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1. INTRODUCTION 

We study existence and stability of periodic solutions for the Lotka- 
Volterra systems with periodic coefficients, 

(1.1) 

Throughout the paper we assume the functions a(t), . . ..f’(t) to be continuous 
and periodic with period p > 0, and that 

A= pu(T)dT>o, f D s 'DDE > 0, s (1.2) 
0 0 

b(t), c(r), e(r),f(t) are positive for all t. (1.3) 

Existence and local stability of positive p-periodic solutions of (1.1) 
were studied by .I. Cushing [2]. P. de Mottoni and A. Schiaffino [7] 
have studied extensively the geometric properties of the period map 
T: (x(O), y(0)) + (x(p), y(p)). In particular they noticed the monotonicity 
property: if the point (X(0),SF(O)) lies northwest of (x(O),y(O)), then 
(Z(t), y(t)) lies northwest of (x(t), y(t)) for all t, in particular t = np. This 
implies that any positive solution of (1.1) tends to a p-periodic solution as 
I + a (with possibly one component equal to zero). They go on to study 
multiplicity, location, and domains of attraction of the fixed points of T. 
However, their uniqueness results are rather restrictive. 
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132 THE PERIODIC COMPETITION MODEL 

Our work was motivated by the paper of C. Alvarez and A. C. Lazer 
[ 11, who study (1.1) under the additional assumption that a(t) and n(t) 
are positive. 

They define uL = min, a(t), a,,, = max, a(r), and b,, b,,... similarly. By 
an ingenious use of the degree theory, they showed that the conditions 
(introduced earlier by K. Gopalsamy [4]) 

imply existence and uniqueness of a p-periodic solution of (l.l), which 
attracts all other positive solutions as t -+ ‘x. 

It turns out that the dynamics of (1.1) depend strongly on the stability 
properties of semitrivial solutions of (1.1) (x,(t), 0), and (0, .~,(r)), where 
x,(t) and )vo(t) are positive p-periodic solutions of the equations 
Sf = .~(a( t) - b(t) x) and j = y(d( t) -f(t) .r), whose existence (and unique- 
ness) is obtained by direct integration. If both semitrivial solutions are 
unstable then the system (1.1) has a positive p-periodic solution. It is an 
open question if such a solution is unique in general. We conjecture that 
multiple solutions are possible. If this is so, the dynamics of (1.1) are then 
analyzed in H. Smith [9]. Under an additional assumption we show 
uniqueness (see Theorem 2.2), extending the results of [ 1, 71. If both 
semitrivial solutions are unstable, again we conjecture non-uniqueness in 
general. Under an additional assumption we prove in the Theorem 2.3 both 
existence and uniqueness of the solution, using the degree theory similarly 
to [ 11. We discuss the dynamics of (1.1) in that case, and present a 
numerical example. If one of the semitrivial solutions is stable and the 
other one unstable, then multiple solutions are known to occur, see [7]. 
Finally, we discuss our numerical experiments related to the above 
conjectures. 

2. PERIODIC COEXISTENCE STATES AND THE DYNAMICS 

We begin by showing that if both semitrivial solutions of (1.1) are 
unstable then there is a positive coexistence state. 

THEOREM 2.1. In addition to the conditions ( 1.2) and ( 1.3), assume that 

s 
P(a(s)-c(s).v,(r))d~>O, 

0 
jP(d(5)-e(r)u,(r))d~>O. (2.1) 
0 

Then the system (1.1) has a positive p-periodic solution. (Notice that the 
conditions (2.1) can be written explicitly in terms of the coefficients qf ( 1.1). ) 

Proof: It is a straightforward computation to verify that conditions 
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(2.1) are included in Theorem 5.3 of P. de Mottoni and A. Schiafftno [7]. 
Alternatively, we could apply Schauder’s fixed point theorem to a map 
T: (u, c) + (U, O), which takes positive p-periodic functions u(t) and v(t) 
into positive p-periodic solutions of 

i=zi(a-bu-CL?), ;=q&eu-fc). 

The second proof generalizes also to n 2 2 competing species. 
It is known that the stability question for the n species Lotka-Volterra 

problems can be reduced to that for a linear system 

i=A(t)x. -Y(t) E R”, A(r+p)=A(t), (2.2) 

with a real n x n matrix. Stability of (2.2) is not a trivial question, as for 
example negativity of real parts of all eigenvalues of A(t) does not imply 
in general even boundness of x(t), see, e.g., [S, p. 1211. The following 
lemma is extracted with some generalizations from the proof of Lemma 1 
in [ 11. It could also be derived from more general results on exponential 
dichotomies, see, e.g., [S]; however, checking the conditions of [8] would 
occupy about as much space as the self-contained proof below. All vector 
inequalities below are understood componentwise. 

