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ABSTRACT

Both theoretical and computational studies of long-term behavior for a general
class of parabalic systems with asymptotically time-periodic coefficients are presented.
The results are applied to the Lotka-Volterra systems, describing interaction of two
competing species.

1. INTRODUCTION

We study asymptotic behavior of quasimonotone asymptotically time-peri-
odic parabolic systems; that is, roughly speaking, parabolic systems with
oft-diagonal elements increasing. We prove some general results on existence
and uniqueness of periodic solutions, which we then use to get bounds on the
«-limit sets. We apply our results to asymptotically time-periodic Lotka—Volt-
erra competition systems with diffusion and Dirichlet boundary conditions,
for which our conclusions complement the recent work of P. Hess and A. C.
Lazer [5].

Most of our results were suggested by numerical computations. In addi-
tion, we present a number of computations in cases where known results do
not apply, suggesting possibilities for development. In particular, all the
results seem to extend numerically for time-periodic and nonhomogeneous
boundary conditions and to the initial data not satisfying compatibility condi-
tions. For Lotka—Volterra competition systems our computations show that in
some cases a superior on the average species may become extinct.

Sections 4 and 5 are numerical in nature. Section 4 deals with approxima-
tion of the principal eigenvalue and eigenfunction for a periodic-
parabolic operator. We show the problem can be reduced to finding the
principal eigenpair of a positive definite matrix with all entries positive, for
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which we use the power method with surprisingly fast convergence. Section 5
contains some computations and remarks on P. de Mottoni and A. Schiaffino’s
[10] example of a periodic Lotka-Volterra system with multiple coexistence
states.

2. PRELIMINARY RESULTS ON PERIODIC PARABOLIC
EQUATIONS

Let © be a smooth domain in R". For (x, t) € Q X E we denote

n

Lu= Y a;(x,t)u; + i a,(x,t)u; + ay(x,t)u, (2.1)

i,j=1 i=1

with @, a,, @, € C**/*(Q X R) for some a >0 and p-periodic in ¢,
p > 0. Assume further that for all x and &: ¢;; = a;, 2{;_, a;{x, t)§,.§j >
pol £1% for all £ € R™ and some g, > 0, and that a,(x, t) < 0. We denote
by u(x, ¢; u,) (and sometimes by u(x, ¢; u,, f)) the solution of

u,—Lu=f(x,t) inQ, u=0 ondd, ¢t>0 (22)

u(x,0) = uy(x). (2.3)

The following result is proved in . Amann [1].

LEMMA 2.1.  For any p-periodic in t function f(x,t) € C**/>(Q X R)
the problem (2.2) has a unique p-periodic solution, denoted u;, and u; > 0 if
f>0,u;,€ C*=1+2/2(Q x R).

We add the following stability assertion. It could also be derived from the
abstract results of P. Takaé [11}; however, we present a direct proof for

completeness. !

LEMMA 2.2. For any continuous data uy(x) such ' .t tne problem
(2.2-3) is classically solvable for t > 0 (e.g., uy € CZHQ", «e [1, p. 20]) we
have u(x, t; u,) — uf(x, t) as t — ® uniformly "~ 12.

PrOOF. Note that Lemma 2.1 implies that u,; = Au; for any constant A.
If [f(x,8)] < M for all x and ¢, we can choose A > 1 such thut u_,, <
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uy(x) <u,, for all x € @ (Hopfs lemma implies that du,,/dn < 0 on
34}, and recall also that u, > 0). Set vy(x, t) = u,,,. Define v(x, t) as the
solution of

v, - Ly, =f(x,t) ind, v,=0 ondQ
u(%,0) = v(x, p)(= vo(,0)).

Since vy(x, p) = u,,(x, p) is smooth in Q, it satisfies Equation (2.1) on
d{}, thus providing the compatibility condition of Theorem 7 in [4, pp. 65,
75]. Hence (2.4) is classically solvable and v/(x, t) € C2**!1*2/2(Q X R).
By the maximum principle it follows that

(24

v(x,t) <yy(x,t) forallxeQ, t>0. (2.5)
Next we define v,(x, t) as the solution of |

v, — Ly, =f(x,t) inQ, v,=0 ondQ, 0y(x,0)=uv(x,p).
(2.6)

Its existence follows as shown previously. By (2.5) and the maximum principle
it follows that v,(x, #) < v(x, t) for all x € @ and ¢ > 0. Continuing this
way, we define y(x, t)=v(x,t; y,_(x, p)), n>2 and obtain a
decreasing sequence of iterates. Similarly, starting with wuy(x, ¢) =
u_,y(x,1), we obtain an increasing sequence of iterates u(x, t).
Applying the maximum principle again, we see that u; < v, for all i, and so

for all x and ¢,

Uy S U; KUy < **° SV, SV K.

