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Abstract

Suppose two prey species have the same rate of reproduction, and

they are subjected to predation. Then the species more susceptible to

predation dies out. So that in effect the predator introduces competi-

tion between the prey species.
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1 Introduction

We begin with the classical Lotka-Volterra model of the predator-prey in-

teraction, which can be found in many textbooks

x′(t) = ax(t) − bx(t)y(t)(1.1)

y′(t) = −cy(t) + dx(t)y(t).

Here x(t) and y(t) give respectively the numbers of prey (rabbits) and preda-
tors (foxes) as functions of time t. Positive coefficients a,b,c and d are as-

sumed to be constant. We assume the initial conditions x(0) and y(0) to be
positive, which implies that solutions of (1.1) are positive functions. It is
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known, although perhaps not as widely as it should, that (1.1) is a Hamil-

tonian system in disguise. Namely, if we let p(t) = lnx(t) and q(t) = ln y(t),
then we can rewrite (1.1) as

p′(t) = a − beq(t) ≡ Hq(p, q)(1.2)

q′(t) = −c + dep(t) ≡ −Hp(p, q),

with the Hamiltonian function H(p, q) = aq − beq + cp − dep. Along the

solution curves of (1.2) H(p(t), q(t)) = constant. In the original variables

a ln y − by + c lnx − dx = constant.(1.3)

The function a ln y − by + c lnx − dx is unimodular, since it is a sum of

two unimodular functions c lnx− dx and a ln y − by. Hence its level curves,
given by (1.3), are the familiar closed curves of the predator-prey interaction.

Then x(t) and y(t) are periodic functions of t (whose period depends on the
initial conditions, see J. Waldvogel [4]).

Let us now assume there are two types of rabbits, whose populations are

given by u(t) and v(t) respectively, say females and males. They have the
same reproduction rates, but males are more susceptible to predation (we

understand that this assumption is correct). We thus consider the model

u′(t) = au(t) − bu(t)y(t)(1.4)

v′(t) = av(t)− αbv(t)y(t)

y′(t) = −cy(t) + d (u(t) + v(t)) y(t),

with a constant α > 1. Solution of (1.4) is uniquely determined by the initial
conditions u(0) = u0 > 0, v(0) = v0 > 0 and y(0) = y0 > 0.

Theorem 1.1 For any (u0, v0, y0), v(t) tends exponentially to zero, while
(u(t), y(t)) tends to a solution of (1.1), as t → ∞.

We found this result to be rather unexpected. The conclusion is similar

to the well-known principle of competitive exclusion, see e.g. [5], however
there is no direct interaction between the two types of rabbits. One can say

that in effect the rabbits do compete, although their competition happens
through predation by the foxes. This phenomenon has been observed by

ecologists, see R.D. Holt and J.H. Lawton, [2], [3], who referred to it as
“apparent competition”.
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We can also consider a “dual” situation, when u(t) and v(t) give popu-

lations of two types of foxes, preying on the rabbits

x′(t) = ax(t) − b (u(t) + v(t))x(t)(1.5)

u′(t) = −cu(t) + αdu(t)x(t)

v′(t) = −cv(t) + dv(t)x(t).

Theorem 1.2 If α > 1, v(t) tends exponentially to zero, while (x(t), u(t))

tends to a solution of (1.1), as t → ∞.

The proof is similar.

2 Proof of the Theorems 1.1 and 1.2.

We need two lemmas, dealing with a perturbed version of the Lotka-Volterra
equations

x′(t) = ax(t) − bx(t)y(t)(2.1)

y′(t) = −cy(t) + dx(t)y(t) + f(t)y(t).

Lemma 2.1 Assume that the given continuous function f(t) is positive for
all t > 0, and the integral

∫

∞

0 f(t) dt converges. Then both components of

any positive solution of (2.1) are uniformly bounded for all t > 0.

Proof: Letting p(t) = ln x(t) and q(t) = ln y(t), we rewrite (2.1) as

p′(t) = a − beq(t)(2.2)

q′(t) = −c + dep(t) + f(t).

We shall use the Lyapunov function H(p, q) = beq − aq + dep − cp. Then we
see from (2.2) that p′ = −Hq and q′ = Hp + f(t). Then the derivative of H

along the trajectories of (2.2) is

d

dt
H(p, q) = −HpHq + Hq (Hp + f(t)) = f(t)

(

beq(t) − a
)

.(2.3)

Clearly, we can find a positive constant C, so that

beq − a < 2 [beq − aq + dep − cp] + C = 2H + C,(2.4)

for all real p and q. Using this in (2.3),

dH

dt
< f(t)(2H + C).
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Integrating

1
2 ln |2H(p(t), q(t))+ C| <

∫ t
0 f(s) ds + 1

2 ln |2H(p(0), q(0))+ C|(2.5)

< C1 for all t > 0,

for some positive constant C1. From (2.5) we conclude a bound from above
on H(p, q), and hence on p and q, and the lemma follows. ♦

Lemma 2.2 In the conditions of the preceding lemma, any positive solution

of (2.1) tends to a solution of (1.1), as t → ∞.