LEMMA 2.1. Assume that a,(t) > 0 for ail i#j and ail t > 0. Assume 
there exists a constant row oector a = (u, ,..., CX,,) > 0, such that 

aAGO and II41 >O .for all t > 0. (2.3) 

Then the system (2.2 j is asymptotically stable (unstable ). 

Proof According to the Floquet theory, stability is governed by the 
eigenvalues of the monodromy matrix X(p), where X(t) is the solution of 

J?(z)= A(t) X(t), X(0) = E - the identity matrix. (2.4) 

Observe next that all entries of X(t) are strictly positive for all t > 0. 
Indeed, setting X(t) = e-‘“Y(t), we obtain for p > 0 sufficiently large a 
system 

j’(t) = (A(f) +PE) Y(t), Y(0) = E, 

whose matrix has all entries strictly positive, and hence Y(t) > 0 for all 
t > 0. 

By the Perron-Frobenius theorem X(p) has a simple positive eigenvalue, 
call it 2, which is strictly greater than the modulus of any other eigenvalue; 
moreover, the corresponding eigenvector Z, X(p) z = iz, can be chosen 
positive. If A -C 1, the system (2.2) is asymptotically stable, and if i. > 1 then 

409’171 l-10 
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unstable. If we now set x(t) = X(t) Z, then x(t) is strictly positive for t > 0 
solution of (2.2), with .X(O) = I and -u(p) = AZ. Using (2.3), 

a,i, + ..’ + rx,,.?,, = i 
( > 

i ar,cYi s; < 0 for all t b 0. 
j= I ,=I 

Integrating from 0 to p, 

l.(cc,z,+ ..’ +ct,~,,)<c(,z,+ ‘.. +a,,z,,, 

and hence i < 1. The instability is proved similarly. 

Assuming instability of both semitrivial solutions, we now give a 
condition for uniqueness, generalizing the results of of [ 1, 71. A similar 
result was proved by A. Tineo and C. Alvarez [lo]. They consider n > 2 
competing species; however, for the n = 2 case their result is more 
restrictive. 

THEOREM 2.2. Assume that the conditions of Theorem 2.1 are satisfied. 
Assume also existence of a constant vector o! = (a,, IX?) >O so that for 

A(r) = ( ~8:;’ $‘,,j one has crA < 0, I( > 0 for all t > 0. Then the problem 
( 1.1) has a unique positive p-periodic solution, which attracts all other 
positive solutions qf ( 1.1) us t + SC. 

Proof: Let (s(r), y(t)) be a positive p-periodic solution of (1.1) whose 
existence follows by Theorem 2.1. Its variational system is 

(2.5) 

Letting u = t/x, v = -q/y, we obtain from (2.5) 

ti = -bxu + CIW 

il = exu -.[LYI. 
(2.6) 

Using Lemma 2.1, we conclude that any positive p-periodic solution of 
( 1.1) is stable (by [ 1 ] the Floquet multipliers of (2.5) and (2.6) are 
identical). It follows by the results of [7] that such a solution is then 
unique (alternatively, we could use the degree theory, as in Theorem 2.3 
below, to prove uniqueness). Finally, by [7] any positive solution of (1.1) 
tends to a p-periodic solution. Since both semitrivial solutions are unstable, 
the proof follows. 
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Next we prove existence and uniqueness results in case both case semi- 
trivial solutions are stable. 

THEOREM 2.3. In addition IO the conditions (1.2) and (1.3) assume that 

s 
p(a(~)--(5)4.0(5))d~<0, 

0 
i~p(d(r)-e(r)l,(r))d~<O. (2.7) 

Assume also existence of a constant positive vector CI = (a,, tag), so that for 

A(t) = ( :>;:;’ $‘,,) one has clA 20 and IlaAII >O for all t 20. Then the 
problem ( 1.1) has a unique positive p-periodic solution (which is unstable ). 

ProoJ: If the system (1.1) has a p-periodic solution (x(t), y(t)), then we 
can consider the variational systems (2.5) and (2.6) again, Applying 
Lemma 2.1 to the system (2.6), we conclude that it is unstable, i.e., it has 
a Floquet multiplier greater than one. Since the systems (2.5) and (2.6) 
have identical Floquet multipliers (see [ 1 ] ), we get the same conclusion for 
(2.5). We show next that the index of (x(t), y(t)) is - 1, and then use the 
degree theory to obtain both existence and uniqueness. 

We make a general remark. Let .u(t, x0) denote the solution of 
1 =f( t, x), x(O) = .yo, where x E R” and f( t +p, X) =f( t, s). Denote by T 
the period map: T(+,) = x(p, .uo). Let the matrix X(t) be the solution of the 
variational system X(t) = ,f, (t, x( t, x0)) X(t), X(0) = E. Then differentiating 
the original ODE in so, we conclude that T’(x,) = X(p). 