Call u(x,t) = lim, ,,, u,(x,t), v(x,?) = lim, _,, y(x, t). Clearly, u = v=
0 on (). By the interior Schauder’s estimates [4, p. 64], u,(x,t) are
uniformly bounded in C2**'**/2(K x [¢,, t,]) forany Kcc Q and 0 < ¢,
<t, < T. Hence u,(x, t) converge to u(x, t) in C>(K X [¢t,, t,]), i.e., u(x,
t) is a solution of (2.2).

Next we show that u(x, t) is periodic in t. Write

lu(z,t +p) — u(x, )] <lup-o(x.t +p) = u,(x.)]
lu(x,t +p) ~u, (.t +p)|

+|u,(x,t) —u(x,t)|.
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The first teim on the right is zero by periodicity of Equation (2.2). The other
two are less than any £ > 0 for every fixed x and ¢, provided n is large,
which proves periodicity. By the uniqueness claim of Lemma 2.1, u(x,¢) =
v(x,t) = u,.

The fun{:tions u(x,t) € C(Q X [0, p] converge monotonously to =z
continuous u,. By Vitali’s theorem the convergence is uniform.

Turning to the stability, notice that by the maximum principle,

uy(x,t) <u(x,t;u,) <v(x,t) forallx€Q and ¢>0.

For np <t < (n + 1)p, we have u(x, t) = u,, (x, t — np) and v(x,t) =
v,, (x,t — np), which are uniformly close.

REMARK. In our numerical experiments with (2.1) in case L = A and
Q = (0, 2), we were obtaining gocd approximations of 1-periodic solutions by
t = 2 for most of f(x, t) and uy(x) that we tried. Moreover, we obtained
similar results when uy(x) # 0 on 9€2, and for time-periodic Dirichlet data,
which suggests that Lemmas 2.1 and 2.2 might admit considerable generaliza-
tions.

LemMa 2.3. The periodic solution u; depends continuousiy on f(x, 1),
i.e, if g(x,t) € C**/%(Q X R) is another p-periodic iz t function, then for
any &> 0, qu - uglco(ﬁx[o,p], < g, provided |f — glco@xpo.pp <8, &=
8(&). Moveover, u is monotone in f, i.e., if g(x, ) > f(x,t) forall x and ¢,
thenu, > u.

PROOF. Let u(x, t) be solution of

u, — Lu=g(x,t) inQ, u=0 on d1),
u(x,0) = us(x,0).

By the maxiraum principle uf(x, t) <u(x,t), and by Lemma 2.2, u(x, t)
tends uniformly to u (~, *). Hence, u, > u;.

In view of the monotonicity, it sufﬁces to prove the continuity claim for
g =f + &. If the claim was false one would find a sequence & — 0 such that
for some c, > 0 and all j,

qu _.ff+ g |C0(ﬁX[0.p]) 2 Co- (2‘7)
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The sequence {u, } is uniformly bounded in C2**!*2/2(Q} x [0, T} for any
T > 0 (by the Schauder’s estimates). Hence a subsequence will converge in
C*4(Q X [0, T to a periodic solution of (2.2), which by uniqueness is u;.
But that contradicts (2.7).

LEMMA 24. Let a(t) and b(t) be continuous p-periodic functions, and
let u(t) be a solution of

u + a(t)u = b(t). (2.8)

Assume that either one of the following two conditions is satisfied,

@) A= [P a(r)dt >0, and B(t) >0 forallt;
(i1) A<O0, and b(t) <0 foralli.

Then (2.8) has a positive p-periodic solution (which in the first case atiracts
all other solutions as t = +», and in the second case repels).

ProOF. Denote h(t) = exp(f; a(7)d7). Then by direct integration it
follows that (2.8) has a p-periodic solution given by

1 " b(7)k(7)dr
u(t) = 0] (c0+]0b(7)h(r) d‘T), Co = 8 iA)_(l) :

In case (i) its positivity is obvious, and in case (ii)
co+ ['B(T)h(r) dr>co+ [ b(r)R(r) dr> 0.
0 0

Let A, and ¢(x) > 0in Q satisfy —A@, = A, in Q, ¢, = 0 on ).