Proof: Integrate (2.3)

H(p(t), q(t)) = H(p(0), q(0))+

∫ t

0
f(t)

(

beq(t) − a
)

dt.

Since q(t) is bounded and f(t) is positive, we see that H(p(t), q(t)) tends to
a finite limit as t → ∞. Hence the solutions of (2.1) approach the curves

H(p, q) = constant, which correspond to the solutions of (1.1). ♦

Similarly we prove the following lemma for another perturbation of the
Lotka-Volterra system

x′(t) = ax(t) − bx(t)y(t)− f(t)x(t)(2.6)

y′(t) = −cy(t) + dx(t)y(t).

Lemma 2.3 Assume that the given continuous function f(t) is positive for

all t > 0, and the integral
∫

∞

0 f(t) dt converges. Then any positive solution
of (2.6) tends to a solution of (1.1), as t → ∞.

Proof of the Theorem 1.1. Our goal is to show that v(t) → 0 as t → ∞.

Multiplying the first equation in (1.4) by e−at, and denoting U(t) = e−atu(t),
we have

U ′(t) = −bU(t)y(t).

Letting V (t) = e−atv(t), we rewrite similarly the second equation in (1.4)

V ′(t) = −αbV (t)y(t).

Dividing,
dV

dU
= α

V

U
.(2.7)
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Integrating (2.7), and returning to the original variables,

v(t) = γe−(α−1)atuα(t), with γ = v(0)
uα(0) .(2.8)

We can then rewrite our system (1.4) as a system of two equations

u′(t) = au(t) − bu(t)y(t)(2.9)

y′(t) = −cy(t) + d
(

u(t) + γe−(α−1)atuα(t)
)

y(t),

We claim that all solutions of this system are bounded, for any γ > 0.
Again, we appeal to its Hamiltonian-like nature. Letting p(t) = lnu(t) and

q(t) = ln y(t), we rewrite (2.9) as

p′(t) = a − beq(2.10)

q′(t) = −c + d
(

ep + γe−(α−1)ateαp
)

.

We shall use a time-dependent Lyapunov function H(t, p, q) = beq − aq +

dep − cp + dγ
α e−(α−1)a teαp. In terms of H we can rewrite the equations in

(2.10) as p′ = −Hq and q′ = Hp respectively. Then the derivative of H along

the trajectories of (2.10) is

d

dt
H(t, p, q) = Ht + Hp(−Hq) + HqHp = −

(α − 1)adγ

α
e−(α−1)a teαp < 0.

We conclude that H(t, p, q) is bounded from above. The same is then true
for the function beq − aq + dep − cp. Hence p(t) and q(t), and then u(t) and

y(t) are bounded from above.

Since u(t) is bounded, we see from (2.8) that v(t) tends exponentially to
zero. The rest of the proof now follows by Lemma 2.2. ♦

Proof of the Theorem 1.2. We briefly outline the proof, since it is similar.

Letting U(t) = ectv(t) and V (t) = ectv(t), we conclude as before

v(t) = c0e
−βctu

1

α ,(2.11)

with β = 1− 1
α > 0, and c0 =

v(0)

u
1
α (0)

. We now use (2.11) in the system (1.5),

and in the resulting system for x(t) and u(t) we let p(t) = lnx(t), q(t) =

ln u(t). As before we obtain a Hamiltonian-like system for p(t) and q(t). This

time the Lyapunov function is H(t, p, q) = beq−aq+αbc0e
−βc te

1

α
q+αdep−cp.

We conclude the boundness of x(t) and u(t) from above, and then from

(2.11) we see that v(t) tends exponentially to zero. Using Lemma 2.3, we
then conclude that x(t) and u(t) tend to a solution of (1.1). ♦
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3 Some extensions

For definiteness, we shall indicate some extensions for our first model (1.4),
although similar extensions can be also made for the model (1.5).

Clearly, we can extend the model (1.4), to consider any number of rab-
bits, with the same reproduction rate a. Only one species of rabbits, the

one least susceptible to predation, will survive.

We can also consider a more general model (α > 1)

u′(t) = au(t) − bu(t)y(t)(3.1)

v′(t) = aθv(t) − αbv(t)y(t)

y′(t) = −cy(t) + d (u(t) + v(t)) y(t).

We know that v(t) → 0 as t → ∞, when θ = 1. We claim that the same is
true, i.e. the conclusions of the Theorem 1.1 hold, when 1 < θ < α. Indeed,

rewriting the second equation in (3.1) as

v′(t) + (α − θ)av = aαv(t) − αbv(t)y(t)(3.2)

suggests that we set V = e(α−θ)atv, and rewrite (3.2) as

V ′(t) = aαV (t) − αbV (t)y(t).

Dividing this by the first equation in (3.1), we have

dV

du
= α

V

u
.

Integrating, and returning to the original variables,

v = γe−(α−θ)atuα.(3.3)

Then we complete the proof the same way as in the Theorem 1.1.

In case θ = α, the result no longer holds. Indeed, we see from (3.3) that
v = γuα, and hence u and v behave similarly as t → ∞.
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