)x - c(t) y) 

?i = Y(W) - em -fWY), (5-l) 

with a = b = I + E + 8 sint, c = a(t)/( 1 + E sin t), d = f = a + Ecost 
(1 + &Sin t)-‘, e = 2a - d( 1 + E sint), and E E (0, 1). The system (5.1) 
has an explicit positive 27r-periodic solution x0 = $, y0 = $(l + E sint) and 
semitrivial solutions: (1, 0), which is unstable, and (0,l) which is stable. For 
E = 0.66 Mottoni and S&i&no report on calculations suggesting asymptotic 
stability of ( x0, yJ and e_xistence on another positive 2lr-periodic solution. In 
this short section we pursue this example further. As was pointed out in [lo] 
its importance lies in the fact that the corresponding averaged system has no 
positive solutions, which means that the principle of competitive exclusion 
may be violated in the periodic case. 

I? follow from the results of [lo] that the period map T of the system 
(5.1) has an invariant curve I’, which is a graph of continuous nonincreasing 
firnction joining (0, 1) and (1, 01, and that all fixed points of T lie on IY 
Hence stability of (x,, yJ will imply existence of another positive fixed point 
of T, i.e., another positive 27r-periodic solution of (5.1). In other words, if A, 
and A, are eigenvalues of the Floquet matrix, we need to show that 1 &I, 

l&l < 1 . 

We had linearized the system (5.1) near (x0, yO) with 8 = 0.33 and 
computed the fundamental solution matrix X(2m) using Euler’s method, 
subdividing the interval [O, 6.2831531 into 32000 equal pieces, obtaining 

. 1 = 0.842757, A A, = 0.000235. 
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We performed standard error analysis, taking into account the following: 
Euler’s method errors, round-off errors, errors in function evaluations, and 
the error in representation of 27~ Our results indicate that the error in the 
eigenvalues is considerably smaller than 0.15, which is small enough to justify 
stability of (x,, yJ. (We also computed with E = 0, both to test the program 
and to get an empirical error estimate, which turned out to be less than 0.001 
in each entry of X(27r)). For c = 0.66 we obtained A, = 0.5041 and 

A2 = 0.00003 and the same conclusion. 
Finally, we remark that although it is very plausible that (5.1) has only two 

positive p-periodic solutions, this remains to be proved. 
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