THEOREM 2.1. Consider the problem
u, — k(t)Au = u(a(x,t) —b(x,t)u) inQ, u=0 ondf,
(2.10)

with the p-periodic functions k(t) € C*(R), a(x, t) and b(x,t) € C**/*(Q
X R), and k(t) > ko > 0, b(x,t) > by > 0 for ail x and t. Assume also
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u(x,0) € CE(Q). We conside: two possibilities.
(i) Assume there exists a p-periodic function ay(t) € C*(R), such that

a(x.t) > ag(t) and [ ay(7) dr > Alf k(rYdr. (2.11)

Thon nmln’am {9 10) Luo a uniqgue nositive n_morindic in + solution
1ReNR PrOJLIN \a.2vy it ue posuive p-perioaic in i uLion

all other non-negative solutions of (2.10) tend uniformly in x as t - +.
Moreover, this solution is continuous and monotone increasing in (x, ).

\u} If on the Odlerhana there isa P Penoalc in t]u nection al(t
such that

then any solution of (2.10) with non-negative data tends to zero uniformly in
xast - +=.

PROOF.

(i) To apply Theorem 3.1 we need super- and subsolutions. Large
constants are olpar]v supe ersolutions. Let »(¢t) be the positive n-nenodlc
solution of

v'(t) + (AK(E) = ag(2))u(t) = -

which exists by Lemma 2.4. Then it is easy to check that l,ll(x t) = eqo,(x)v(t)
is a positive subsolution of (2.10), provided & is sufficiently small. By
Theorem 3.1, Problem (2.10) has a positive p-periodic in ¢ solution that
attracts all strictly positive data (i.e., u(x 0> Stpl(x) for some & > 0). If the
data is assumed to be only non-negatlve then the strong parabohc maximum
Pi’iﬁ(:iple iﬁ'iplies lhal u\.u, T ; is Sli‘u“,uy pOSnuv‘c fux any 7 > U dlld lhc
stability claim follows. The monotonicity and continuity claims are proved as
in Lemma 2.3, using the usual monotone iterations.

(i) Let w(t) be a positive p-periodic solution of

w’' + (Mk(t) —a)(t))w = 1.
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It is easy to check that ¢(x, t) = Ap (x)w(t) is a supersolution of (2.10) for
any A > 0. Take a subsolution = 0. It follows by Theorem 3.1 that (2.10)
has a maximal non-negative p-periodic soluticn u. By the strong maximum
principle # is either strictly positive or zero. In the first case for A small we
would have a supersolution ¢, below #, which is impossible by Proposition
3.1. Hence # = 0 and the claim follows.

3. QUASIMONOTONE PERIODIC PARABOLIC SYSTEMS

We study the periodic and asymptotically periodic systems of the form
u,— L(x,t,D)u =f(x,t,u) mQXR, u=0 ondQ. (3.1)

Here u(x,t) = (u',...,u™), L =(L,..., L™) with each L' of the form
(2.1) and satisfying the same conditions as listed there. The vector-valued
function f=(f',...,f™): @ X R"*! - R™ is assumed to be of the class
C**/?(Q) X R) for any u belonging to some bounded set D C R™, and
locally Lipschitz continuous in u uniformly with respect to (x, t) € O X R.

DEFINITION. We say that f(x, ¢, u) is quasimonotone increasing in u on
D if

o

5120 forall i # j, xe, tER, ueD. (32)
u

DEFINITION. A p-periodic in ¢ vector-valued function (¢(x, t) =
(!, ..., ¥™)) is called a subsolution of (3.1) if

Y, — L(x,t, D)y <f(x,t,¢) in Q XR, U<0 ondd. (3.3)

A supersolution ¢(x, t) is defined by reversing the preceding inequalities.

THEOREM 3.1.  Assume that L and f are p-periodic in t, and there is a
pair of p-periodic in t super- and subsolutions with ¥ < ¢ on () X R.
Assume f is quasimonotone increasing in u for ¢ < u < ¢. Then (3.1) has
minimal and maximal p-perisdic in t solutions u(x,t) and u(x,t), respec-
tively. The w-limit set for any regular solution with data u(x,0) € C{()
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in the order interval [Y(x,0), ¢(x,0)] is contained in [u(x,t), u(x,t)]

(throughout the paper the w-limit set is understood with respect to uniform
convergence in x and t).

