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do not differ much from one another, relatively speaking. Curve fitting, using Nicolas’s
values of f(n) from n = 4 to n = 95, yields

(10)
ah=—0.179690, ) = 0427217, ab=—873545,  aj=9.06595,

b} = —0.0559652, 5 = 5.17699, 4 = 5.37044, b, = —0.479231.

Again, similar tests were carried out with the same degree of success. Curve fitting
using all but the last of Nicolas’s results gives, besides an unmodified a}, coeflicients ‘
differing from those in (10) in the fourth or third decimal, and by extrapolation (f(n)— ‘E
Inn)p—9s = —0.176 191961 7 compared to —0.176 191 988 2 according to Nicolas. In all
tests, the values of ag and a, have appeared to be the least sensitive for modification,
which is important within the present context.

This enables us to conclude that curve fitting, using all known (f(n)~Inn) values,
by means of the asymptotic approximation (9) leads to
(11) limsup{f(n) —Inn} = —0.179690. ..

n—-400

[

with reliable precision. This answers part (a) of Erdds’s problem.
Note that Nicolas started his partial solution by proving that

y—1< f(n)—lnn <7, n>2

and that our result (11) is in agreement with this enclosure of the values of f (n)—nn,
our value in (11) lying closer to v — 1 than to ~y as f(95) —In95 = —0.176 ... made
it possible to expect. This result also proves that the answer to part {(b) is not
equidistance of the grid points for the absolute maximum of (1). Qualitatively, the

(41 — x)-intervals are somewhere minimal and increase from there onward in both
directions of the z-axis.
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Periodic Solutions of a Differential Equation

Problem 95-9, by PHILIP KORMAN (University of Cincinnati). \
Consider the equation )

1) & = z(z —a(t)) (b(t) — 2) )
with continuous positive p-periodic functions a(t) and b(t) such that

max a(t) < min b(t).
Show that (1) has exactly two positive p-periodic solutions.

Addendum to the solution by HONGWEI CHEN (Christopher Newport University).

David Ross recently pointed out that there was a gap in the proof of the exact
multiplicity result in [1]. The argument can be modified as follows. First, we establish
an exact multiplicity result for the general equation

(2) z' = f(tv :13) with .f(t +p7$) = f(t)m)'
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If fzz > 0 for all t and all z € I (where I is any subinterval of the real axis), then (2)
has at most two p-periodic solutions with values in I. In fact, let

0<xq (t) < .’Ez(t) < :Eg(t)
be three positive p-periodic solutions of (2). Define
y1=22(t) —w1(t),  y2=z3(t) — 22(t).

Then y; and y, are positive p-periodic functions and satisfy

3) y’l =c1(t)y
and
(4) Y2 = c2(t)ya,

respectively, where
c(t) = /01 Jo(t,m20 + (1 — 7)21) drT,
cat) = _/01 Jz(t, T3 + (1 — 7)z2) dr.
Equations (3) and (4) give

P D
/ci(t)dt=/ Yi/yidt =0
0 0

for ¢ = 1, 2. This contradicts the fact that ¢ > ¢;.

The exact multiplicity result of (1) is concluded as follows. Letting z = 1/z in
(1) gives

(5) z'~_—§+abz—(a+b).
Denoting the right-hand side of (5) by f(%, 2),
2
foz = 'Z—g > 0.

Therefore, (5) has at most two positive p-periodic solutions, as does (1).
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An Integral from Electron Gas Theory

Problem 96-6 by M. L. GLASSER (Clarkson University).

The following integral arose in calculating the exchange-correlation energy of an
electron gas in a strong magnetic field [1, p. 99):

f(z) = /Om exp(—z?/2%) tan (1 /) dz.

Find computationally effective expansions for f(z).