For the problem (1.1) the variational equation at the positive p-periodic 
solution (x(t), y(t)) is given by (2.5). If X(p) denoies the fundamental 
matrix of (2.5) with the eigenvalues 1, and I*, then by the above remark 
the index of T at (s(O), ~(0)) is equal to (1 - A,)( 1 - E.,). From the above 
remarks we know that say A2 > 1. By Liouville’s formula 

l,E.,=det X(p)=exp sp (a-2bx-cy+d-ex-2~~)dt 
( 0 > 

= exp 
(J 

“(-bx+)dt <l 
0 > 

Hence 0~1, < 1, and so the index of T at the fixed point (x(O),JJ(O)) is 
- 1. 

The map T also has the trivial fixed points: (O,O), (x~(O), 0), and 
(0, Y,(O)), where x,(t) denotes the positive p-periodic solution of 
.f=x(a(t)- b(t) x), and Jo(t) is defined similarly. It is easy to check that 
(0,O) is a repeller and the other two are attractors, so that they all have 
index 1 (the variational equations at these points are easily analyzed). 

Recall that aM = max, a(t), etc. To avoid having to use the degree 
theory in cones, we extend T from the positive quadrant to 
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D = [ -a,Jb,, a,/b,] x [ -dhf/fL, dM/fL] by reflecting the picture with 
respect to the .Y and J’ axes. Each positive fixed point of T gives rise to four 
fixed points of index - 1 on D. The five trivial fixed points (O,O), 
(*X,(O), 0), (0, +yO(0)) still have index 1 each (as they still are a repeller 
and attractors, respectively). Let II 20 be the number of positive fixed 
points of T. Then, since deg(Z- T, D, 0) = 1 (TD c D), we conclude that 
(see Fig. 1) 

1 = 5 + 4n( - 1). 

i.e., n = 1, and the theorem follows. 
By [7] any positive solution of ( 1.1) approaches a p-periodic one. 

Hence, in the conditions of Theorem 2.3, generically one of the species 
becomes extinct. Which one of them actually dies out depends on the 
coefficients and initial conditions, sometimes in a surprising way as the 
following example shows. 

NUMERICAL EXAMPLE. We computed the solution of (2712 6.283) 

.t = .u(a + b sin 27~ - s - CJ~) 

$=y(d-ex-y), 

for various values of parameters and initial conditions. 

L sf J, x,(O) 
f‘ 

FIGUKE I 
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(i) a=d=4, b= 1, e=c=2, x(O)=y(O)=$ i.e., we have identical 
on the average species. Result: l,(t) + 0 as t + x. 

(ii) The same as above but b = - 1. This time -u(t) died out. 

(iii) a=4.1, ~!=4, b= -1, c=e=2, x(O)=!(O)=5 Here x(t) went 
extinct (although it is on the average a superior species). 

(iv) The same as in (iii), but s(O) = 5.3. This time I became 
extinct. 

As an application of our results we obtain a complete understanding of the 
dynamics of the system (1.1) in the case of constant interaction rates b, c, 
e, and J: Since the above coefficients quantify the “crowding” and 
“interaction” effects, it appears reasonable to suppose that they change less 
with time than the carrying capacities a(t) and d(r), explaining our interest 
in this case. 

PROPOSITION 2.1. Assume that b, c, e, and f are positive constants. For 
the existence of a positive p-periodic solution qf ( 1.1) it is necessary and 
s@cient that A > 0, D > 0, and 

Af- CD 
bf - ce ” 

Db-eA 
and ~ 

bf-ce “’ (2.8) 

The solution is then unique. 

Proof: Dividing the equations in (1.1) by x(t) and y(t), respectively, 
and integrating from 0 to p, we see that the expressions in (2.8) are propor- 
tional to the averages of x(t) and y(t), respectively, proving necessity. For 
the sufficiency part, it is easy to see that the case bf- ce > 0 is covered by 
Theorem 2.2, while the case bf - ce < 0 is covered by Theorem 2.3. 

The following result now follows easily. 

PROPOSITION 2.2 Assume that b, c, e, and f are positive constants. In 
order for ( 1.1) to have a unique positive p-periodic solution brhich attracts all 
other positive solutions, it is necessary and sufficient that A > 0, D > 0 and 
Af-cD>O, Db-eA>O. 

Finally we describe our attempts to find an example when both 
semitrivial solutions are unstable and multiple coexistence states occur. It 
follows from the results of [7,9] that if uniqueness fails, one can expect at 
least two locally stable p-periodic solutions, and solutions starting with 
(M, E) and (E, M), with E > 0 small and M> 0 large, will tend to two 
different coexistence states. We integrated ( 1.1) using the standard 
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fourth-order RungeeKutta method, and tried various examples, which 
violated the conditions of Theorem 2.2. However, in all cases we saw 
convergence to a unique p-periodic coexistence state. 
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