ProoF. Existence of u and # is of course standard; however we review
the construction briefly, since we need it to prove stability. We construct a
sequence of approximations {u,(x, t)} defined as p-periodic solutions of

ul, — Lul + Mu} = Mu, _, + fi(x,t,u,_,) inQ,

u, =0 ondQ, i=1,...,m, (3.4)
where the constant M > 0 on the right is chosen so large that the right-hand
side is an increasing function of u}, _,. The iterates starting with u, = ¢(x, t)
will converge increasing in 7 to u (and the ones starting with v, = ¢(x, t)
will produce another sequence y,{x, ) converging to #).

Turning to thc stability, notice that by the maximum principle for weakly
coupled parabolic systems ¢(x, t) < u(x, t) < ¢(x, t) for all x € Q and
t > 0. Define U{x, t) = (U],..., U™ as the solution of

Uj, — LU} + MU} = My + f(x,t, ¢) inQ,
Ui=0 ondQ, i=1,....m, Uj(x,0)=u'(x,0).

By the same maximum principle u(x, t) > U|(x,¢) for all x and ¢. Since by
Lemma 2.1, U(x, t) = u(x, t) [as defined in (3.4)] uniformiy in x, it follows
that for any £, > 0 we can find T, so that

u(x,t) >u(x,t) —g fort>T, and x €.
By our assumptions on f it follows that for ail x and ¢ > T,
Mu'+fi(x,t,u) > Mul +f(x,t,u;) — §,, with 8, >0 when g —0.
Next ivr t > T, we define Uy(x, t) as the solution of
Us, — LU; + MUJ = Mu! + f(x,t,u)) — 8, inQ, U;=0 ondQ,

Us(x,t,) = u(x,t,).
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By the maximum principle u(x, #) > Uy(x, t) for t > T, and all x € Q. By
Lemmas 2.2 and 2.3, U,(x, t) tends to a p-periodic solution of the preceding
egmation, which is close to the p-periodic solution of the same equation with
8, = 0, that is, u,(x, ¢). Hence for t > T, and all ,

u(x,t) >uy(x,t) — &, where g, » 0 when 8, -0,

and so on.
The following lemma asserts that the bounds on the -limit set of (3.1) are
stable under small perturbations.

LEMMA 3.1. Let v(x,t) = (v',...,v™) be the solution of the system
(3.1) with f replaced by another p-periodic function g(x,t, u), satisfying the
same conditions, and assume all other conditions of the Theorem 3.1 are
satisfied with the same ¥ and ¢, and suppose finally that

f(x,t,u) —g(x,t,u)| <8 forallx€Q, ¢t>0 and Y<u<o.

If v and V are, respectively, the mnimal and the maximal p-periodic
solutions of the new system, then for all x and t, |u — v| +|u — V| < ¢, and
& — 0 when 8 — 0. Moreover, if g > fthenu <vandu <.

PROOF. Since %, 4, ¥ and v are uniform limits of solutions of linear
parabolic problems, the proof easily follows using Lemma 2.3.

Next we consider asymptotically periodic systems. In the following f, u, u,
¢, and ¢ are defined as in Theorem 3.1.

THEOREM 3.2. Consider the quasimonotone system (v € R™)
v,—Lv=g(x,t,v) inQ,v=0 ondQ,
v(x,0) = v,(x) € WgP(Q). (3.5)

Assume that for any & > 0 one can find T, > 0 and two p-periodic functions
fx,t, v) and fy(x,t, v) such that f, <g <f, and |f, —fl <&, i=12,
forallt > T,, x € Q and ¢ < u < ¢. (This condition implics that g tends to
f uniformly in x and v.) Assume the functions f,, f,, and g are quasimono-
tone increasing and satisfy the same smocthness conditions as f in Theorem
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3.1, and that for each of these functions ¢ and Y cre super- and subsolutions.
Assume finally that Y(x, t) < v(x, t) < @(x, t) forallt > T, and x € Q.
Ther the w-limit set of the solution of (3.5) is contained in the order interval
[u, 3]

PrOOF. By the maximum principle for ¢ > max(T,, T,),

v(x,t; v, fi) <v(x.t;v, g) < v(x,t;v, ;).

Both v(x, ; vy, f;), i = 1, 2, tend by Theorem 3.1 to the order intervals [yf.»’
Bfi}, which by Lemma 3.1 are uniformly close to {u, ul.

ExaMpLE. In the conditions of Theorem 2.} (i), let d(x, t) — a(x, t) as
t — o uniformly in x. Then any non-negative solution of

z, — k(t)Az =z(d(x,t) —b(x,t)z) in, z=0 ondQ

converges as ¢ — © to the unique p-periodic solution of (2.10). (Indeed we
cantake fi, =z2(a + £~ b2),0<e< g, o=M, = dp,v with M >0
large and &, 6 > 0 small))

Next we shall give some simple conditions for uniqueness that are similar
to the ones given in [9] for the autonomous systems; see also
P. Takaé [11]

DEFINITION. We say that a vector function Kx, £, u): @ X R X RT — R™
is sublinear in u if for any constant 0 < y < 1

f(x,2, yu) > yf(x,t,u) forx€eQ, ¢t>0 and u>0. (3.6)

We say that f is strictly sublinear if in addition for any fixed « > 0,0 < y < 1
and 1 < i < m the functions £'(x, ¢, yu) and yf(x, ¢, u) are not identically
equal on () X R.

ProrosiTioN 3.1.  If the problem (3.1) with f as in Theorem 3.1 and
moreover strictly sublinear, has a positive p-periodic solution u, then it
cannot have a positive p-periodic supersolution 9 < u, ¢ * u. (In particular,
this implies uniqueness of a positive p-periodic solution. The last conclusion
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also follows from [11])

PROOF. Assume such ¢ exists. Let 0 < y < 1 be the maximal number
such that ¢ > yu. Set z = @ — yu. Notice that by strict sublinearity of f, no
component of z can be identically zerc. Then for M > 0 sufficiently large
and any 1 < i < m, it follows by (3.6),

z} — Lz' + Mz' > M¢' + fi(x,t, ¢) — Myu' — fi(x,t,yu) =0,
z'(x,0) >0,

with both inequalities being strict on some open sets. By the maximum
principle z > 0 on X R, which contradicts the maximality of y.

In the following we denote by u,(a) the principal eigenvalue of the
periodic parabolic problem

u,—Lu—a(x,t)u=pu inQ, u=0 ondQ, (3.7)

and by ¢(a) > 0 the corresponding p-periodic eigenfunction. Existence of
such eigenpairs is known; see e.g., [5]. We abbreviate p, = p(0), ¢, = ¢(0).

PROPOSITION 3.2. Consider Problem (3.1) with p-periodic L and f as in
Theorem 3.1. Assume that forall 1 <i <m, anyz € R7. h € R, we have

fi(x,t, z+ he) <fi(x,t,z) + mh, withe=(1,1,...,1) ER",
(3.8)

and both sides ¢ (3.8) are not identical. Then the conclusion of Proposition
3.1 holds.

ProOF. This time we let ¥ > 0 to be the minimal number suck that
¢ > u — yy¥,. By our assuinptions, the last inequality is strict on some set in
each component. Setting z = ¢ — u + J;, we obtain for M > 0 large and
any 1 <i<m,

zi — Lz' -+ Mz' > M(¢' + 7)) + f'(x,t, @) — Mu’ — f'(x,t, u)
vy gy > M(@' + vy) + (28, 0+ )
-Mu' ~f'(x,t,u) >0,
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with the inequality strict on some open set. This contradicts the minimality of
7.
Next we study periodic competition systems of the type

u, = k\(t)Au +u(a(x,t) —b(x,t)u—-c(x,t)v) in Q, u=0 on )
v, = ky(t)Av+v(d(x,t) —e(x,t)u—f(x,t)v) in 2, v=0 on dQ,
(3.9)

whene k\(t) and k,(t) are positive p-periodic functions of class C*(R) and
. f_are either p-periodic or asymptotically p-periodic functions of class
C aa/ 2(Q2 X R) and furthermore b, c, e, and f are strictly positive.

The problems of this type as well as their autonomous versions have been
studied by a number of people; see, e.g., [5, 7, 9] and the references therein.
It turns out that the asymptotic behavior of (3.9) is governed largely by the
stability of the semitrivial solutions (#*, 0) and {0, v*) where u* is the
solution of the first equation in (3.9) when v is set equal to zero, and v* is
defined similarly. P. Hess and A. C. Lazer [5] have studied abstract competi-
tion models and found that if both semitrivial solutions are unstable then
“compression” occurs, i.e., a situation similar to our Theorem 3.1. Conditions
for instahility of semitrivial solutions can be easily given in terms of p(a —

*) and p,(d — eu*). More explicit sufficient conditions were given by P
Hess and A. C. Lazer in case of (3.9) with periodic coefficients and Neumann
boundary conditions [5, p. 28]. Their result can be easily modified to cover
the Robin boundary conditions, but not the Dirichlet case, since the positivity
of ¢, on @ was used. The following result fills the gap and moreover allows
asymptotically periodic coefficients. Define

fu= sup f(2).
(-, @)

THEOREM 3.3.  For Problem (3.9) with periodic coefficients, assume there
exist p-periodic functions a(t), a,(t) € C*(R) such that

d a
oz, 1) —c(x,t)(?)M Sa(t), d(x.t) -—e(-b-)M>a2(t),

j;paidt > Alj:k,. dt, i=1,2.
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Then (3.9) has positive p-periodic solutions (u, v) and (@, v), such that any
other positive p-periodic solution of (3.9) satisfies u <u <u, v<v<Y,
and for any nonzero data u(x,0) > 0 and v(x,0) > 0 the w-limit set of the
corresponding solution of (3.9) is contained in the order rectangle Q = [u, 1]
X [, 9} Meveover, if one perturbs the system (3.9) replacing a(x,t) by
a(x,t) + afx,t),..., f(x,t) by f(x,t) + f(x,t) with a,,..., f, tending to
zero uniformly in x as ¢ - «, then the wlimit set of any non-negative
solution is still in Q.

PROOF. By letting ¥ = —v we transform (3.9) into a new system

u,=kAu+u(a—-bu+cv) inQ, u=0 ondQ
(3.10)
V,=k,Av+9(d —eu+fv) inQ, V=0 ondaQ,

which is quasimonotone increasing in u > 0 and ¥ < 0. Let u, be a positive
p-periodic solution of

d
u, =k, (t)Au +u(a-—bu—c(?) —(c+ 1)80) infl, u=0ond,
M
and similarly v, a positive p-periodic solution of
v =ky(t)Av+ v(d—e(%) —fv—(e+1)so) inQ, v=0o0ndQ,
M

whose existence for sufficiently small £, follows by Theorem 2.1. Then
¢ =Wa/b)y + &, —v) and ¥ = (u,, —(d/f)y — &) are super- and
subsolutions of (3.10), and Theorem 3.1 applies (the inequality ¢ < ¢ follows
easily by the maximum principle). To apply Theorem 3.2, define f, =f_,

fo=f, and

_|u(e £ e—bu+cv)
fs= WdFe—eu+fo)

with 0 < £ < £,. One checks that for £, sufficiently small, &, = £((¢,), ¢
and § are super- and subsolutions for both f; and f,. Using comparison
arguments and Theorem 2.1, one shows that solutions of (3.10) lie eventually
between ¢ and ¢, and the proof follows.



216 PHILIP KORMAN

REMARKS.

1. On the basis of the second part of Theorem 2.1, one can easily write
down conditions for stability of one or both semitrivial solutions, and then get
conditions for extinction of one of the species.

2. Using Proposition 3.2, we can translate the uniqueness results of
McKenna-Walter [9] to our situation. However, a fundamental problem
remains open: does instability of semitrivial solutions imply uniqueness of a
p-periodic solution?

3. The trick of converting (3.9) to a quasimonotone increasing form by
letting ¥ = —v is known, see [9]. In Korman-Leung [7] it was shown that a
similar trick works for larger systems iff all variables can be divided into two
groups, such that any two variables from different groups compete and any
two variables from the same group cooperate. All our results extend to such
systems.

For the cases when one or two of the semitrivial solutions are stable there
are some general results in [5]. Here we illustrate these cases numerically.
The phenomena we observed in our numerical examples are not for the most
part covered by the results of [5].

(i) Both semitrivial solutions are stable. We computed solutions of the
following system [ = (0, 2)):

u,=u__+u(a+psin2«t —u — s 0)=u(2)=0
t xx ( p w™ u CU) u( ) u( ) (311)
v=v, +v(d—eu—v), v(0) =v(2) =0,

witha =6,d =5, c = e = 2, p = 3. We verified the stability of semitrivial
solutions computationally: by setting ¢ = 0 in the first equation (then u — u*)
and observing that the v component of the solution coverges to zero, we
conclude stability of (u*, 0) (alternatively we could compute p{d — eu*) by
using the results of the next section). Similarly we verified that (0, v*) is
stable.

We started with u(x,0) = v(x,0) = 1. Not surprisingly, v — 0, since u is
a superior on the average species. Next we considered ¢ =6, c = e = 2,
d=35, p=3, u(x,0) = 1 but v(x,0) = 5. This time u — 0, i.e., the supe-
rior on the average species went extinct, as a result of being outnumbered
initially. When ¢ =6, c=¢ =2, d =5, u(x,0) = v(x,0) =1, but p =
— 12, then again the superior species u went extinct as a result of initially
declining carrying capacity. Finally we tried a =6, d =5, p =3, u(x,
0 =v(x,00=1 e=2but c =2+ 2/In@ + t). Here again the superior
in the long run species u went extinct because of the stiff initial competition.

(ii) One semitrivial solution is stable, another unstable. We consider again
(3.11) with ¢ =6, d=5, c =05, ¢ =1, and p = 3. Similarly to the
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preceding we had verified computationally that (u*, 0) is stable and (0, v*) is
unstable. We had computed solutions for varicus chuices of u(x,0) and
v(x,0), and in all cases we had v(x, t) = 0, even for u(x,0) “small” and
v(x, 0) “large.” These computations suggest that either (3.11) has no positive
p-periodic solution, or else such a solution has a small domain of attraction.

4. COMPUTATION OF PRINCIPAL EIGENPAIRS FOR A CLASS
OF PERIODIC PARABOLIC PROBLEMS

We are interested in computing the principal eigenvalue and eigenfunction
of the following problem: the function u(x, t) is a nontrivial p-periodic in ¢
solution of

u, —k(t)Au —a(x,t)u=pu inQ, u=0 ondQ, (4.1)

with p-periodic in ¢ coefficients k(t) € C*(R) and a(x,t) € C**/?
(Q X R), k > 0. It is known (see Lazer [8]) that the smallest eigenvalue u,
of {4.1) is simple and the corresponding eigenfunction ¢, can be taken
positive. We had mentioned in the previous sections the importance of u, for
bifurcation of positive solutions.

We replace the domain £ by the uniform square mesh ,, of step size h,
denoting k = (k,,...,k,), x, =(k)h,....k,h) and u; = u(x;). We re-
place the Laplacian by its finite difference version

= Upie — 2uk + uk—e,»

2 I
= h

and then we number the grid points in an arbitrary way x! ..., xV, which
produces the ordering of corresponding values of u(x): u,,...,uy, u; =
u(x*). The problem (4.1) is then replaced by the following: find the nontrivial
p-periodic vector function u(t) = (u(t),..., uy(t)), such that

a(t) - A(t)u(t) = pu(t), (42)

with symmetric matrix A(¢), such that all of its off-diagonal elements are
either strictly positive or identically zero. We assume the ordering of the grid
points is such that (A + yI)" has all its entries positive for large enough
¥ > 0 and n (e.g., order A by rows).
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PROPOSITION 4.1. The eigenvalues of (4.2) are p, = —1/pIn p;, where
; are the Floquet multipliers of A(t).

PROOF. Setting v(t) = e **u(t), we rewrite (4.2) as
v(t) — A(t)v = 0. (4.3)

According to the Floquet theory, the solution of (4.3) can be written as
v(t) = F(t)e*v(0), where F(t) is = p-periodic matrix with F(0) =7 —
identity matrix, and A is a constant matrix. Then the solution of (4.2) with
u(0) = u, is

u(t) = F(t)eM ety (4.4)

For u(?) to be p-periodic, the matrix A + pI must have a zero eigenvalue
and u, be its eigenvector. Recalling that A = 1/p In X(p), where X(¢) is
the fundamental solution matrix of (4.3), the proof follows.

PROPOSITION 4.2.  Let X(p) be the Floquet matrix of the matrix A(t) as
previously described. Then X(p) is pesitive definite, and all its entries are
positive.

ProOF. The fundamental solution matrix X(¢) satisfies
X=A(t)X, X(0)=1I (4.5)
Consider an n X n matrix Z(¢) = ¢”*X(¢). Then from (4.5),
Z=(A@) +y1)Z, Z(0)=1I (4.6)

Fix y large so that all diagonal elements of A + yI are positive. On finite
time intervals, solution of (4.6) can be obtained as a uniform limit of the
sequence of iterates defined as follows: Z, = I and

Z, =1+ jo‘(A(s) +yI)Z,_(s)ds, n>1; (4.7)
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See [2, p. 168]. Iterating in (4.7) with A=A+ vl

Z =1+ jo‘x(s)dH - (ng(s)ds)". (4.8)

n!

It is clear that for sufficiently large n the matrix (f¢ A(s)ds)" has all entries
positive, from which it follows that the same is true for X(¢). From (4.8) we
also conclude that X(t) is symmetric. By Liouville’s formula det X(¢) > 0 for
all ¢ > 0, so that the eigenvalues of X(t) are nonzero for all . Since the
eigenvalues vary continuously with ¢, positive definiteness of X(t) follows.

From the preceding propositions and the Perron-Frobenius theorem it
follows that X(p) has eigenvalues 0 < p, < p, < *** < p, with p, simple
corresponding to a positive eigenvector £, and then Problem (4.2) has
eigenvalues p, < py < - < p, with g, simple and corresponding eigen-
vector u, = £ > 0. (The principal eigenfunction §(x;, t) is then obtained by
solving (4.2) with u = p, and u(0) = §).

To calculate p, and ¢ we used the power method. Starting with an initial
guess &, l1&ll =1, we compute & = X(p)é&._,/IX(p)é_\ll, and A, =
(X(p)é&i_,, &) Since p, is simple it follows that A, = p, and & — £.

ExampLE. Let © = (0, 2), p = 1 and consider the eigenvalue problem

u,—u,—c(x+1)(1+sin27t)u =pu inQ, u(0)=u(2)=0,
(4.9)

with ¢ = 4 and 27 = 6.283. We subdivided the interval (0, 2) into 20 pieces,
obtaining a 19 X 19 system, which was then solved using Euler’s method
with time step 1,/2000, obtaining X(1). We then applied the power method
starting with &, =1/ V19 4, 1,...,1). To our great surprise the power
method converged in just one step, giving u, = —1.888 and the correspond-
ing &. (The computation took only several minutes using VAX /PASCAL.) To
test our program, we set ¢ = 0 in (4.9), obtaining u, = 2464 = w2/4 as
expected (¢, = sin wx/2 x).

REMARK. The power method converged in just one step in all our
experiments with constant k(¢). To understand the reason behind this, let us
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examine the Floquet matrix for the matrix

-2 1
““[1 —2]’

corresponding to two-point discretization of the Laplacian. It is clear that
X(1) = e* has & = 1/V2(1, 1)7 as an eigenvector.

5. A PERIODIC COMPETITION MODEL WITH TWG POSITIVE
SOLUTIONS

In [10] P. de Mottoni and A. Schiaffino have presented the following
example of a periodic competition system of ODE’s

i=x(a(t) —b(t)x —c(t)y)
g =y(d(t) —e(t)x — f(t)y),

with a=b =14+ ¢+ ¢ sint, c = a(t)/(1 + esin t), d = f = a + ecost
(1 + &esint)™!, e = 2a — d(1 + &sint), and & € (0, 1). The system (5.1)
has an explicit positive 27-periodic solution x, = 3, y, = 3(1 + & sint) and
semitrivial solutions: (1, 0), which is unstable, and (0, 1) which is stable. For
& = 0.66 Mottoni and Schiaffino report on calcuiations suggesting asymptotic
stability of (x,, y,) and existence on another positive 27-periodic solution. In
this short section we pursue this example further. As was pointed out in [10]
its importance lies in the fact that the corresponding averaged system has no
positive solutions, which means that the principle of competitive exclusion
may be violated in the periodic case.

It follow: from the results of [10] that the period map T of the system
(5.1) has an invariant curve I, which is a graph of continuous nonincreasing
function joining €0, 1) and (1, 0), and that all fixed points of T lie on T.
Hence stability of (x,, y,) will imply existence of another positive fixed point
of T, i.e., another positive 27-periodic solution of (5.1). In other words, if A,
and A, are eigenvalues of the Floquet matrix, we need to show that |A,l,
Al < 1.

We had linearized the system (5.1) near (x,, y,) with &= 0.33 and
computed the fundamental solution matrix X{2#%) using Euler’s method,
subdividing the interval [0, 6.283153] into 32000 equal pieces, obtaining

(5.1)

X(2m) =( 0.423339 —0.423126)
—0.419396  0.419653 )’

A = 0842757, A, = 0.000235.



Asymptotically Periodic Systems 221

We performed standard error analysis, taking into account the following:
Euler’s method errors, round-off errors, errors in function evaluations, and
the error in representation of 27. Our results indicate that the error in the
eigenvalues is considerably smaller than 0.15, which is small enough to justify
stability of (x4, y,). (We also computed with & = 0, both to test the program
and to get an empirical error estimate, which turned out to be less than 0.001
in each entry of X(27)). For £ = 0.66 we obtained A, = 0.50441 and
A, = 0.00003 and the same conclusion.

Finally, we remark that although it is very plausible that (5.1) has only two
positive p-periodic solutions, this remains to be proved.
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